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Abstract: Capillary self-alignment technique can achieve highly accurate and fast alignment of
micro components. Capillary self-alignment technique relies on the confinement of liquid droplets
at receptor sites where hydrophobic–hydrophilic patterns are widely used. This paper reports a
low-cost microsecond pulse laser micromachining method for fabrication of super hydrophilic–super
hydrophobic grooves as receptor sites for capillary self-alignment of microfibers. We investigated the
influence of major manufacturing parameters on groove sizes and wetting properties. The effects of
the width (20 µm–100 µm) and depth (8 µm–36 µm) of the groove on the volume of water droplet
contained inside the groove were also investigated. We show that by altering scanning speed, using
a de-focused laser beam, we can modify the wetting properties of the microgrooves from 10◦ to 120◦

in terms of the contact angle. We demonstrated that different types of microfibers including natural
and artificial microfibers can self-align to the size matching super hydrophilic–super hydrophobic
microgrooves. The results show that super hydrophilic–super hydrophobic microgrooves have great
potential in microfiber micromanipulation applications such as natural microfiber categorization,
fiber-based microsensor construction, and fiber-enforced material development.

Keywords: laser micromachining; capillary self-alignment; super hydrophilic–super hydrophobic
patterned surfaces; microfibers; microgrooves

1. Introduction

Capillary self-alignment technique can achieve highly accurate and fast alignment of
micro components [1–4]. Minimization of surface energy is the fundamental principle behind
capillary self-alignment, where the gradient of the surface energy drives the micro compo-
nents towards target receptors [5–7]. Capillary self-alignment relies on the liquid droplet
confinement inside the receptor, where the liquid droplet takes the shape of the receptor.
The receptor should have desired wetting or topological properties in contrast to that of the
background. The droplet confinement has been demonstrated using a hydrophilic receptor
on hydrophobic background [8], on superhydrophobic background [9,10], an oleophilic re-
ceptor on oleophobic background [11], and topological protruding receptor [12–14]. These
receptor sites are usually fabricated using lithography technology, which can reach high
manufacturing accuracy but is often costly and requires a cleanroom environment. Another
method for fabricating receptor sites is laser micromachining technique, which has been
used to fabricate microgrooves for construction of micro devices such as micro pumps [15],
micro mixers [16], micro reactors [17], and micro fuel cells [18]. We previously reported that
laser micromachining technology can be used to fabricate grooved surfaces for capillary
self-alignment of microchips [19].

In this paper, we study the influences of fabrication parameters of the grooved surfaces
on capillary self-alignment of microfibers, and we show that by altering scanning speed

Micromachines 2021, 12, 854. https://doi.org/10.3390/mi12080854 https://www.mdpi.com/journal/micromachines

https://www.mdpi.com/journal/micromachines
https://www.mdpi.com
https://orcid.org/0000-0002-8277-0118
https://orcid.org/0000-0002-3819-3878
https://doi.org/10.3390/mi12080854
https://doi.org/10.3390/mi12080854
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/mi12080854
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com/article/10.3390/mi12080854?type=check_update&version=1


Micromachines 2021, 12, 854 2 of 10

using a de-focused laser beam, we can modify the wetting properties of the microgrooves
from 10◦ to 120◦ in terms of the contact angle. We design and fabricate micro grooves
with different sizes and wetting properties of shapes matching the microfibers. We inves-
tigate the key fabrication parameters including the number of scanned lines, number of
scans, scanning speed, and their effects on the geometry and wetting properties of the
microgrooves. We also study the influences of the resulted width and depth of the groove
on the volume of water droplet confined inside the grooves. Finally, we demonstrate that
diverse types of microfibers, including natural and artificial microfibers, can self-align to
super hydrophilic–superhydrophobic microgrooves.

