SUPPLEMENTARY INFORMATION

Antigen-capturing nanoparticles improve the abscopal effect and cancer immunotherapy

Yuanzeng Min^{1, 2, 3}, Kyle C. Roche^{1, 2, 3}, Shaomin Tian^{2, 4}, Michael J. Eblan^{1, 2, 3}, Karen P. McKinnon^{2, 4}, Joseph M. Caster^{1, 2, 3}, Shengjie Chai^{2, 5}, Laura E. Herring⁶, Longzhen Zhang⁷, Tian Zhang⁸, Joseph M. DeSimone^{2, 4, 9, 10, 11, 12}, Joel E. Tepper^{1, 2, 3}, Benjamin G. Vincent^{2, 5}, Jonathan S. Serody^{2, 4, 5}, Andrew Z. Wang^{*1, 2, 3, 7}

¹Laboratory of Nano- and Translational Medicine, Carolina Center for Cancer Nanotechnology Excellence, Carolina Institute of Nanomedicine, ²Lineberger Comprehensive Cancer Center, ³Department of Radiation Oncology, and ⁴Department of Microbiology & Immunology, ⁵Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States, ⁶UNC Proteomics Core Facility, Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA, 27599, ⁷Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China, ⁸Division of Medical Oncology, Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, United States, ⁹Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, and ¹⁰Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA, ¹¹Department of Chemical and Biomolecular Engineering, NC State University, Raleigh, NC 27695, USA, and ¹²Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA

* Corresponding author, Email: zawang@med.unc.edu

Table of Contents of Supplementary Information

Supplementary Table 1 The capture of neoantigens and DAMPs by AC-NPs is dependent upon their surface chemistry.

Supplementary Table 2 List of antibodies used in flow cytometric analysis.

Supplementary Fig. 1 The size and zeta potential of AC-NPs change following TDPA capture.

Supplementary Fig. 2 Schematics depicting the treatment timelines for *in vivo* cancer immunotherapy experiments.

Supplementary Fig. 3 Animals demonstrating complete pathologic response following PLGA AC-NP+RT+anti-PD-1 treatment survived tumor re-challenge.

Supplementary Fig. 4 Mal and PLGA AC-NPs do not act synergistically to improve immunotherapy.

Supplementary Fig. 5 AC-NP facilitated enhancement of immunotherapy and the abscopal effect is lost following CD8⁺ T cell depletion.

Supplementary Fig. 6 AC-NPs can improve immunotherapy and the abscopal effect in orthotopic 4T1 tumors.

Supplementary Fig. 7 The accumulation of intratumorally injected AC-NPs in lymph node residing APCs is enhanced by radiotherapy.

Supplementary Fig. 8 AC-NPs accumulate in APCs in the lymph node via cell mediated transport and cellular uptake following passive drainage.

Supplementary Fig. 9. Representative flow plots used to quantify changes in the relative abundance of T cell subpopulations in un-irradiated secondary tumors following treatment.

Supplementary Fig. 10. The effect of AC-NP administration on immune cell infiltrates within primary irradiated tumors.

Supplementary Fig. 11. Representative flow plots used to evaluate frequency of IFN- γ producing T cells taken from spleens of animals treated with AC-NPs and subsequently stimulated *ex vivo* with TDPAs.

Supplementary Fig. 12. AC-NPs enhance immunotherapy by promoting cancer specific immunity.

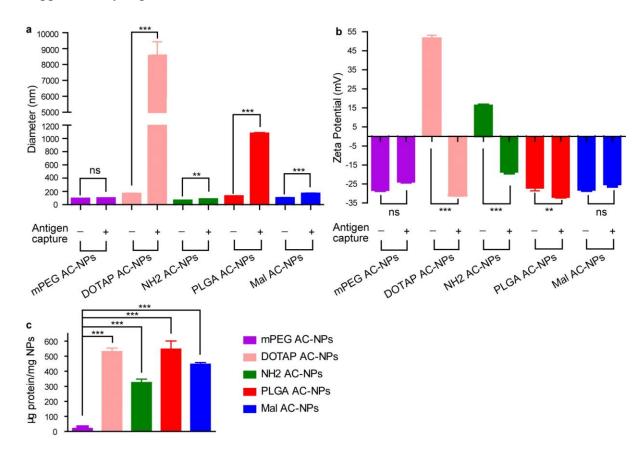
Supplementary Fig. 13. Neoantigens elicit T cell stimulation in animals treated with immunotherapy and AC-NPs following radiotherapy.

