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Abstract

Summary: Here we present SVScore, a tool for in silico structural variation (SV) impact prediction.

SVScore aggregates per-base single nucleotide polymorphism (SNP) pathogenicity scores across

relevant genomic intervals for each SV in a manner that considers variant type, gene features and

positional uncertainty. We show that the allele frequency spectrum of high-scoring SVs is strongly

skewed toward lower frequencies, suggesting that they are under purifying selection, and that

SVScore identifies deleterious variants more effectively than alternative methods. Notably, our re-

sults also suggest that duplications are under surprisingly strong selection relative to deletions,

and that there are a similar number of strongly pathogenic SVs and SNPs in the human population.

Availability and Implementation: SVScore is implemented in Perl and available freely at {{http://

www.github.com/lganel/SVScore}} for use under the MIT license.

Contact: ihall@wustl.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Structural variation (SV) is an important source of human genome

variation that includes deletions, duplications, inversions, mobile

element insertions, translocations, and complex rearrangements.

Over the past several years, much progress has been made in the

area of SV detection, and we are now able to routinely detect 5000–

10 000 SVs in a typical deeply sequenced human genome (Sudmant

et al., 2015a). However, predicting the functional impact of SVs dis-

covered in whole genome sequencing (WGS) studies remains ex-

tremely challenging. Accurate SV impact prediction is especially

important for WGS-based rare variant association studies and

WGS-based studies of rare disease.

There have been many efforts to predict the effects of single nu-

cleotide polymorphisms (SNPs), including SIFT (Ng and Henikoff,

2001), PolyPhen (Adzhubei et al., 2010) and VEP (McLaren et al.,

2010). More recent tools such as fitCons (Gulko et al., 2015),

CADD (Kircher et al., 2014) and Eigen (Ionita-Laza et al., 2016)

precompute pathogenicity scores for hypothetical variants at each

base in the genome.

Constructing similar methods for SV is difficult due to the diversity

of variant size and type. Variant type is important because, for example,

a deletion spanning an entire gene is likely to have vastly different func-

tional consequences than an inversion with the same coordinates.

Furthermore, current sequencing technologies make precise SV break-

point detection difficult, resulting in uncertainty about their exact loca-

tion. SV impact prediction methods must take these all of these factors

into consideration in order to robustly prioritize pathogenic variants.

There have been cursory attempts at SV impact prediction in the

past. ANNOVAR (Yang and Wang, 2015) annotates previously re-

ported CNVs and names overlapping genes, but does not make patho-

genicity predictions, nor does it handle balanced rearrangements. VEP

performs superficial consequence prediction for SVs, but only for a

limited range of variant types (insertions, deletions and duplications).

No existing method provides a quantitative SV pathogenicity score.
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2 Methods

We present SVScore, a novel computational tool for in silico SV im-

pact prediction. SVScore depends on an existing set of per-base

pathogenicity scores; here we use the precomputed SNP scores from

CADD v1.3, although any other scoring scheme could potentially be

used. For each SV in an SV callset described in Variant Call Format

(VCF), SVScore uses vcfanno (Pedersen et al., 2016) to annotate the

variant with overlapping gene and exon annotations. Next, it uses

tabix (Li, 2011) to aggregate the chosen per-base scores across a set

of genomic intervals (see Fig. 1) and applies an operation (e.g. max

or sum, see below) to each interval to summarize the per-base scores

into interval scores. One score is computed for each interval-

operation pair.

The operations currently supported are: maximum, sum, mean

and mean of the top N scores. The maximum of all of a variant’s

interval scores is reported as the score for the given operation and

added to the INFO column of the VCF line(s). SVScore supports

weighting scores using probability distributions calculated by tools

such as LUMPY (Layer et al., 2014). These give the probability of

the true breakpoint being located at each possible position in a CI,

which is important to consider because bases at a tail of the break-

point probability distribution are less likely to represent the true

breakpoint than bases at the center of the distribution (see

Supplementary Methods).