2. Materials and Methods
2.1. Laser Micromachining of Super Hydrophilic–Super Hydrophobic Grooves

In this paper, we use a low-cost microsecond pulse laser micromachining method
to fabricate super hydrophilic–super hydrophobic grooves for capillary self-alignment of
microfibers. The grooves are fabricated on silicon substrates. First, a super hydrophobic
coating (WHOLE-NANO, SPN-62) is sprayed on a silicon substrate and dried at room
temperature for 24 h. The substrate is then patterned with a UV laser marking machine
HGTECH LU-5 (Huagong Ltd., Wuhan, China) with a 5 W power and a 355 nm wavelength.
Figure 1a shows the schematic of laser marking process. Laser marking machine uses a
focused beam of laser to mark the surface of a material. When the light beam interacts with
the material surface, it alters the properties of the surface and forms designed patterns.
To fabricate super hydrophilic–super hydrophobic grooves, the laser marking machine
is set to a pulse duration of 1 µs, a current of 1 A, a scanning speed of 1500–2000 mm/s,
and a frequency of 100 kHz. By varying the number of scanned lines (the number of
parallel scanning lines of the laser spot) and the number of scans, different widths and
depths of the grooves were fabricated. The fabricated grooves have widths of 20 µm to
100 µm and depths of 8 µm to 36 µm. By adjusting the scanning speed, grooves with water
contact angles ranging from 10◦ to 120◦ can be fabricated. Figure 1b shows one example
of fabricated grooves with a width of 20 µm, a depth of 8 µm, a water contact angle of
10◦ inside the fabricated groove (Figure 1c), and a water contact angle of 155◦ outside the
groove (Figure 1d).
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Figure 1. Schematic of laser micromachining of super hydrophilic–super hydrophobic grooves and fabricated grooves:
(a) schematic of laser micromachining of super hydrophilic–super hydrophobic grooves; (b) 3D construction of fabricated
grooves; (c) water contact inside the groove; (d) water contact angle outside the groove.

2.2. Robotic System for Capillary Self-Alignment of Microfibers

The robotic manipulation system for performing capillary self-alignment test is shown
in Figure 2a, and it was adapted from a prior study [20]. The system consists of a capillary
gripper, a 3D motion system, and a vision system. The capillary gripper can produce
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droplets and pick-and-place the microfiber; the motion system moves the fabricated grooves
in three dimensions; and the vision system monitors the capillary self-alignment process
and provides visual feedback. The schematic of the capillary self-alignment is shown in
Figure 2b1–b4. Initially, a microfiber is picked up by a capillary gripper, and then the
fiber is transported to a substrate with microgrooves; the water droplets quickly spread
in the groove, and droplets are confined inside the groove due to the groove’s super
hydrophilicity and the substrate’s super hydrophobicity; this is while the fiber aligns itself
to the fully wetted groove; finally, the water droplets evaporate, leaving the fiber aligned
to the groove.
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Figure 2. Robotic system and schematic of capillary self-alignment of microfiber: (a) robotic manipulation system for
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3. Results
3.1. Criterion for Droplet Confinement

Capillary self-alignment relies on the droplet confinement inside the grooves. There
are two ways to confine the liquid droplet inside the groove. One is based on the large
wetting contrast for planar patterns, and the other method utilizes sharp edges to pin the
liquid according to Gibbs’ criterion [21]. In our case, the droplet confinement is achieved by
both sharp edge and wetting contrast. The amount of liquid that can be confined inside the
groove is estimated based on Gibbs’ criterion, as shown in Figure 3; the apparent contact
angle of a liquid droplet inside the groove θ may extend over a range of angles. This
indicates that the liquid droplet with increased volume can be confined inside the groove
until the apparent contact angle θ reaches θsub. As the volume of the liquid continuously
increases, and the contact angle θ exceeds θsub, the droplet contact line crosses the edge of
the groove and the liquid droplet spreads on the substrate. The maximum volume of the
droplet confined inside the groove can be calculated by:

V =
1
2

π(
w
2
)

2
l + Al (1)

where l, w, are the length and the width of the groove, and A is the area of the circular
segment above the groove, which can be calculated by:

A =
απr2

360
+

wh
2

(2)

where r is the radius of the circular segment, α is the central angle in degrees and α = 2θsub,
h is the height of the triangular portion and h = r sin(θsub − 90◦). Given the apparent
contact angle of the liquid droplet on the superhydrophobic substrate θsub is 155◦, the
length of the groove l is 3 mm, the depth of the groove d is 8 µm, the maximum volumes
of the droplet confined inside a 20 µm, 40 µm, and 60 µm wide groove are around 5.7 nL,
23 nL, and 51 nL, respectively, which are estimated using Equation (1). Figure 3b shows
the relationship between the contact angle of the substrate and the volume of the droplet
confined inside the groove with different widths. The simulation shows that the volume
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of the droplet confined inside the groove increases as the contact angle of the substrate
increases. Therefore, to confine a large amount of droplet inside the groove and meet the
requirement of the surface of the water inside the groove higher than the top surface of the
groove, the superhydrophobic substrate is preferred.
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3.2. Influence of Manufacturing Parameters on Size of the Grooves

The size of the grooves plays an important role in capillary self-alignment of mi-
crofibers. A series of experiments were conducted to investigate the key manufacturing
parameters and their effect on groove size. The grooves with different width were fabri-
cated by adjusting the number of scanned lines. A single scanned line has a width of about
20 µm. Parallel lines were machined to create grooves of varying widths. The spacing
between parallel scanned lines is set to 20 µm. Figure 4a shows the fabricated grooves
with widths of 20 µm, 40 µm, 60 µm, 80 µm, and 100 µm. The relationship between the
number of scanned lines and the width of the groove (Figure 4b) shows that as the number
of scanned lines increases, so does the width of the groove.
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The depth of the grooves is determined primarily by the number of scans. To fabricate
the groove with a different depth, by repeatedly scanning over the same location, the depth
of the groove can be adjusted. Figure 5a shows the 3D reconstruction of a fabricated groove
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with a width of 40 µm and a depth of 9.8 µm, as shown in the profile (Figure 5b). Figure 5c
depicts a cross section of the groove with various depths. Figure 5d shows that the number
of scans is proportional to the depth of the grooves.
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3.3. Fabrication of Grooves with Different Wetting Properties

To fabricate grooves with varying wetting properties, we first set the laser out of
focus, reducing the intensity of the laser beam significantly compared with a focused laser
beam. Then, we adjusted the scanning speed to change the morphology of the surfaces.
The groove structures fabricated at different scanning speeds of 100 mm/s, 1500 mm/s,
4000 mm/s, and 7000 mm/s are shown in Figure 6.

Given the pulse frequency of the laser beam Frequency = 100 kHz, and the scanning
speed of the laser beam Scan_Speed = 100, 1500, 4000, 7000 mm/s, the spacing between
two pulses/light areas can be estimated as Frequency/Scan_Speed. Therefore, the esti-
mated spacing of two pulses is approximately 1 µm, 15 µm, 40 µm, and 70 µm at scanning
speeds of 100 mm/s, 1500 mm/s, 4000 mm/s, and 7000 mm/s, respectively. It can be seen
clearly in Figure 6b that the spacing between two pulses/light areas is about the same as
the estimated value, which is 40 µm and 70 µm in the case of scanning speeds of 4000 mm/s
and 7000 mm/s. When the scanning speed is very low, such as 100 mm/s, the spacing
is only about 1 µm; therefore, the removed areas are highly overlapped. Furthermore,
Figure 6b shows that the area removed per pulse (light areas in 4000 mm/s and 7000 mm/s
cases) is about 30 µm wide, which mainly depends on the laser beam pulse duration; in
our case, it is 1 µs. Figure 6c depicts images of water contact angles on fabricated grooves.
When the scanning speed was set to 100 mm/s, the entire superhydrophobic coating
and part of the silicon layer were removed, leading to groove structures that are super
hydrophilic. As the scanning speed increases, the number of pulses per length decreases,
and clear spacings are observed for the cases of 4000 mm/s and 7000 mm/s. Therefore,
the superhydrophobic coating was removed only partially or interlaced on the scanned
area, leading to different wetting properties. The wetting properties were tested with a
non-contact dispenser (model: Gesim/PicPIP) that can dispense water droplets in the
groove. When the water contact angle of the groove is 10◦, the droplets completely wet
the groove. Only a small portion of the groove was wetted as the water contact angle of
the groove increased to 25◦. The droplets do not spread in the groove when the groove
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is hydrophobic. Table 1 displays the measured water contact angle in the groove as a
function of scanning speed. The results show that it is preferable for the groove to be super
hydrophilic, so that the groove can be completely wetted by water droplets for microfiber
capillary self-alignment.