Supplementary Fig. 14. Comparison of AC-NP accumulation in APCs in nearby lymph nodes between AC-NP injected intratumorally following radiotherapy and TDPAs coated AC-NPs injected subcutaneously.

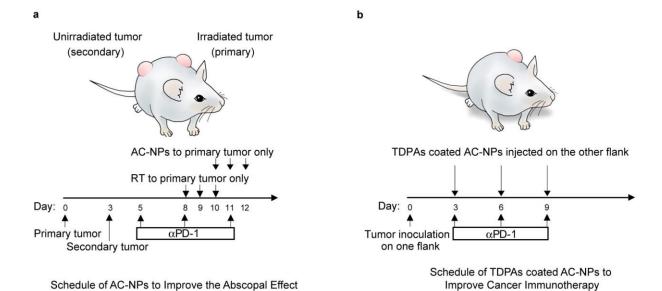
Supplementary Fig. 15. TDPAs coated AC-NPs enhance the efficacy of cancer vaccines in CD8⁺ T cell dependent manner.

Supplementary Tables:

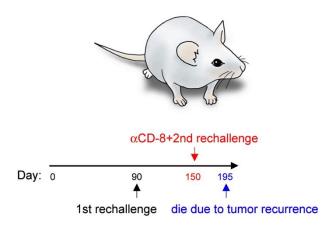
Supplementary Table 1. The capture of neoantigens and DAMPs by AC-NPs is dependent upon their surface chemistry.

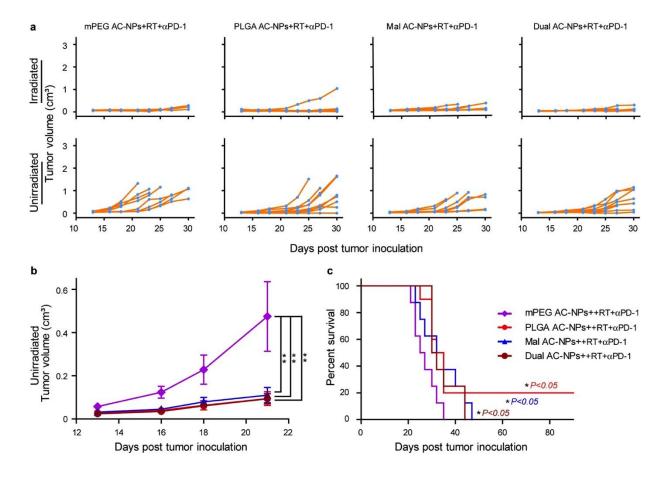

			#PSMs/Sequest Score				
			mPEG	DOTAP	NH2	PLGA	Mal
Classification	Gene	Protein	AC- NPs	AC-NPs	AC-NPs	AC-NPs	AC-NPs
	Actn4	Alpha-actinin-4		1/3		3/5	4/9
Nacantigans	Ap3d1	AP-3 complex				3/8	
		subunit delta-1				3/0	
Neoantigens	Dag1	Dystroglycan				4/7	
	Eef2	Elongation factor 2		6/18		12/40	1/2
	Tubb3	Tubulin beta-3 chain		1/2		3/3	3/7
	H2afx	Histone H2AX		3/6		20/31	2/2
	H2afz	Histone H2A.Z		3/6		15/28	2/2
	H3f3c	Histone H3.3C		1/3		15/34	1/1
	Hist1h1b	Histone H1.5		2/2		1/2	
	Hist1h1c	Histone H1.2		17/30	2/4	22/45	2/3
	Hist1h1d	Histone H1.3		15/26	2/4	23/47	2/3
	Hist1h1e	Histone H1.4		9/14	1/3	20/40	1/3
	Hist1h2ah	Histone H2A type 1-H	2/8	3/6		22/47	3/9
	Hist1h3a	Histone H3.1		1/2		13/30	1/1
	Hist1h3b	Histone H3.2		3/9		22/63	1/1
	Hist1h4a	Histone H4		2/2	1/3	72/140	4/9
DAMPs	Hist2h2ab	Histone H2A type 2-B		2/4		15/24	1/2
	Hmgb1	High mobility group protein B1		26/74		8/16	
	Hsp90aa1	Heat shock protein HSP 90-alpha		6/13	9/25	13/29	5/11
	Hsp90ab1	Heat shock protein HSP 90-beta		6/11	9/25	13/24	5/13
	Hspa1a	Heat shock 70 kDa		2/4		2/9	2/0
		protein 1A		2/4		3/8	3/9
	Hspa4	Heat shock 70 kDa protein 4		2/3	2/4	1/0	

