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Abstract: Parkinson’s disease (PD) is a neurodegenerative disease with an impairment of movement
execution that is related to age and genetic and environmental factors. 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP) is a neurotoxin widely used to induce PD models, but the effect of MPTP
on the cells and genes of PD has not been fully elucidated. By single-nucleus RNA sequencing,
we uncovered the PD-specific cells and revealed the changes in their cellular states, including as-
trocytosis and endothelial cells’ absence, as well as a cluster of medium spiny neuron cells unique
to PD. Furthermore, trajectory analysis of astrocyte and endothelial cell populations predicted can-
didate target gene sets that might be associated with PD. Notably, the detailed regulatory roles of
astrocyte-specific transcription factors Dbx2 and Sox13 in PD were revealed in our work. Finally,
we characterized the cell–cell communications of PD-specific cells and found that the overall commu-
nication strength was enhanced in PD compared with a matched control, especially the signaling
pathways of NRXN and NEGR. Our work provides an overview of the changes in cellular states of
the MPTP-induced mouse brain.

Keywords: Parkinson’s disease; 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; single-nucleus RNA
sequencing; cellular states; cell–cell communications

1. Introduction

Parkinson’s disease (PD), a prevalent neurodegenerative disease, is predominantly
characterized by motor disorders, followed by non-motor symptoms including cognition
impairments, autonomic dysfunction and hyposmia [1]. PD mainly affects the elderly,
accounting for a prevalence of 1.7% in the population aged over 65 and the number of
PD patients increases with aging, which causes serious health problems and care costs for
the elderly and their families. Currently, PD is universally acknowledged to be caused by
neuronal death in substantia nigra [2], the degeneration of dopaminergic neurotransmission
and the accumulation of a-synuclein (Lewy bodies) in neuronal cells [3]. However, PD is
presently incurable, and the underlying mechanisms behind the neurological degeneration
have been the subject of intense study over the last two hundred years.

Single cell/nucleus RNA sequencing (sc/snRNA-seq) technology has emerged as the
most powerful instrument for assessing cell-type heterogeneity [4], and this technique
has been widely used in neuroscience. To date, the majority of previous sc/snRNA-seq
studies on PD have focused on iPSC-derived dopamine neurons [5,6] and mutant mouse
(LRRK2, SNCA) postmortems brain [7–9]. However, most PD cases are sporadic, and up
to 15% of PD cases are related to genetic mutations, but various environmental factors
can also induce PD-like symptoms. MPTP is a neurotoxin that can cause PD symptoms
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such as bradykinesia, postural instability, rigidity, cognitive deficits and temporary auto-
nomic disturbances [10]. MPTP can cross the blood–brain barrier (BBB) and be oxidized to
1-methyl-4-phenylpyridinium (MPP+) by monoamine oxidase B, and then MPP+ is concen-
trated in the dopaminergic terminals and cell bodies by the dopamine uptake transporter
to produce toxicity [11]. This process is often accompanied by astrogliosis and microgliosis
and endothelial cell injury [12]. However, all of these results were derived from traditional
techniques such as immunohistochemical and positron emission tomogram imaging [12].
In addition, a current study on the MPTP-PD transcriptome is limited to RNA-seq for bulk
tissues [13]. Although these studies provide valuable insights into the cellular phenotypic
effects of MPTP on the mouse brain, how MPTP affects the cell states at the single cell
transcriptional level has yet to be elucidated.

Here, we applied snRNA-seq to investigate complex cellular state changes in the
brain tissue of MPTP-PD and matched control (CN) mice. Firstly, we identified PD-specific
astrocytes and endothelial cells based on cell proportion, cell density, differential expression
genes and transcriptional regulation analysis. Then, the activation states of PD-specific
cells were characterized by trajectory reconstruction analysis, and the gene sets that may
mediate PD development were discovered. Moreover, another PD-related cell, PD-exclusive
D2-medium spiniform neuron (D2-MSN), was identified through the re-clustering of PD-
deficient neurons, which might be an independent cellular state caused by MPTP induction.
Eventually, we analyzed the changes in the communication relationship between PD-
specific cells to explore the effects of MPTP on the communication pattern of these cells.
Altogether, our work lays the foundation for elucidating the effect of MPTP on the cellular
heterogeneity of brain tissue in PD, and we expect that our study will significantly facilitate
future studies in PD mechanisms.

2. Results
2.1. Single-Nucleus Transcriptome Profiling to Identify Cell Populations

To investigate the effects of MPTP on the cellular heterogeneity of the brain in PD,
snRNA-seq was performed on the mixed samples of four brain regions from MPTP-PD and
CN mice (Figure S1A), which have been shown to be associated with PD in the previous
work [13]. After filtering out potential doublets, and poorly sequenced and damaged nuclei,
19,531 high-quality nuclei were kept for downstream integrated analysis (Figure S1B,C).
After batch correction, 24 clusters were identified and showed largely similar cellular
landscapes in MPTP-PD and CN (Figures 1A and S1D), and the results of cell correlation
further confirmed the accuracy of cell classification (Figure S2A). These clusters were
manually identified on the basis of the expression of known cell-type-specific markers; eight
major cell types were annotated: excitatory neurons (Ex1–13), inhibitory neurons (Inh1–4),
astrocytes (AST1–2), microglia (MG), an oligodendrocyte cell (OLG), oligodendrocyte
precursor cell (OPC), endothelial cell (ENDO) and pericyte (PEC) (Figures 1B and S2C and
Table S1). To investigate the changes in cell-type composition associated with MPTP-PD,
three approaches were used. Initially, we examined changes in the composition of each
cluster in the context of disease and found several that were overrepresented (Ex8–13,
AST, OLG) or underrepresented (Ex1–7, ENDO) in MPTP-PD, and the proportion of other
cells was similar to CN (Figure 1C). Subsequently, we compared PD and CN cell density
distributions in the UMAP representation and found that the fraction of AST1, Ex4 and
Ex9 in MPTP-PD were increased compared to CN (Figures 1D and S2C). In addition,
we evaluated whether the expression patterns of PD-associated risk genes were cell-specific.
The results showed that PD-risk variants were significantly enriched in Ex9, Ex12 and
ENDO cells (p-value < 0.05, OR > 1) (Figure 1E). Altogether, these results preliminarily
predicted that AST1, ENDO and excitatory neurons might be the cell types with the most
obvious effects of MPTP on PD.
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Figure 1. The characterization of cellular diversity in MPTP-PD brain by snRNA-seq. (A) Contribution
of nuclei from PD or CN to each cell type; colored by cluster. (B) Cell representative marker genes.
Expression level (color scale) of marker genes across clusters and the percentage of cell expression
(dot size). (C) The changes in frequency of multiple cell types between PD and CN. Left: log ratio
of average fraction in PD vs. CN. Right: proportion of PD and CN profiled cells. The color and
dot size represent different samples and the percentage of cells, separately. (D) Differential 2D cell
density between PD and CN. Red and yellow indicate the high and low density of cells in PD,
respectively. (E) Using Fisher’s exact test to obtain cell types in which PD-risk gene enrichment.
Circle size indicates OR value, and red color highlights enriched cell types with p-value < 0.05.
(F) The number of cell-specific DEGs. (G) The number of up- or down-regulated genes per cell type
was detected. (H) PD-risk DEGs’ detected frequency in each cell type.