Micromachines 2021, 12, x FOR PEER REVIEW 6 of 10 
 

 

 

Figure 6. Fabricated grooves with different wetting properties. (a) A 3D reconstruction of a fabri-
cated groove; (b) 2D images of grooves fabricated at scanning speeds of 100 mm/s, 1500 mm/s, 4000 
mm/s, and 7000 mm/s; the dark areas have superhydrophobic coating, the superhydrophobic coat-
ing is removed in the light areas; (c) measured water contact angles of 10°, 25°, 90°, and 120° on 
groove structures. 

Given the pulse frequency of the laser beam 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 ൌ 100 kHz, and the scanning 
speed of the laser beam 𝑆𝑐𝑎𝑛_𝑆𝑝𝑒𝑒𝑑 ൌ 100, 1500, 4000, 7000 mm/s, the spacing between 
two pulses/light areas can be estimated as 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦/𝑆𝑐𝑎𝑛_𝑆𝑝𝑒𝑒𝑑. Therefore, the esti-
mated spacing of two pulses is approximately 1 µm, 15 µm, 40 µm, and 70 µm at scanning 
speeds of 100 mm/s, 1500 mm/s, 4000 mm/s, and 7000 mm/s, respectively. It can be seen 
clearly in Figure 6b that the spacing between two pulses/light areas is about the same as 
the estimated value, which is 40 µm and 70 µm in the case of scanning speeds of 4000 
mm/s and 7000 mm/s. When the scanning speed is very low, such as 100 mm/s, the spacing 
is only about 1 µm; therefore, the removed areas are highly overlapped. Furthermore, 
Figure 6b shows that the area removed per pulse (light areas in 4000 mm/s and 7000 mm/s 
cases) is about 30 µm wide, which mainly depends on the laser beam pulse duration; in 
our case, it is 1 µs. Figure 6c depicts images of water contact angles on fabricated grooves. 
When the scanning speed was set to 100 mm/s, the entire superhydrophobic coating and 
part of the silicon layer were removed, leading to groove structures that are super hydro-
philic. As the scanning speed increases, the number of pulses per length decreases, and 
clear spacings are observed for the cases of 4000 mm/s and 7000 mm/s. Therefore, the su-
perhydrophobic coating was removed only partially or interlaced on the scanned area, 
leading to different wetting properties. The wetting properties were tested with a non-
contact dispenser (model: Gesim/PicPIP) that can dispense water droplets in the groove. 
When the water contact angle of the groove is 10°, the droplets completely wet the groove. 
Only a small portion of the groove was wetted as the water contact angle of the groove 
increased to 25°. The droplets do not spread in the groove when the groove is hydropho-
bic. Table 1 displays the measured water contact angle in the groove as a function of scan-
ning speed. The results show that it is preferable for the groove to be super hydrophilic, 

Figure 6. Fabricated grooves with different wetting properties. (a) A 3D reconstruction of a fabricated
groove; (b) 2D images of grooves fabricated at scanning speeds of 100 mm/s, 1500 mm/s, 4000 mm/s,
and 7000 mm/s; the dark areas have superhydrophobic coating, the superhydrophobic coating is removed
in the light areas; (c) measured water contact angles of 10◦, 25◦, 90◦, and 120◦ on groove structures.

Table 1. Influence of scanning speed on wetting property.