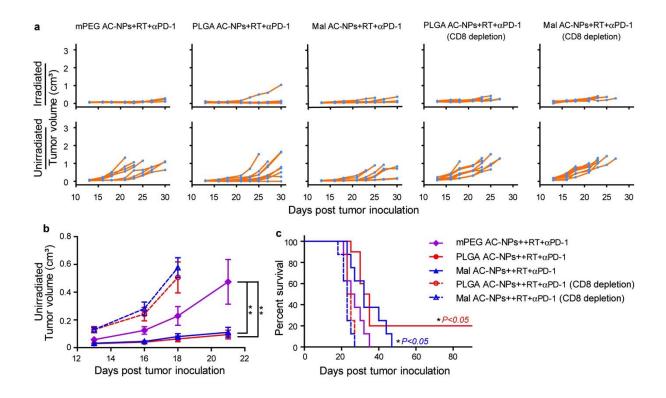
Note: Reported PSMs and Sequest Scores represent average values of two runs.

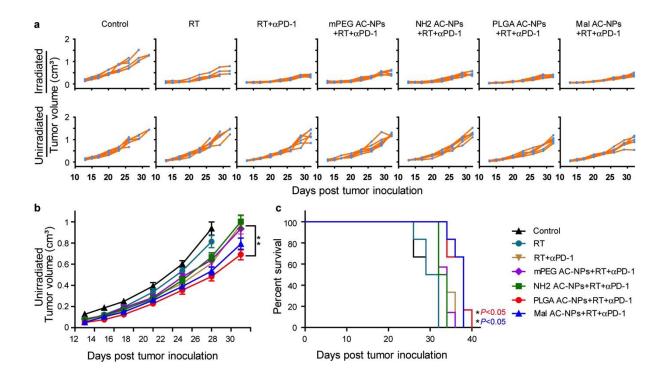

Supplementary Table 2. List of antibodies used in flow cytometric analysis.

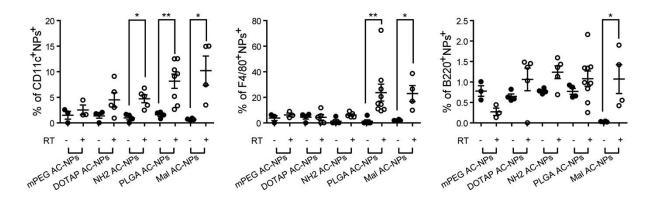
Antibody	Clone	Fluorophore	Vendor	
CD3	17A2	APC-eFluor® 780	eBioscience	
CD4	RM4-5	Alexa Fluor® 488	BD Biosciences	
CD4	GK1.5	PE-Cyanine7	eBioscience	
CD8α	53-6.7	APC	BD Biosciences	
CD8α	53-6.7	APC-eFlour780	eBioscience	
CD11c	N418	PE-Cyanine7	eBioscience	
CD25	PC61.5	PE	eBioscience	
CD45	Clone: 30-F11	eFluor® 450,	eBioscience	
CD45R (B220)	RA3-6B2	eFluor® 450	eBioscience	
F4/80	BM8	PE-eFluor® 610	eBioscience	
FOXP3	FJK-16s	PE-eFluor® 610	eBioscience	
IFN-γ	XMG1.2	Alexa Fluor® 488	eBioscience	
CD16/CD32 (Fc Block)	2.4G2		BD Biosciences	


Supplementary Figures:


Supplementary Fig. 1. The size (a) and zeta potential (b) of AC-NPs change following antigen capture. (c) Quantification of protein captured by AC-NPs. The change in size and zeta potential of AC-NPs following capture and comparisons of total protein captured by AC-NPs were assessed by one-way analysis of variance (ANOVA) with Tukey's post-test. Data represent mean \pm standard error of the mean (SEM). P value: *, P<0.05; **, P<0.01; ***, P<0.005.