2.2. Multi-Dimensional Validation of MPTP-PD Specific Cells

To verify our prediction of PD-specific cells, we investigated further from multi-
dimensions including differential expression genes (DEGs) and transcriptional regulation
analysis. We compared the numbers of cell-type DEGs between PD and CN, and found
that about 75% of DEGs were down-regulated in PD, especially in Ex1–7, AST1 and ENDO
(Figure 1F). The detected frequency analysis showed that the DEGs had strong specificity
in each cell type, and the number of detected down-regulated genes were more than that of
up-regulated genes in PD (Figure 1G). The down-regulated gene Ttr could be identified in
half of cell types, while up-regulated genes Bsg, Rps29 and Tmsb4x were detected in nine
clusters (Figure 1G), and all of them were dysregulated in ENDO and Ex5 cells (Table S2).
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With regards to this, Cakar et al. revealed that polyneuropathy can be caused by the
accumulation of amyloidogenic Ttr protein in tissues, as in Alzheimer’s disease (AD) and
PD [14]. P53 mediates cell defects associated with Rps29, and p53 inhibitors were very
effective in maintaining motor function in PD mice [15]. Overexpression of Tmsb4x in
cultured hippocampal neurons can reportedly reduce neurite outgrowth and neuronal
development [16]. Notably, a greater number of PD-risk DEGs were obtained in ENDO
and Ex5 cells in MPTP-PD (Figure 1H).

Transcription factors (TFs) tightly control cell fate in neurodevelopment and have
been implicated in neurodegenerative processes [17]. Therefore, we validated MPTP-PD
specific cell types from the perspective of transcriptional regulation, and further explored
the effect of TFs on disease. We identified 213 and 293 significant TFs in MPTP-PD and CN,
respectively, and most of the CN- and PD-specific TFs were contributed from Ex5 and AST1
(Figure 2A). The heatmap of the top 3 specific TFs of each cell type showed the activation
status of specific regulatory factors in each cell type, among which only 10 TFs (Bhlhe22,
Lhx9, Ovol2, Cux2, Uncx, Rarb, Sox9, Emx2, Tbx2, Nr1h3) were co-activated in the same cell
types of PD and CN, but the regulatory intensity was different (Figure 2B). It suggested that
alterations in the activation of TFs may drive changes in disease cell states. Subsequently,
we focused on 155 overlapped TFs from all clusters between PD and CN and found that
101 (65%) co-regulated conserved TFs have significant similar activated states among all
clusters between PD and CN, while the remaining TFs have strong cell-specific activated
patterns in PD or CN (Figure S3). It was suggested that the activation of some TFs with
cell-type specificity might be revealed by the changes in the intracellular transcriptional
regulatory network, thus affecting the development of PD. Finally, the activation status
of the other 54 TFs suggested that there was a general homogeneity in the activation or
inhibition of TFs in all cell types; only Rarb and Foxp2 were simultaneous activated and
inhibited in different cell types, and Maf and Xbp1 were activated or inhibited in almost
all neurons of PD, respectively (Figure S4). In conclusion, we systematically revealed
candidate trans-regulatory elements in different cell types of MPTP-PD for the first time,
especially disease-related AST1.
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Figure 2. Cell type-specific transcription factors in disease. (A) Venn plots of conservative and specific
TFs in PD and CN. Middle Venn plot shows conservative and specific TFs detected in PD and CN.
The circle percentage diagram with word cloud insert detailed presents that specific TFs of CN and PD
were mainly derived from Ex5 and AST1; the colors of circle diagram and word cloud plot correspond.
(B) Heatmap of top three specific TFs for each cell type in PD (left) and CN (right). (C,G) The rank
of regulons in AST1 and Ex5 based on regulon specificity score. (D,H) Binarized regulon activity
scores for top regulons Dbx2 and Sox13 on UMAP map (dark green dots). (E,I) Expression levels of
Dbx2 and Sox3 transcription-regulated target genes in AST1. (F,J) SEEK co-expression result for target
genes of top regulons Dbx2 and Sox13 in different public datasets. The x-axis represents different
datasets, and the y-axis represents the co-expression significance of target genes in each dataset;
AST1-related datasets with significant correlation (p-value < 0.01) are highlighted by blue dots.

Taken together, the results of cell proportion, cell density and PD-risk gene enrichment
analysis preliminarily predict that AST1, ENDO cells and neuron cells might be associated
with PD. Subsequent results of DEGs and transcriptional regulation further verified our
hypothesis. For example, the number of down-regulated genes in EX1–7, AST1 and ENDO
cells was prominent, the up- and down-regulated PD-risk genes were mainly from Ex5 and
ENDO cells, and 57% of PD-specific TFs were from AST1. Therefore, our multi-dimensional
methods ultimately focused on PD-specific cell types: AST1, ENDO and PD-deficient
neurons, which will be the focus of further research.