3 Results and discussion

To evaluate SVScore’s computational performance, we computed

scores for a set of high confidence SVs called from 950 Finnish WGS

datasets (see Supplementary Methods). Scores were calculated using

SVScore v0.5.1 with 5 operations—maximum, sum, weighted mean

and weighted mean of the top 10 and 100 bases in each interval. On

a machine with two Intel Xeon E5-2670 processors (each with 16

threads) and 128 GB RAM, the total CPU time was 341 min. With

21 426 SVs passing all of our filters, the average time per variant

was 1.01 s. The average memory used was 1.7 GB, and the max-

imum memory was 3.5 GB (see Supplementary Fig. S1 and

Supplementary Table S1).

To evaluate SVScore’s effectiveness in predicting deleterious

variants, we used population allele frequency as a proxy for patho-

genicity. Due to the effects of purifying selection, strongly patho-

genic variants are likely to be observed at very low frequency in the

human population. Thus, if SVScore is an accurate predictor of

pathogenicity, the variants it predicts to be deleterious should be sig-

nificantly more rare than those it predicts to be benign. For this ex-

periment, impact scores were calculated using the weighted mean of

the top 10 bases in each interval and exon/intron annotations from

refGene. Supplementary Figure S2 shows the allele frequency spectra

of ‘pathogenic’ (impact scores at or above the 90th percentile), ‘be-

nign’ (below the 50th percentile) and ‘intermediate’ variants (all

others). The predicted pathogenic variants were heavily skewed to-

ward the rare (AF<0.01) end of the spectrum, while predicted be-

nign variants were heavily skewed toward the common (AF�0.05)

end, and variants with intermediate scores were between the other

two categories. The difference between pathogenic and benign SVs

was highly significant (rare versus common OR¼13.06,

P¼5:43� 10�323, Fisher’s Exact Test). This suggests that high-

scoring SVs are under strong purifying selection relative to low-

scoring SVs, which strongly supports the utility of our impact scor-

ing strategy. We calculated this odds ratio for several other defin-

itions of ‘pathogenic’ and ‘benign’, (see Supplementary Table S2,

Fig. 1c). Notably, coding SVs in the top 10% of impact scores had a

greater odds ratio than noncoding variants in the same subset (see

Fig. 1c), but the magnitude of this difference is surprisingly mild and

suggests that many non-coding SVs are under similarly strong selec-

tion as coding SVs. Also, we found that even when controlling for

size, the odds ratio for tandem duplications with impact scores in

the top 10% was nearly equal to that for duplications. This result

may suggest that duplications are under stronger selection than pre-

viously thought (Conrad et al., 2006; Cooper et al., 2011; Sudmant

et al., 2015a, b). Alternatively, this result may reflect ascertainment

bias against pathogenic deletions that cause embryonic lethality or

severe developmental defects, and thus were not present in our adult

cohort. Further work will be required to disentangle these factors.
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Fig. 1. SVScore strategy and performance. (a) LEFT, RIGHT and SPAN inter-

vals chosen by SVScore based on SV type. LEFT and RIGHT scores comprise

the entire confidence interval (CI) around the left and right breakpoint, re-

spectively, and are calculated for every variant type. Here, MEI refers specific-