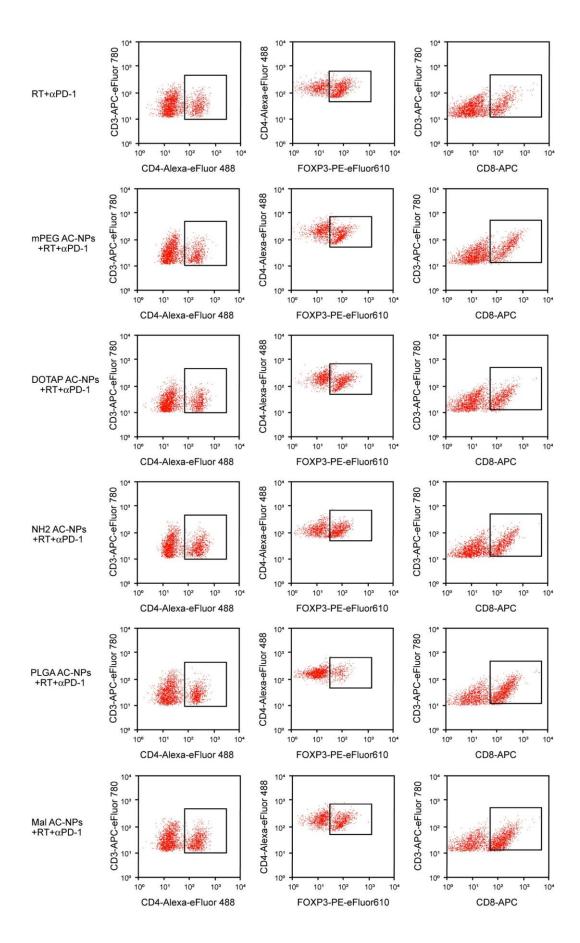

Supplementary Fig. 2. Schematics depicting the treatment timelines for *in vivo* cancer immunotherapy experiments. (a) The experimental approach used for *in vivo* assessment of AC-NP facilitated enhancement of immunotherapy and the abscopal effect following radiotherapy. (b) The experimental approach used for *in vivo* assessment of TDPA coated AC-NP with vaccine-based immunotherapy.


Supplementary Fig. 3. Animals demonstrating complete pathologic response following PLGA AC-NP+RT+anti-PD-1 treatment survived tumor re-challenge (subcutaneous injection of 100, 000 B16-F10 cells) (n=3). One animal was then again re-challenged while undergoing CD8⁺ T cell depletion and failed to reject the tumor, requiring euthanasia due to tumor recurrence. (n=1)

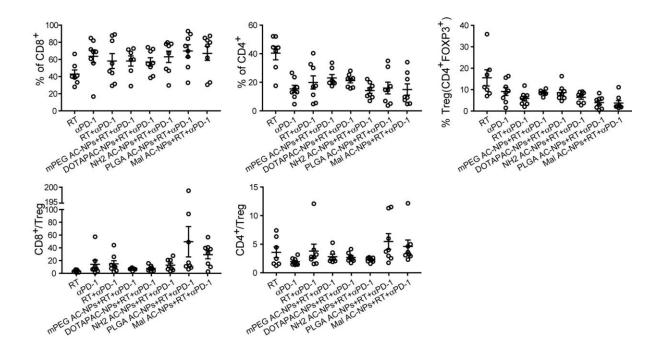

Supplementary Fig. 4. Mal and PLGA AC-NPs do not act synergistically to improve immunotherapy. (a) Tumor growth curves of individual animals treated with immunotherapy and AC-NPs. (b) Average tumor growth curves shown in (a). (c) Survival curves of mice in (a) (mPEG AC-NPs+RT+αPD-1, n=8; PLGA AC-NPs+RT+αPD-1, n=10; Mal AC-NPs+RT+αPD-1, n=8; Dual AC-NPs+RT+αPD-1, n=8). Tumor growth over time was compared by one-way analysis of variance (ANOVA) with Bonferroni correction. Data represent mean ± standard error of the mean (SEM). Differences in survival were determined for each group by the Kaplan-Meier method and the overall P value was calculated by the log-rank test. P value (*, P<0.05; **, P<0.01; ***, P<0.005)