2.3. Transcriptional Regulation of Disease-Specific Astrocytes

To investigate the specific TFs of AST1 and Ex5 cells and their regulatory roles in
PD, we sought to evaluate the cell-specific TFs’ activation states. Dbx2 and Sox13 were
identified as the most prominent specific TFs associated with AST1 in MPTP-PD (Figure 2C),
and Prdm14 was the top TF that was associated with Ex5 in CN based on the rank of regulon
specificity score (Figure 2G). The UMAP plot provided additional support that the activities
of Dbx2 and Sox13 were highly specific to AST1 (Figure 2D,H), but Prdm14 was not only
activated in Ex5 (Inset of Figure 2G). Subsequently, the genes regulated by Dbx2 and
Sox13 were identified by RcisTarget [18], and the expression levels of these genes were
investigated in PD and CN, respectively. The genes that were regulated by Dbx2 were under-
expressed in PD, while the expression of Sox13-regulated genes were opposite, indicating
that Dbx2 and Sox13 may act as a transcriptional inhibitor and activator in MPTP-PD
(Figure 2E,I). To further evaluate the accuracy of our findings, we applied SEEK analysis to
search for GEO datasets about the co-expression pattern of Dbx2 and Sox13 target genes,
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then highlighted the work title that co-occurred with the term ‘Parkinson’, and found
that these co-expressed genes tend to be associated with PD (Figure 2F,J and Table S3).
For example, Slc1a2, Prdm16, Kank1 and Ddah1 were target genes of Dbx2, the high
expression of Slc1a2 was found to reduce the risk for PD in a Chinese cohort [19] and the
other genes are associated with cognitive function [20], autism spectrum disorder [21] and
depression-like behavior [22], respectively. Meanwhile, Sox13 target genes Ptch1, Pdgfrb,
Vcan, Lhfpl2 and A2m have been reported to be related to PD. Other regulated genes
by Sox13 might be associated to PD syndrome; for example, Nckap5 is considered the
most promising candidate for bipolar disorder [23], and Epb41l2 gene is associated with
cognitive impairment in the hippocampus induced by anesthesia [24]. Thus far, the study
about Dbx2 and Sox13 has focused on neural stem cells [25], and the role of Dbx2 and
Sox13 in PD has not been studied.

2.4. Trajectory Reconstruction of MTPT-PD-Associated Astrocytes and Endothelial Cells

To investigate the changes in AST1 and ENDO cell states in MPTP-induced mice,
we subclustered these cells and reconstructed their activation trajectories. We identified
five AST1 subpopulations characterized by high expression of Meg3, CT010467.1, Apoe,
Lsamp and Luzp2 (Figure 3A and Figure S5A). Subsequently, we reconstructed a cell tra-
jectory structure comprising these major subpopulations using the DDRTree method of
Monocle3 [26]. The activation trajectory of AST1 spans from Meg3High cells towards two
activation branches, one containing ApoeHigh cells and the other with clusters highly
expressing Luzp2 and Lsamp (Figure 3A). It has been reported that the relative expres-
sion level of Meg3 in PD patients is lower than that in the healthy population [27], while
Apoe has an impact on the cognitive decline of PD [28]. Luzp2 is found to be associated
with AD [29], schizophrenia [30], intelligence [31] and verbal memory [32], and the level
of Lsamp is increased in both patients with depression and schizophrenia [33]. Impor-
tantly, we observed that these five subclusters were all distributed in AST1 cells of UMAP;
in particular, the clusters with high Luzp2 and Lsamp expression were in the cells of in-
creased AST1 in cell density analysis (Figure 1E and Figure S5B). We observed that Luzp2
and Lsamp genes were distributed in the hippocampal based on the results obtained from in
situ hybridization of the Allen Brain Atlas (Figure S5C). To further characterize the linked
genes of these activated AST1 states in PD, we identified 100 genes whose expression
was associated with the activation trajectory, of which 42 and 48 genes were indepen-
dently highly expressed in CN and PD, respectively (Figure 3B). To identify the potential
pathways associated with marker genes of LsampHigh and Luzp2High subclusters, we per-
formed functional annotation using a hypergeometric test based on the Kyoto Encyclopedia
of Genes and Genomes (KEGG) database. These two subpopulations were associated
with locomotory behavior, the trans-synaptic signaling of endocannabinoid, response to
auditory stimulus and glutamate receptor pathways (FDR < 0.05) (Figure 3C). Next, we per-
formed functional annotation for PD of up- and down-regulated genes (Figure 3D and
Table S4) in all AST1 subpopulations based on the molecular function of the Gene Ontology
(GO) database. The results showed that PD-up-regulated genes were associated with
synaptic, dendritic/neuron spine, startle response, synaptic transmission and ion channel
regulator activity (FDR < 0.05) (Figure S5D), which were associated with PD in previous
studies [34–36]. Meanwhile, 14 overlapped genes were obtained between the DEGs and
the activation trajectory-associated genes in AST1 (Figure 3E and Table S4). Although none
of these genes overlapped with existing PD-risk gene sets, most of them were candidate
genes related to autism [37], dyskinesia [38] and schizophrenia [39]. We speculated that
these genes might be involved in the development of PD.



Int. J. Mol. Sci. 2022, 23, 10774 7 of 20

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW  7  of  20 
 

 

functional annotation using a hypergeometric  test based on the Kyoto Encyclopedia of 

Genes and Genomes (KEGG) database. These two subpopulations were associated with 

locomotory behavior, the trans‐synaptic signaling of endocannabinoid, response to audi‐

tory stimulus and glutamate receptor pathways (FDR < 0.05) (Figure 3C). Next, we per‐

formed functional annotation for PD of up‐ and down‐regulated genes (Figure 3D and 

Table S4) in all AST1 subpopulations based on the molecular function of the Gene Ontol‐

ogy (GO) database. The results showed that PD‐up‐regulated genes were associated with 

synaptic, dendritic/neuron spine, startle response, synaptic transmission and ion channel 

regulator activity (FDR < 0.05) (Figure S5D), which were associated with PD in previous 

studies [34–36]. Meanwhile, 14 overlapped genes were obtained between the DEGs and 

the activation  trajectory‐associated genes  in AST1  (Figure 3E and Table S4). Although 

none of these genes overlapped with existing PD‐risk gene sets, most of them were can‐

didate genes related to autism [37], dyskinesia [38] and schizophrenia [39]. We speculated 

that these genes might be involved in the development of PD. 

 

Figure 3. Trajectory reconstruction reveals astrocyte and endothelial differential activation in PD. 