Scanning Speed (mm/s) Water Contact Angle

100 10◦

1500 25◦

4000 90◦

7000 120◦

3.4. Influence of Size of Groove on Droplet Confinement

Droplet confinement is key for capillary self-alignment; we experimentally studied
the influence of the size of the groove on the droplet confinement. We tested the grooves of
sizes ranging from 20 µm to 100 µm in width, 8 µm to 36 µm in depth, all of which were
3 mm long. The water contact angles in the groove and on the substrate are about 10◦ and
155◦, as mentioned earlier. The volume of the droplet confined inside the groove is defined
as the maximum volume of the droplet before spreading out. A series of droplets was
dispensed at the groove, at a rate of one droplet per 25 milliseconds, with the volume of
92 pl per droplet (calibrated based on the specifications provided by the manufacturer of the
non-contact dispenser) until the droplet spreads out from the groove to the substrate. We
investigated both the relationship between the maximum confined volume as the function
of the width and the depth. The depth of the groove was fixed at 8 µm for tests of different
widths, and the width of the groove was fixed at 40 µm for the tests of different depths.
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Each test was repeated 5 times. Figure 7 shows the influence of the width and the depth of
the groove on the volume of the droplet confined inside the groove. The x-axis represents
the width and the depth of the groove, and the y-axis represents the maximum volume
of the droplet confined inside the groove, which consists of a mean of 5 repetitions with
the standard derivation. The orange squares connected with dotted lines in Figure 7a,b
represent the maximum volume of the liquid droplets confined inside the groove estimated
based on Equation (1). The blue bars represent the experimental results of the confined
volume. For the influence of the groove width, the experimental results reveal that the
relationship between width and volume is mainly linear. The theoretical prediction for
droplet volume confined inside a 20 µm, 40 µm, and 60 µm wide groove with a depth of
roughly 8 m is about 3 nL, 28 nL, and 53 nL, which is close to the estimation based on Gibbs
criterion (4.3 nL, 26 nL, 55 nL). The discrepancies between experimental and theoretical
prediction increase at 80 and 100 µm, which we attribute to the jagged edges of the groove.
For the influence of the depth of groove, the experimental data show that the relation
is positive and saturating when the depth increases. The theoretical model predicted
only a positive linear relationship, even though the trend is the same, the volume and
gradient are largely different. We attribute this discrepancy to the combined influence of the
jagged edges and irregular topography caused by the heating effect of laser manufacturing
process. Nevertheless, both experimental results and theoretical estimations show that
the maximum volume of the droplet confined inside the groove increases as the width
and the depth of the groove increase. It is suggested that the volume of the droplet for
self-alignment should not exceed the maximum volume of the droplet confined inside the
groove to achieve the successful capillary self-alignment of microfibers.

Micromachines 2021, 12, x FOR PEER REVIEW 8 of 10 
 

 

 
Figure 7. Influence of the width and depth of the groove on maximum volume of droplet confined inside the groove: (a) 
volume of droplet confined inside the groove as the function of the width of the groove; (b) volume of droplet confined 
inside the groove as the function of the depth of the groove. 

3.5. Demonstration of Capillary Self-Alignment of Microfibers on Fabricated Microgrooves 
To demonstrate that the fabricated hydrophilic–super hydrophobic grooves can be 

used to align microfibers, we carried out capillary self-alignment tests using various types 
of microfibers including both natural and artificial fibers, e.g., dog tail grass, dandelion 
seeds, legs of ants, and glass fibers. The microfibers have diameters ranging from 15 µm 
to 200 µm and the length of around 3 mm. The fabricated super hydrophilic–super hydro-
phobic microgrooves match the shape of the microfibers, having the width of 20–220 µm, 
depth of 24 µm, length of 3 mm, and the water contact angle of 10°. Figure 8 shows a 
demonstration of the capillary alignment of a glass microfiber with a diameter of 15 µm 
on the super hydrophilic–super hydrophobic groove. Firstly, a glass fiber is picked up and 
transported to a groove by a capillary gripper (Figure 8a); next, the fiber is released onto 
the groove and the liquid droplet fully wets the super hydrophilic groove (Figure 8b); 
then, the fiber is self-aligned to the groove, and the water droplets evaporate (Figure 8c). 
A zoom image of an aligned microfiber inside the groove is shown in Figure 8d, where 
the yellow dashed lines represent the edges of the groove, and the results show that the 
self-alignment of microfiber can be achieved. Figure 8e–h shows a dog tail grass self-
aligned to a shape matching microgroove. It appears that the self-alignment is not ham-
pered even though the dog tail grass has little spikes (Figure 8h). Capillary self-alignment 
has also been proven with a dandelion seed, as shown in Figure 8i–k and leg of an ant 
(Figure 8m–o). It is worth noting that both the dandelion seed and the leg of an ant are 
slightly bent, but this does not appear to impair the capillary self-alignment process. 