Supplementary Fig. 5. AC-NP facilitated enhancement of immunotherapy and the abscopal effect is lost following CD8+ T cell depletion. (a) Tumor growth curves of individual animals treated with immunotherapy and AC-NPs with or without CD8+ T cell depletion. (b) Average of tumor growth curves shown in (a). (c) Survival curves of mice in (a) (mPEG AC-NPs+RT+αPD-1, n=8; PLGA AC-NPs+RT+αPD-1, n=10; Mal AC-NPs+RT+αPD-1, n=8; PLGA AC-NPs+RT+αPD-1 (CD8 depletion), n=8; Mal AC-NPs+RT+αPD-1 (CD8 depletion), n=8). Tumor growth over time was compared by one-way analysis of variance (ANOVA) with Bonferroni correction. Data represent mean ± standard error of the mean (SEM). Differences in survival were determined for each group by the Kaplan-Meier method and the overall P value was calculated by the log-rank test. P value (*, P<0.05; **, P<0.01; ***, P<0.005)

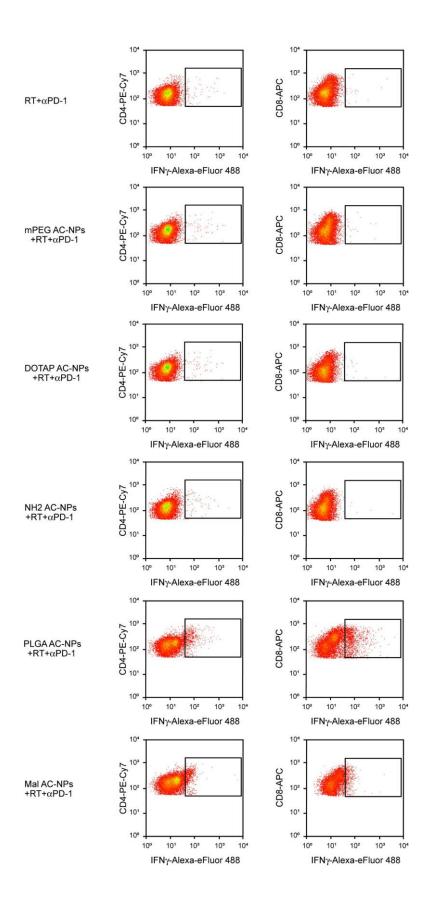
Supplementary Fig. 6. AC-NPs can improve immunotherapy and the abscopal effect in orthotopic 4T1 tumors. (a) Growth curves of irradiated (primary) and unirradiated (secondary) tumors in individual mice treated with immunotherapy and AC-NP formulations. (b) Average tumor growth curves of unirradiated (secondary) tumors in mice treated in (a). (c) Survival curves of the mice in (a). (n=6). Tumor growth over time was compared by the area under the growth curve (AUC). The difference was compared by one-way analysis of variance (ANOVA) with Dunnett's Multiple Comparison Test. Data represent mean \pm standard error of the mean (SEM). Differences in survival were determined for each group by the Kaplan-Meier method and the overall P value was calculated by the log-rank test. P value (*, P<0.05; **, P<0.01; ***, P<0.005)