(A,F) AST1 and ENDO subclusters labeled with a representative marker gene and trajectory recon‐

struction and pseudotime representation of subclusters. (B,J) PD and CN differential cell density 

distribution along pseudotime. The expression of 100 and 113 genes highly associated with the AST1 

and ENDO activation trajectory, respectively. (C,H) KEGG and GO terms associated with genes of 

the Luzp2High and Lsamp High cells in AST1 and Hmcn1High, Igf1rHigh, Flt1High in ENDO, respectively. 

(D,I) Volcano map of DEGs in PD and CN. The up‐regulated genes with red dots, down‐regulated 

genes with blue dots. (E,G) The overlapped genes between PD‐DEGs and the DEGs along the AST1 

and ENDO activation trajectory. 

Following the same analytical approach mentioned above, we identified six ENDO 

subclusters characterized by the high expression of Hmcn1, Bsg, lgf1r, ll1r1, Flt1 and Rbfox1 

Figure 3. Trajectory reconstruction reveals astrocyte and endothelial differential activation in PD.
(A,F) AST1 and ENDO subclusters labeled with a representative marker gene and trajectory recon-
struction and pseudotime representation of subclusters. (B,J) PD and CN differential cell density
distribution along pseudotime. The expression of 100 and 113 genes highly associated with the
AST1 and ENDO activation trajectory, respectively. (C,H) KEGG and GO terms associated with
genes of the Luzp2High and Lsamp High cells in AST1 and Hmcn1High, Igf1rHigh, Flt1High in ENDO,
respectively. (D,I) Volcano map of DEGs in PD and CN. The up-regulated genes with red dots,
down-regulated genes with blue dots. (E,G) The overlapped genes between PD-DEGs and the DEGs
along the AST1 and ENDO activation trajectory.

Following the same analytical approach mentioned above, we identified six ENDO
subclusters characterized by the high expression of Hmcn1, Bsg, lgf1r, ll1r1, Flt1 and Rb-
fox1 (Figures 3F and S6A,B), and recovered their activation trajectory. The results implied
an ENDO activation transited from Hmcn1High to Rbfox1High and ll1r1High subclusters
(Figure 3F). We observed that ENDO cells were generally absent in PD, but the cells of
BsgHigh were most severely absent, showing almost completely deletion (Figure S6C).
The Bsg gene is specifically expressed in ENDO cells of the brain, and it has been reported
that Bsg knockout mice exhibited deficits in learning and memory [40]. Indeed, ENDO cells
in PD were highly enriched at the two activation branches of their trajectory (Rbfox1High

and ll1r1High) compared to CN (Figures 3J and S6D). Rbfox1 is one of the risk genes that are
common to PD and various psychiatric disorders [41]. Ll1r1 can be regulated by miRNAs
that have been implicated as the potential regulators of alcohol-related neuroinflammation,
inducing brain injury and neurodegeneration [42]. Subsequently, we performed func-
tional annotation for Hmcn1High, Igf1rHigh and Flt1High subcluster marker genes based
on the GO database; the results showed that they were highly functionally related to the
negative regulation of locomotion and cellular component movement, cell adhesion and
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the acetylcholine receptors (FDR < 0.05) (Figure 3H). The acetylcholine receptors may be
stimulated by endogenous agonists such as acetylcholine, or exogenous chemicals such
as nicotine, to activate physiologic angiogenesis or pathologic angiogenesis [43]. Next,
we identified 35 overlapped genes between DEGs and the activation locus genes of ENDO
cells (Figure 4I,G and Table S4). About half of the overlapped genes have been found to be
related to PD in previous studies, and the other genes are related to neuropsychiatric dis-
eases (Zbtb20, Nav3), tissue aging (Myof ), impaired memory (Atp10a) and the blood–brain
barrier (Slco1a4, Cldn5, Ly6a) [44–46].
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Figure 4. Neuronal states specific to disease models. (A) UMAP dimensionality reduction of Ex1–8
from the snRNA-seq analysis. (B) Marker gene expression and the number distribution of cluster-
specific higher expressed genes. (C) The proportion of CN and PD in 15 subclusters. Top: the lollipop
of CN vs. PD, y > 0 means that the proportion of cells in PD is greater than CN; bottom: heatmap of
the cells’ proportion in PD and CN. (D) Bubble chart of all marker gene expression in subcluster 14.
(E) KEGG terms associated with genes of subcluster 14.

Since a previous study indicated that OLG and OPC were related to PD [9], we also
performed trajectory analysis for OLG and OPC cells. Compared with AST1 and ENDO,
the trajectory and cell density distributions analysis of OLG and OPC showed more similar
states, and the heatmap of the trajectory-dependent genes’ density also showed the similar
pattern (Figure S7).

2.5. Characterization of Transcriptomic State of Neuron Cells

In order to explore the effect of MPTP on neurons in the process of inducing PD,
we attempted to decipher the identity of the neurons that were absent in PD. We separated
all excitatory neuron cells into two major groups, Ex1–8 and Ex9–13, according to gene
expression similarity (Figure 1B, hierarchical cluster diagram). Almost all subclusters
in Ex1–8 showed the absence of the PD cell except for Ex8 (Figure 1C). We re-clustered
Ex1–8 to distinguish 15 subclusters (Figure 4A) and surprisedly found that subcluster 14,
consisting of 206 cells, had no continuity with other subclusters and was only concentrated
in PD (Figure 4A,C). Moreover, subcluster 14 was derived from cells with increased Ex4 in
cell density distribution analysis (Figure S8A). The number distribution of cluster-specific
higher expressed genes showed that subcluster 14 had the most marker genes (Figure 4B),
and the top four highly expressed genes of subcluster 14 could be verified in the stria-
tum of the Allen Brain Atlas (Figure S8C). Among them, the mutations in Rarb could
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cause intellectual disability with progressive motor impairment [47], and Pde7b plays an
important role in schizophrenia [48] and dopaminergic cell death [49]. Rgs9 is a potent
modulator of G-protein-coupled receptor function in striatum [50], and dopamine receptors
are associated with distinct G-proteins [51]. The mutations in the Gnal could cause primary
torsion dystonia [52]. In addition, some other marker genes of subcluster 14 have been
extensively studied. The recent literature report indicated Dach1 expression in the human
striatum MSN [53]. Adcy5 mutations have been associated with substantia nigra damage,
and white and gray matter changes in striatal cortical pathways [54]. Expression levels of
Rcan2 were responsive to external stressors such as reactive oxygen species, Ca2+, amyloid
beta and hormonal changes and are up-regulated in degenerative neuropathy [55]. Gng7 is
the abnormal protein of dopaminergic signaling [56]. CPne5 is the circadian rhythm-related
proteins, and circadian rhythm has a direct or indirect effect on the neurodegenerative
processes [57], and more importantly, the gene is involved in PD-induced toxins such as
paraquat [58]. In accordance with the expression characteristics of these genes (Figure 4D),
we defined subcluster 14 as the PD-exclusive D2-MSN that was located in the striatum.
Finally, we performed KEGG and GO analysis on the marker genes of D2-MSN and found
that all terms are significantly associated with neuronal synapse (e.g., dopaminergic, gluta-
matergic, cholinergic, GABAergic), the ligand-receptor interaction pathway, ion channel
and other related functions (FDR < 0.05) (Figure 4E and Figure S8D). A study has shown
that a-synuclein can induce the dysregulation of miRNAs, which target the neuroactive
ligand–receptor interaction pathway [59]. In conclusion, combined with functional analysis
and the literature review of marker genes obtained from subcluster 14, we speculated that
this subcluster was in an independent cell state during MPTP induction.