Figure 7. Influence of the width and depth of the groove on maximum volume of droplet confined inside the groove:
(a) volume of droplet confined inside the groove as the function of the width of the groove; (b) volume of droplet confined
inside the groove as the function of the depth of the groove.

3.5. Demonstration of Capillary Self-Alignment of Microfibers on Fabricated Microgrooves

To demonstrate that the fabricated hydrophilic–super hydrophobic grooves can be
used to align microfibers, we carried out capillary self-alignment tests using various
types of microfibers including both natural and artificial fibers, e.g., dog tail grass, dan-
delion seeds, legs of ants, and glass fibers. The microfibers have diameters ranging from
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15 µm to 200 µm and the length of around 3 mm. The fabricated super hydrophilic–
super hydrophobic microgrooves match the shape of the microfibers, having the width of
20–220 µm, depth of 24 µm, length of 3 mm, and the water contact angle of 10◦. Figure 8
shows a demonstration of the capillary alignment of a glass microfiber with a diameter of
15 µm on the super hydrophilic–super hydrophobic groove. Firstly, a glass fiber is picked
up and transported to a groove by a capillary gripper (Figure 8a); next, the fiber is released
onto the groove and the liquid droplet fully wets the super hydrophilic groove (Figure 8b);
then, the fiber is self-aligned to the groove, and the water droplets evaporate (Figure 8c). A
zoom image of an aligned microfiber inside the groove is shown in Figure 8d, where the
yellow dashed lines represent the edges of the groove, and the results show that the self-
alignment of microfiber can be achieved. Figure 8e–h shows a dog tail grass self-aligned to
a shape matching microgroove. It appears that the self-alignment is not hampered even
though the dog tail grass has little spikes (Figure 8h). Capillary self-alignment has also been
proven with a dandelion seed, as shown in Figure 8i–k and leg of an ant (Figure 8m–o). It
is worth noting that both the dandelion seed and the leg of an ant are slightly bent, but this
does not appear to impair the capillary self-alignment process.
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Figure 8. Demonstration of capillary self-alignment of different types of microfibers on shape matching super hydrophilic–
super hydrophobic grooves: (a) A glass microfiber with a diameter of 15 µm is picked up and transported to a substrate
with grooves by a capillary gripper; (b) the fiber is released onto the groove and the liquid fully wets the super hydrophilic
groove; (c) the glass fiber is self-aligned to the groove and water droplets evaporate; (d) a zoomed image of a glass microfiber
aligned to the groove; (e) microscopic image of a dog tail grass; (f) a zoomed image of one tip of a dog tail grass; (g) titled
view of an aligned dog tail grass in the groove; (h) top view of an aligned dog tail grass in the groove; (i) microscopic image
of a dandelion seed; (j) zoomed image of a tip of dandelion seed; (k) titled view of an aligned dandelion seed in the groove;
(l) top view of an aligned dandelion seed in the groove; (m) microscopic image of an ant; (n) zoomed image of a leg of the
ant; (n) titled view of an aligned ant leg in the groove; (o) top view of an aligned ant leg in the groove.
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4. Conclusions

This paper reports a simple and low-cost laser micromachining method for fabri-
cation of super hydrophilic–super hydrophobic grooves for capillary self-alignment of
microfibers. We investigated key manufacturing parameters and its effect on the sizes and
wetting properties of the grooves. We studied the influences of the width (20 µm–100 µm)
and the depth (8 µm–36 µm) on the volume of water droplet confined inside the groove.
The results reveal that the groove’s width and depth are proportional to the number of
scanned lines and scans, respectively. We further demonstrated that, by adjusting the
scanning speed of a de-focused laser beam, we can change the microgrooves’ wetting
properties from 10◦ to 120◦ in terms of the contact angle. We demonstrated that diverse
types of microfibers, including both natural and artificial microfibers, can self-align to super
hydrophilic–superhydrophobic microgrooves. The results suggest that super hydrophilic–
super hydrophobic microgrooves have a lot of potential in microfiber micromanipulation
applications such as natural microfiber categorization, fiber-based microsensor construc-
tion, and fiber-enforced material development.
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