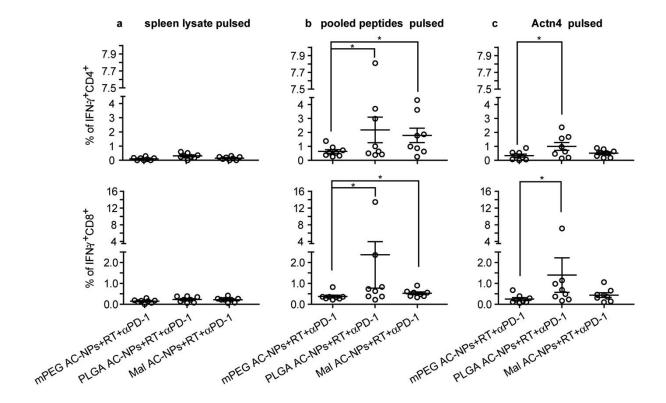


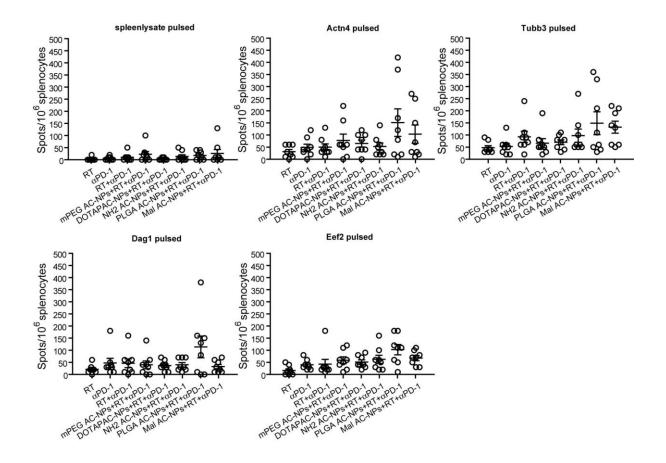
Supplementary Fig. 7. The accumulation of intratumorally injected AC-NPs in lymph node residing APCs is enhanced by radiotherapy. Flow cytometric analysis quantifying the percent of antigen presenting dendritic cells (CD11c⁺), macrophages (F4/80⁺), and B cells (B220⁺) with fluorescently-labeled AC-NPs (mPEG AC-NPs, n=3; DOTAP AC-NPs, n=5; NH2 AC-NPs, n=5; PLGA AC-NPs, n=8; Mal AC-NPs, n=4). Statistical significance was assessed using Mann Whitney test. Data represent mean ±standard error of the mean (SEM). *P* value (*, *P*<0.05; **, *P*<0.01; ***, *P*<0.005)

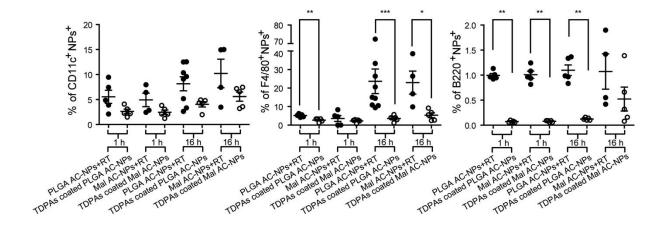


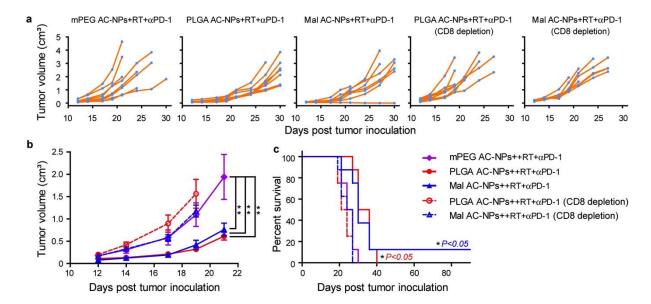
Supplementary Fig. 8. AC-NPs accumulate in APCs in the lymph node via cell mediated transport and cellular uptake following passive drainage after radiotherapy. (a) Images of sentinel lymph nodes at 1 and 16 hours after intratumoral injection of fluorescently-labeled AC-NPs, quantification of florescent intensity shown on the right (n=5). (b, c) Flow cytometric analysis assessing uptake of fluorescently labeled AC-NPs in dendritic cells (CD11c⁺) and macrophages (F4/80⁺) in irradiated tumors (b) and lymph nodes (c) (mPEG


AC-NPs, n=3-5; DOTAP AC-NPs, n=4-5; NH2 AC-NPs, n=5; PLGA AC-NPs, n=5 or 8; Mal AC-NPs, n=4). Statistical significance was assessed using Mann Whitney test. Data represent mean ±standard error of the mean (SEM). *P* value (*, *P*<0.05; **, *P*<0.01; ***, *P*<0.005)


Supplementary Fig. 9 Representative flow plots used to quantify changes in the relative abundance of T cell subpopulations in unirradiated secondary tumors following treatment.