2.6. Analysis of Cell–Cell Communication in MPTP-PD Specific Cells

Integrating pathways and functions of all PD-specific cells suggested that MPTP was
likely to alter cell–cell communication. For example, the top enriched terms in D2-MSN
included neuroactive ligand–receptor interaction and the calcium signaling pathway, synap-
tic membrane and cell junction assembly in AST1, the cell–cell junction in ENDO and so
on. To further explore the interactions between PD-specific cells, we applied CellChat to
infer intercellular communication networks. The changes in cell communication analy-
sis require the same cell population composition between two datasets. Thus, we first
used AST1 and ENDO cells between PD and CN. We found that the global number of
ligand–receptor (L-R) pairs was decreased in PD, while the interaction strength was en-
hanced in PD compared to CN (Figure 5A,B). Interestingly, although ENDO_Rbfox1High

and AST1_Meg3High cells were reduced in PD, the number and intensity of intercellular
communications were most significant (Figure 5B). Next, we were curious about which
signaling pathways and ligand–receptor pairs (L-R pairs) change the cell communication
network. We further compared the information flow for each signaling pathway between
PD and CN, and found that some pathways such as the PSAP, VTN and SEMA4 path-
ways were turned off in PD, while the NRXN, NEGR, CNTN, NGL, EPHB, AGRN and
CXCL pathways were turned on only in PD (Figure 5C). Moreover, we studied the de-
tailed changes in the outgoing and incoming signaling across all pathways using pattern
recognition analysis. Four pathways were specifically active in PD, including known
nerve cell adhesion signals NRXN, NEGR, CNTN and NGL, suggesting that these path-
ways might critically contribute to disease progression. We also found that all PD turned
on pathways maintaining outgoing and incoming patterns in ENDO_Rbfox1High cells.
In addition, four significant pathways (NRXN, NEGR, CNTN and NGL) exhibited the most
prominent outgoing and incoming signaling patterns in AST1_Meg3High, AST_Luzp2High

and AST_LsampHigh cells (Figure 5D). Corresponding to the signaling pathway, we also
identified the PD up-regulated L-R pairs NRXN3–NLGN1, NRXN1–NLGN1 participat-
ing in the NRXN pathway and Negr1–Negr1 in the NEGR pathway, contributing to the
communication among almost all AST1 and ENDO subclusters, especially autocrine and
paracrine signaling between AST_Meg3High and ENDO_Rbfox1High cells (Figure S9).
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Figure 5. Characterization of cell communications among PD-specific cells. (A) The number and
strength of AST1 and ENDO intercellular ligand–receptor interactions in PD and CN. (B) Heatmaps
of the interaction quantity (left) and strength (right) between AST1 and ENDO subpopulations
in PD and CN. (C) Identification and visualization of conserved and specific signaling pathways.
(D) Heatmaps of the outgoing and incoming signaling patterns of AST1 and ENDO subclusters in
PD. (E) Circle plots show and compare cell–cell communication alterations among PD-specific cells.
(F) Heatmaps of the NRXN and NEGR signaling networks displaying relative importance of each cell
group ranked.
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In order to explore the communication network among D2-MSN, AST1 and ENDO
subclusters, we conducted cell communication analysis on PD data alone. We found
that D2-MSN communicated with almost all AST and ENDO subclusters, especially with
AST_Meg3High and ENDO_Rbfox1High (Figures 5E, S10A and S11). In addition, almost
all AST subclusters contributed more receptors for D2-MSN, especially AST1_Meg3High,
AST1_LsampHigh and AST1_Luzp2High cells (Figures 5E and S11). The outgoing and in-
coming signals contributed equally and strongly between D2-MSN and ENDO_Rbfox1High,
indicating that these two cell types were more closely interlinked (Figures 5E and S11).
In-depth exploration of the NRXN and NEGR signaling pathways indicated that these
two signaling factors play a key role in the communication network between D2-MSN,
ENDO_Rbfox1High and AST1_MegHigh. D2-MSN and ENDO_Rbfox1High exhibited high
expression of the sender, receiver, mediator and influencer, while almost all AST1 cells
acted as influencers (Figures 5G and S10D). Notably, we observed that the communication
probabilities of NRXN3–NLGN1, NEGR1–NEGR1 and CNTN1–NRCAM interactions were
more significant (p-value < 0.01) between these three cells (D2-MSN, ENDO_Rbfox1High

and AST_Meg3High) (Figure S10C), suggesting that MPTP induced huge cell communica-
tion network changes between these three PD-risk clusters by increasing NRXN3–NLGN1,
NRXN1–NLGN1 and NEGR1–NEGR1 expression and enhancing the NRXN and NEGR
signaling pathways. Our analysis suggested that the alteration in intercellular communica-
tions involving AST, ENDO and MSN cells might be a previously underestimated aspect of
MPTP-induced PD pathogenesis, providing a basis for further exploration.