ally to mobile element insertions detected in the reference genome, whereas

INS refers to all insertion types detected in the experimentally sequenced

genome. For deletions (DEL), tandem duplications (DUP) and other copy

number variants (CNV), a SPAN score is calculated using the interval between

the most likely breakpoints. (b) Truncation scores (LTRUNC when truncated

by the left breakend and RTRUNC otherwise) are calculated for deletions, in-

versions (INV), mobile element insertions (MEI) and INS variants that are pre-

dicted to truncate a transcript. (c) Above each point is the number of rare,

pathogenic variants using the pathogenicity definition on the x-axis. The

SVScore Threshold section shows the odds ratios for pathogenic SVs being

rare under varying definitions of pathogenicity based on impact score per-

centile, where variants in the bottom 50% were considered benign. The SNP

CADD Threshold section shows odds ratios calculated for SNPs using CADD

at the percentile thresholds shown. For these odds ratios, SNPs with CADD

scores in the bottom 50% were used as benign variants. Pathogenic variants

used for calculations in the Top 10% SVScores section were all subsets of

those SVs with impact scores in the top 10%. In this section, the variants in

the bottom 50% of all impact scores were again called benign. For the

‘Coding’ and ‘Noncoding’ experiments, the pathogenic variants were those

SVs in the top 10% of impact scores that did and did not overlap a refGene

exon, respectively. In the ‘DEL’ and ‘DUP’ experiments, the pathogenic vari-

ants were DELs and DUPs, respectively, in the top 10% of scores. The size dis-

tributions of these variants were matched as described in Supplementary

Methods, and the 95% confidence intervals are shown. The Alternatives sec-

tion shows three odds ratios from SVScore alternatives. In the ‘Top 10% SV

Lgth’ experiment, pathogenic variants were those with lengths at or above

the 90th percentile, and benign variants were those below the 50th percentile.

For ‘Coding SV’, pathogenic variants were those with at least one overlap be-

tween refGene exon and either a breakpoint CI or a SPAN interval, and benign

variants were all others. The ‘SNP VEP CSQ’ experiment used VEP’s IMPACT

predictions for SNPs—variants with at least one HIGH prediction on a canon-

ical transcript were called pathogenic, while those with only LOW or

MODIFIER predictions on canonical transcripts were categorized as benign.

BND—‘unclassified’ structural variant
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We next compared SVScore to two commonly used alternative

methods (see Alternatives section of Fig. 1c). First, we defined

pathogenicity based on whether or not a structural variant (in any of

its LEFT, RIGHT, or SPAN intervals) overlapped an annotated

exon. This analysis is similar to the SV consequence prediction

offered by VEP. This method identified fewer rare, pathogenic SVs

(1070 versus 1528) and resulted in a lower odds ratio than using the

top 10% of impact scores.

As a second approach, we used SV length percentile alone as a

predictor of pathogenicity, categorizing large SVs (top 10%) as

pathogenic and small SVs (bottom 50%) as benign. This yielded an

odds ratio of 14.46, which is slightly greater than the odds ratio of

13.06 when using the top 10% of impact scores as ‘pathogenic’;

however, substantially fewer rare, pathogenic variants were identi-

fied using the SV length method (1231 versus 1528). Supplementary

Figure S4 shows size distributions for structural variants in our call-

set. As impact scores increase, size distributions shift toward larger

variants. However, there is considerable overlap between the distri-

butions, suggesting that SVScore captures more information than

length alone. Also, the latter method cannot be easily applied to

translocations or other complex variants for which ‘length’ is

undefined.

We next sought to calibrate our SV impact scoring method with

existing SNP scoring methods. We first used IMPACT annotations

from VEP to define pathogenicity of SNPs in our callset. This ap-

proach was far less effective than SVScore in discriminating between

pathogenic and benign variants. Comparison of SVScore with

CADD-based SNP impact scores revealed that the top 10% of high-

est scoring SVs (N¼1528) have a similarly strong allele frequency

skew as the top 0.01% of SNPs (N¼1187). Interestingly, this result

suggests that there may be a similar number of strongly pathogenic

SVs and SNPs in the human population, despite the fact that SNPs

are nearly 3 orders of magnitude more abundant overall.

Finally, we sought to further assess SVScore’s ability to discern

common polymorphisms from pathogenic variation. To this end, we

ran SVScore on a manually curated list of approximately 300 CNVs

believed to be pathogenic from ClinGen (the iscaCuratedPathogenic

track in the UCSC Genome Browser) as well as the full set of high-

confidence SVs detected in phase 3 of the 1000 Genomes Project

(Sudmant et al., 2015a). The results, shown in Supplementary

Figure S5, demonstrate that the distribution of ClinGen impact

scores is shifted heavily to the right relative to that of 1000

Genomes variants.

A limitation of our method is that it depends on per-base SNP

pathogenicity scores, and thus does not account for all mechanisms

whereby SVs may be phenotypically impactful. SVScore does not

optimally address gain-of-function mutations such gene fusions or

novel adjacency with cis-regulatory elements.

SVScore will be useful for future WGS-based studies by enabling

facile prioritization of SVs based on their likelihood of being

deleterious. Its support for various operations and arbitrary per-base

scoring schemes make it a powerful and flexible asset to investiga-

tors interested in the genetic variants underlying both Mendelian

and complex phenotypes.
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