Supplementary Fig. 10 The effect of AC-NP administration on immune cell infiltrates within primary irradiated tumors. (a) Flow cytometric analysis assessing the relative abundance of CD8⁺, CD4⁺, and CD4⁺FOXP3⁺ T cell subpopulations in primary irradiated tumors (RT, n=7; αPD-1, n=8; RT+αPD-1, n=8; mPEG AC-NPs+RT+αPD-1, n= 7; DOTAP AC-NPs+RT+αPD-1, n= 8; NH2 AC-NPs+RT+αPD-1, n= 8; PLGA AC-NPs+RT+αPD-1, n= 8; Mal AC-NPs+RT+αPD-1, n=8). T cells were defined as being CD45⁺CD3⁺. Statistical significance was assessed using Mann Whitney test. Data represent mean ±standard error of the mean (SEM). *P* value (*, *P*<0.05; **, *P*<0.01; ***, *P*<0.005)


Supplementary Fig. 11 Representative flow plots used to evaluate frequency of IFN- γ producing T cells taken from spleens of animals treated with AC-NPs and subsequently stimulated *ex vivo* with TDPAs.


Supplementary Fig. 12 AC-NPs enhance immunotherapy by promoting cancer specific immunity. Flow cytometric analysis evaluating frequency of IFN- γ producing T cells taken from spleens of animals that underwent immunotherapy, intratumoral injection of AC-NPs following radiotherapy, and subsequently stimulated *ex vivo* with spleen lysates (a), pooled neoantigens (b), and the neoantigen Actn4 only (c). Note that the neoantigen pool consisted of Actn4, Tubb3, Dag1, and Eef2. (mPEG AC-NPs+RT+ α PD-1, n= 8; PLGA AC-NPs+RT+ α PD-1, n= 8; Mal AC-NPs+RT+ α PD-1, n=8). Statistical significance was assessed using a Mann Whitney test. Data represent mean \pm standard error of the mean (SEM). *P* value (*, *P*<0.05; **, *P*<0.01; ***, *P*<0.005)

Supplementary Fig. 13. Neoantigens elicit T cell stimulation in animals treated with immunotherapy and AC-NPs following radiotherapy. Quantification of ELISPOT assay assessing IFN-γ production in splenocytes isolated from animals that underwent immunotherapy with or without intratumoral injection of AC-NPs following radiotherapy and subsequently stimulated *ex vivo* with normal spleen lysate, Actn4, Tubb3, Dag1 or Eef2 (n=8). Statistical significance was assessed using Mann Whitney test. Data represent mean ±standard error of the mean (SEM). *P* value (*, *P*<0.05; **, *P*<0.01; ***, *P*<0.005)

Supplementary Fig. 14. Comparison of AC-NP accumulation in APCs in nearby lymph nodes between AC-NP injected intratumorally following radiotherapy and TDPAs coated AC-NPs injected subcutaneously. Flow cytometric analysis assessing uptake of fluorescently labeled PLGA AC-NPs and Mal AC-NPs in dendritic cells (CD11c⁺), macrophages (F4/80⁺) and B cells (B220⁺) (PLGA AC-NPs+RT, n=5-8; Mal AC-NPs, n=4-5; TDPAs coated PLGA AC-NPs, n=5; TDPAs coated Mal AC-NPs, n=5). Statistical significance was assessed using a Mann Whitney test. Data represent mean \pm standard error of the mean (SEM). *P* value (*, P<0.05; **, P<0.01; ***, P<0.005)

Supplementary Fig. 15. TDPAs coated AC-NPs act as cancer vaccines in a CD8+ T cell dependent manner. (a) Tumor growth curves of individual animals treated with immunotherapy and AC-NPs with or without CD8 depletion. (b) Average tumor growth curves shown in (a). (c) Survival curves of mice in (a) (n=8). Tumor growth over time was compared by one-way analysis of variance (ANOVA) with Bonferroni correction. Data represent mean ± standard error of the mean (SEM). Differences in survival were determined for each group by the Kaplan-Meier method and the overall P value was calculated by the log-rank test. P value (*, P<0.05; **, P<0.01; ***, P<0.005)