3. Discussion

In this study, we performed snRNA-seq combined with advanced bioinformatics
analysis to explore the effects of MPTP on cell states in the mouse brain. We found PD-
related cell population alterations, including AST1 and ENDO, and observed changes in
their activation states. We also excavated some candidate TFs and genes that might be
disease-related. In addition, we identified a PD-specific D2-MSN with significant changes
in cellular status and gene expression. Finally, we observed enhanced cell-to-cell communi-
cation of these cells in PD. Our analysis of an MPTP-induced PD mouse brain provides a
reference for understanding the cellular heterogeneity underlying disease pathogenesis.

MPTP has been shown to cause pooling of blood in the brain microvasculature and
decrease the permeability of the BBB, and BBB dysfunction is involved in the course
of PD. BBB is mainly composed of ENDO, pericytes and AST, and reactive gliosis is a
common feature of AST during BBB destruction [60]. In our dataset, we identified PD-
specific astrogliosis and found its activation status and the activation of TFs in disease.
We observed that the AST1 subpopulations transition from a resting to an activated state
with the transition from a healthy to a diseased state. It has been reported that AST is
characterized by a stellate shape with multiple processes and ramifications, and becomes
activated following brain injuries and degenerative diseases [12]. In addition, we found
some potential PD marker genes associated with AST that are linked with cognitive im-
pairment, and the highly expressed genes (Luzp2 and Lsamp) of the activated subclusters
in PD were distributed in the hippocampus in the Allen Brain Atlas. Although it has
been demonstrated that AST can be activated in the striatum of PD [12], the hippocampus
is also implicated in the cognitive dysfunction seen in some patients with PD. The lack
of similar immunofluorescence experiments for verification is a deficiency of this paper,
but we boldly speculated that PD-related AST cells might come from or be part of the
hippocampus. Finally, we found that AST1 activated cell subpopulations in PD associ-
ated with the endocannabinoid trans-synaptic and glutamate receptor signaling pathway.
The endocannabinoid system can modify dopamine transmission through glutamatergic
synapses, and its signaling pathway is involved in the pathophysiological process of MPTP-
inducted PD [61]. Evidence suggests that glutamate excitotoxicity may also play roles
in the neurotoxicity of MPTP [11]. We also found heat-shock proteins (HSPs, Hspa1a)
overexpressed in AST1 of PD, which is consistent with PD-specific microglia in the PD
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human midbrain [8]. HSPs have been shown to be protective towards the hypothesized
mechanisms of MPTP toxicity [11]. HSPs, as specific molecules produced by AST, may be a
promising neuroprotective strategy in neuropathology. Therefore, we speculate that our
AST1-related genes will provide important clues for PD research.

TFs tightly control cell fate in neurodevelopment and have been implicated in neurode-
generative processes. We found that most of the PD-specific activated TFs were distributed
in AST1, and then identified the TFs most linked with AST1 in the disease model: Dbx2 and
Sox13. Studies have shown that Dbx2 encodes developing brain homeobox protein 2, highly
expressed during neuronal development and regulating the differentiation of interneurons
in the brain and spinal cord [62]. The widespread Dbx2 expression can have an effect
on gross motoric function in fruit fly and mice [63]. In addition, Dbx2 has recently been
shown to act as a TF regulating the maturation of cultured AST [64]. Similarly, the Sox gene
family functions as important transcriptional regulators of glial development in the central
nervous system [65]. Subsequently, we clarified that these TFs play inhibitory or rewarding
roles in disease, which had not been reported in any previous studies, and our analysis
provides potential target markers for the treatment of PD.

The BBB is characterized by the presence of tight junctions between ENDO cells and
the expression of specific polarized transport systems, and some studies have shown alter-
ations in ENDO tight junctions during PD development [12]. Our multi-channel analysis
showed that MPTP-induced PD mice were closely related to ENDO cells. We simulated the
activation trajectory of ENDO cells and detected the specific deletions of reactive ENDO
in PD, especially in the subset of cells of BsgHigh. Bsg plays a crucial role in angiogenesis,
and its co-expressed genes tended to be enriched in gene terms of the extracellular ma-
trix, cell adhesion and cell–cell interactions [66]. We hypothesized that the loss of ENDO
cells in PD resulted in the destruction of tight junctions between cells, thus enhancing the
permeability of BBB and promoting the entry of MPP+ toxins into the brain environment.
In addition, we also explored some genes in ENDO cells that affect neurological diseases
and BBB, which might be used as candidate markers for PD diagnosis. Among them, Cxcl12
levels may be potential biomarkers of inflammation in PD patients, and Slco1a5, Cldn5 and
Ly6a genes are all associated with the BBB [67]. Furthermore, we found low expression of
HSPs in PD-specific ENDO cells, contrary to AST1. The rise in HSPs level confers tolerance
to energy deprivation, which is one explanation for the neurotoxic effects of MPTP, and our
results also confirm this view [11].

Our snRNA-seq data also showed a trend towards increased cells of OLG and OPC in
PD, but our trajectory analysis results did not observe a significant PD-risk association for
OLG and OPC, which was consistent with the results of the latest genome-wide association
studies [68]. This suggests that MPTP intake may not be the driving factor for the changes
in OPC and OLG cells’ status. Namely, MPTP can induce more gene expression and cell
state changes in AST1 and ENDO than in OLG and OPC.

Although neuronal cells should have been one of the focuses of our study, in-depth
analysis was not carried out due to the lack of more accurate information to reveal their
identity. However, we still found a PD-specific neuron and then decrypted its identity and
status. We discovered a subcluster 14 with high expression of Rarb, Pde7b, Rgs9 and Gnal
that was unique to PD, which was defined as D2-MSN in the striatum. PD pathologies lead
to the malfunction of the nigrostriatal dopamine pathway, where dopaminergic neurons
release dopamine from axon terminals to the MSN in the dorsal striatum [2]. Although
D2-MSN cells should also be detected in CN, our data separated D2-MSN to only contain
PD samples. We observed that D2-MSN-linked genes were associated with morphine
and cocaine addiction pathways. 4’-Methyl-alpha-pyrrolidinopropiophenone (MPPP)
is related to morphine, piperidine and other drugs, while MPTP is an impurity in the
production process of MPPP. The opioid system is involved in the reinforcing phenomenon
induced by many drugs such as cannabinoids, cocaine and nicotine, and also alcohol.
Imaging studies have shown that the opioid system is involved in pain processing, and also
in addiction, neuropsychiatric manifestations, feeding and food disorders and, finally,
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movement disorders and levodopa-induced dyskinesias [69]. Dopaminergic neurons in
the substantia nigra are well known as being selectively vulnerable to the MPP+ effects,
so we speculated that our PD unique D2-MSN might be subjected to different levels of
toxin attack and suffer huge changes in cell state and gene expression.

Most scRNA-seq studies of PD mainly focused on the cell-type-specific gene expression
patterns. To our knowledge, there have been few studies characterizing the cell–cell
communication with scRNA-seq data in PD research. At the most analytical stage of this
work, we observed that the injection of MPTP reduced the quantity of communication
among AST, ENDO, and D2-MSN cells but increased the intensity of interaction, which
may be related to the energy conservation hypothesis of the PD mechanism [11]. The results
of CellChat analysis not only further confirmed the accuracy of our identification of PD-
specific cell types, but also revealed the synergistic communication relationship among
these cells. We found signaling pathways of PD-specific cells, including NRXN, NEGR,
CNTN and NGL, and their roles in PD have not been reported in the literature. NRXN and
NLGN are trans-synaptic proteins involved in vascular biology, and the synaptic proteins
of the NRXN family are involved in the vascular system through their interaction with
a basic vascular cell [70]. Studies have found that NRXN–NLGN links synaptic function
to cognitive disease [71], and the mutations in the NRXN-1 and CNTN4 genes have been
reported to cause autism spectrum disorders (ASD) [72]. NEGR1 is a generic risk factor
for multiple human diseases, including obesity, autism and depression [73]. It has been
reported that NRXN and NLGN proteins are not suitable biomarkers for AD synapse
pathology, but in our data their pathways were closely related to AST and ENDO in PD.
We speculate that they may be potential markers for PD pathology and may be related to
MPTP intake.

In summary, our study revealed several aspects of PD pathology caused by MPTP.
Initially, we identified a disease-specific up-regulation of AST as well as the loss of ENDO
cells, and systematically catalogued candidate target genes and TFs that might be associated
with PD. In addition, we discovered a D2-MSN cell that exists only in MPTP-PD, which is
an independent cell state initiated during MPTP induction. Finally, the cell–cell communi-
cation between PD-specific cells was investigated in detail, and identified the PD-related
signaling factors and L-R pairs. Taken together, our work at least partially supports the
changes in disease-specific cells and genes in MPTP in the mouse brain, and we hope that
this study will provide a reference for the pathogenesis interpretation of PD.

4. Materials and Methods
4.1. Ethics Statement

The study was approved by the animal ethical and welfare committee of Zhongda
Hospital Southeast University. All procedures were conducted following the guidelines
of the animal ethical and welfare committee of SEU. All applicable institutional and/or
national guidelines for the care and use of animals were followed.

4.2. Tissue Dissection and Nuclear Extraction

Eight-week-old male MPTP-induced Parkinson model mice (on a C57BL/6J back-
ground, MPTP-PD) and recommended control (C57BL/6J, CN) were purchased from the
Shanghai Model Organisms Center, Inc, Shanghai, China. The animals were anesthetized
with 500 mg/kg tribromoethanol (Sigma, Saint Louis, MO, USA) and were killed by cervical
dislocation. After the animals were sacrificed, brain tissues (cerebral cortex, hippocampus,
striatum and cerebellum) were isolated, quickly frozen in liquid nitrogen and stored in
liquid nitrogen (n = 1). Four brain regions were pooled for nuclei isolated according to the
‘Nuclear Isolation by Single-cell RNA Sequencing’ protocol of 10X Genomics®. In brief,
the tissue was lysed in a chilled lysis buffer (10 mM Tris-HCl, 10 mM NaCl, 3 mM MgCl2,
0.1% NP-40). Then, the suspension was filtered and nuclei were pelleted by centrifugation.
Nuclei pellets were then washed in ‘nuclei wash and resuspension buffer’ (1× PBS, 1%
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BSA, 0.2 U/µL RNase inhibitor, 2 mM DTT), filtered and pelleted again. Cell count was
then performed to calculate the concentration of nuclear suspension.

4.3. Library Construction and Sequencing

Sorted nuclei were processed using the 10× Chromium Next GEM Single Cell 3’ Kit
v3.1 to generate the cDNA libraries. The quality of cDNA was assessed using the Agilent
2100 Bioanalyzer System. Sequencing was performed on Illumina NovaSeq 6000-S2.

4.4. Data Demultiplexing and Quality Control

We used Cell Ranger 5.0.1 (10 × Genomics) to process raw sequencing data, and the
Seurat v4.0 was applied for downstream analysis. Before we started downstream analysis,
we focused on four filtering metrics to guarantee the reliability of our data. (1) Genes
detected in fewer than three cells were filtered to avoid cellular stochastic events; (2) nuclei
with a percentage of expressed mitochondrial genes greater than 10% were removed to
rule out apoptotic cells; (3) cells with UMI greater than 10,000 were removed to filter
out the doublet-like cells; (4) cells with detected genes out of the range of 200–4000 were
removed. After filtering cells and genes according to the metrics mentioned above, we fur-
ther applied Doublet Finder V2.0 with default parameters to predict and remove potential
doublets within each sample. As a result, there were 22,431 genes and 19,531 nuclei left for
downstream analysis.

4.5. Clustering and Cell Annotation

After quality control, unsupervised clustering was performed using Seurat v3 [74] in a
region-independent fashion. A series of preprocessing procedures including normalization,
variance stabilization and scaling data, were performed in an R function ‘SCTransform’
based on regularized negative binomial regression. Then, we selected 3000 highly variable
genes to integrate all sequencing libraries (including PD and CN) using ‘FindIntegrationAn-
chors’ and ‘IntegrateData’ functions, followed by the regression of technical noise. Principal
component analysis (PCA) was performed using integrated output matrix, and principal
component (PC) significance was calculated using the ‘JackStraw’ function. In this case,
we chose the top 30 significant PCs for downstream cluster identification and visualiza-
tion. Clusters were defined based on ‘FindClusters’ function with resolution equal to 0.8.
After the primary clustering analysis, we found a high proportion of excitatory neurons
with high gene expression similarity. Therefore, we applied 2-rotation cluster strategy.
Briefly, after the first clustering analysis, we obtained major cell types, then we subclustered
the excitatory neurons with resolution equal to 0.25 and merged the 2-rotation results as
final cluster results. Uniform Manifold Approximation and Projection (UMAP) was used
for the final dimension reduction and visualization.

Based on the cluster results, we next used ‘FindAllMarkers’ function with MAST
algorithm, which was specially developed and applied to single cell data detecting differ-
ential expressed genes to identify marker genes for each cluster. We ranked the marker
genes according to the p-value and log2 fold change (log2 FC) within each cluster and
searched top genes in Cell Marker [75] and Panglao DB [76] databases to annotate cell types
of clusters.

4.6. Differential Expressed Genes Analysis

Within each cluster, we detected differential expressed genes (DEGs) between PD
and CN conditions by using ‘FindMarkers’ function. we used ‘MAST’ setting as well and
controlled false-discovery rates (FDRs) using the Benjamini–Hochberg procedure. Then we
set threshold q_adjust < 0.05, abs|log2 FC| > 1 to filter DEGs and obtained PD up- and down-
regulated genes compared to CN for each cluster. The DEGs functional enrichment analysis
based on GO and KEGG was applied by an R package ClusterProfile [77] v3.18.4 using a
hypergeometric test and corrected for multiple hypothesis by FDR. We used R package
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wordcloud2 to show the frequency of PD-risk genes detected in differentially expressed
genes within each cluster; the bigger word size indicates the greater frequency.

4.7. Inference of Regulon, Quantify Cell-Type Specificity Score and Functional Validation

To predict gene regulatory networks using single nuclei gene expression data, we used
pySCENIC [18] approach. There are three major steps of SCENIC to construct high-
confidence gene regulatory networks. First of all, SCENIC calculates co-expression modules
between TF and candidate target genes using GENIE3. Then RcisTarget is used to create
regulon with only direct targets by identifying modules for which the regulator’s binding
motif is significantly enriched across the target genes. Finally, AUCell scores each regulon’s
active score in each cell and creates a binarized activity matrix between regulons and cells.
Using this matrix, we can predict cell states without removing batches and identify cell-type
specifically activated regulons.

For identifying cell-state-specific regulons, we adapted an entropy-based method to
quantify cell-type specific score of each regulon. Firstly, we name the vector of (PR

1 , . . . ,PR
n )

as PR to describe the distribution of regulon activity score, the vector of (PC
1 , . . . ,PC

n ) as PC,
which can indicate whether a cell belongs to a specific cluster, n is the total cell numbers.
Then we calculate the Jensen–Shannon Divergence (JSD) from PR and PC

JSD
(

PR, PC
)
= H

(
PR + PC

2

)
−

H
(

PR
)
+ H

(
PC
)

2

where H(P) = −∑ piloa(pi).
Finally, the regulon specificity score (RSS) is calculated as this

RSS(R, C) = 1−
√

JSD
(

PR, PC
)

Therefore, we know the range of RSS is (0, 1), and if the regulon activity is highly
different among clusters, the RSS approaches 1, otherwise, if there is no difference of
regulon activity among clusters, the RSS will be equal to 0.

To further validate whether our predicted regulons are functionally related to their
associated cell types or PD condition is specifically activated, we employed an online tool
SEEK [78]. SEEK provides the gene co-expression search function for lots of mouse database
from the GEO (Gene Expression Omnibus), so we can detect whether the genes within
the same regulon are co-expressed and which kinds of papers’ data had also reported the
similar co-expression module. If genes within regulon are significantly co-expressed in
many datasets related to Parkinson disease or some certain cell types, it could be further
evidence that the regulon is reported to be highly related to Parkinson’s disease in a certain
cell type.

4.8. Trajectory Analysis Using Monocle3

To obtain cellular state changes between PD and CN samples within AST1, ENDO,
OLG, OPC and part of the excitatory neurons, we reconstructed the cellular states’ trajecto-
ries using the standard Monocle3 [26] workflow. Firstly, we subdivided certain clusters,
used the filtered raw counts as input to integrate PD and CN cells and normalized factor
size. The sample effect was removed using the Mutual Nearest Neighbor method with
parameter ‘alignment_k = 20’. The reduce_dimension function was used for dimensionality
reduction, and the Louvain method was used for clustering with a resolution of 0.01. Then,
the trajectory inference used the learn_graph function with default parameters. Finally,
pseudotime ordering was performed by rooting the trajectory manually based on the shape
of trajectory and background knowledge.

The most important step is to identify trajectory-dependent genes that may influence
the PD and CN cell states, slightly changing them within each cluster. We first calculated
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subcluster marker genes using ‘topmarkers’ function then using ‘graphtest’ function, which
uses the spatial correlation analysis Moran’s I approach to identify highly variable genes
associated with the trajectory. Thus, the trajectory-dependent genes were defined by
intersection of subcluster markers and trajectory-associated highly variable genes.

4.9. Cell–Cell Communication Analysis

To further investigate the intercellular communication changes induced by MPTP,
we used R software CellChat [79] v1.4.0 to calculate communication networks between
subclusters of AST1, ENDO and D2-MSN. We predicted the communication network
including signaling pathway and ligand–receptor (L-R) pairs information in PD and CN
samples separately and then compared the network difference between these conditions.
The interaction number and strength are two key factors, so we used ‘compareInteractions’
function to obtain whole network interaction number and strength differences. Then, for the
conserved signaling pathways, we ranked these pathways according to their Euclidean
distance in the shared two dimensions space. The top pathways indicated more difference
between PD and CN. We also compared each signaling pathway’s information flow, which
is the sum of communication probability among all cell pairs, to identify different pathway
states including turn off/on, decrease and increase in one condition compared to the other.
Finally, we zoomed in to the L-R pairs level, and calculated dysfunctional L-R pairs by using
differential expression analysis with ‘identifyOverExpressedGenes’ and ‘netMappingDEG’
functions. The up-regulated and down-regulated L-R pairs can be detected. All the plot
functions are from the CellChat package.
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