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The chemokine CXCL8 has been found to play an important role in tumor progression in
recent years. CXCL8 activates multiple intracellular signaling pathways by binding to its
receptors (CXCR1/2), and plays dual pro-tumorigenic roles in the tumor microenvironment
(TME) including directly promoting tumor survival and affecting components of TME to
indirectly facilitate tumor progression, which include facilitating tumor cell proliferation and
epithelial-to-mesenchymal transition (EMT), pro-angiogenesis, and inhibit anti-tumor
immunity. More recently, clinical trials indicate that CXCL8 can act as an independently
predictive biomarker in patients receiving immune checkpoint inhibitions (ICIs) therapy.
Preclinical studies also suggest that combined CXCL8 blockade and ICIs therapy can
enhance the anti-tumor efficacy, and several clinical trials are being conducted to evaluate
this therapy modality.

Keywords: CXCL8, tumor microenvironment, tumor progression, tumor immune suppression, immunotherapy

INTRODUCTION

The chemokine CXCL8, also known as interleukin-8 (IL-8), is initially known as a cytokine
expressed by epithelial cells and macrophages for neutrophil recruitment to areas of
inflammation, infection, or injury (Horn et al., 2020a). The biological effects of CXCL8 are
mediated through its binding to two cell-surface G-protein-coupled receptors: CXCR1 and
CXCR2, which are generally expressed on monocytes, granulocytes, and endothelial cells
(Waugh and Wilson, 2008; Liu et al., 2016). Furthermore, CXCL8 monomer binds CXCR1
with high affinity, however, both monomer and dimer show similar affinities to CXCR2 (Helen
et al., 2017).

Although CXCL8 has been originally described as a proinflammatory chemokine, in the context
of cancer, CXCL8 is produced by multiple cell types in the tumor microenvironment (TME),
including the infiltrating immune cells, stromal cells, and the tumour cells (Waugh andWilson, 2008;
Alfaro et al., 2017). Additionally, the mechanism of CXCL8-CXCR1/2 pathway in tumourigenesis,
tumour progression and immune suppression in TME has been explored extensively. Recent
investigations demonstrate several novel mechanisms of the crosstalk between CXCL8 and
components in TME to facilitate tumor progression, even forming positive feedback loops.
Immune checkpoint inhibitions (ICIs) have become the cornerstone of immunotherapy in many
types of cancers. Emerging trials underline the crucial roles of CXCL8 in ICIs therapy.

In this review, we summarized the current understanding of CXCL8 signaling cascades and
recently developed mechanisms of facilitating tumor survival, invasion, and immune suppression.
Additionally, we discussed the CXCL8 as a biomarker of ICIs therapy and the role of anti-CXCL8 as a
combination agent in immunotherapy.
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STRUCTURE AND SECRETION OF CXCL8

CXCL8 is initially translated as a proteinwith 99 amino acids, which is
subsequently processed into two active isoforms: 1) 72 amino acids in
monocytes andmacrophages; 2) 77 amino acids in non-immune cells
(Waugh andWilson, 2008). According to the position of the first two
cysteine residues on the N-terminus, chemokines can be divided into
four highly conserved subtypes: CXC (the two cysteines nearest the
N-termini are separated by a another single amino acid), CC (the first
two cysteines nearest the N-termini are adjacent), C (only one
cysteine near its N-terminus) and CX3C (with three amino acids
between the first two cysteines at the N-terminal) (Rollins, 1997;
Balkwill, 2004). Further, the family of CXC chemokines can be
divided into to ELR- and ELR + groups based on the absence or
presence of the tripeptide Glu-Leu-Arg (the ELR motif) which
precedes the cysteine on the N-terminus (Baggiolini et al., 1997).
CXCL8 is one of the ELR + CXC chemokines (Baldwin et al., 1991).

The gene encoding CXCL8 is located on 4q13-q21 (Modi
et al., 1990). There are four common polymorphisms in the
CXCL8 gene: rs4073(-251 A/T), rs2227532(-845T/C),
rs2227307(+396 G/T) and rs2227306(+781 C/T) (Mukaida
et al., 1989; Yao et al., 2019). Previously studies indicated
that the single nucleotide polymorphism (SNPs) of CXCL8
gene were significantly associated with increased risk or
progression of non small cell lung cancer, gastric cancer,
differentiated thyroid cancer and ovarian cancer, especially
CXCL8-251 A/T (Rafrafi et al., 2013; Koensgen et al., 2015;
Kilic et al., 2016; Boonyanugomol et al., 2019). One of the
most remarkable characteristics of CXCL8 is the variation of
its expression levels. Normally, CXCL8 is undetectable in
noninduced cells (Hoffmann et al., 2002). Mechanismly, in
these unstimulated cells, the promoter of CXCL8 gene is
repressed by three events: firstly, NF-κB-repressing factor
(NRF) binds to the negative regulatory element (NRE)
which overlaps the NF-κB binding site (Nourbakhsh et al.,
2001); secondly, octamer-1 (OCT-1) binds to the
complementary strand of the CXCL8 gene promoter in the
opposite direction of the C/EBP site (Wu et al., 1997); and
thirdly, deacetylation of the histone protein by histone
deacetylase 1 (HDAC-1) (Ashburner et al., 2001). However,
its expression is rapidly induced by various stimuli including
cytokines such as IL-1 or TNFα, viral products or bacterials,
other environmental stresses and transcription factors
(including activator protein-1 (AP-1) and NF-κB)
(Hoffmann et al., 2002; Helen et al., 2017). Remarkably,
these stimuli cause a 5–100 folds increasing in CXCL8
expression(Hoffmann et al., 2002; Helen et al., 2017).
Maximal CXCL8 expression and secretion is generated at
least by a combination of three different mechanisms: 1)
derepression of CXCL8 gene promoter; 2) transcriptional
activation of CXCL8 gene by NF-κB and JNK pathways; 3)
stabilization of CXCL8 mRNA by the p38 mitogen-activated
protein kinase (MAPK) pathway (Hoffmann et al., 2002;
Helen et al., 2017). The stability of the CXCL8 mRNA also
plays an impact role on the secretion of CXCL8. In terms of
mechanism, dual specificity mitogen-activated protein kinase
kinase 6 (MKK6) by selectively activating p38 MAPK to

activates MAP kinase-activated protein kinase 2 (MK2)
which helps the stability of the CXCL8 mRNA (Helen
et al., 2017; Hoffmann, et al., 2002). Additionally, in
intestinal epithelial cells, carnosine could inhibit the
translation of CXCL8 mRNA by phosphorylation of eIF4E
(Son et al., 2008). Post-translational modification (PTM) of
chemokines is an important mechanism of fine-tuning
chemokine secretion, activation and selection of receptor
(Vanheule et al., 2018). N-terminal shortening always
associated with significantly increasing biological activity
and receptor affinity of CXCL8. Numerous studies indicate
that N-terminal truncation of CXCL8 (2 to 9–77) by CD13,
CD26, MMP and so on (Van den Steen et al., 2003; Mortier
et al., 2011; Vanheule et al., 2018). On the other side,
citrullination of CXCL8 by peptidylarginine deiminase
(PAD) could impair the effect of CXCL8 (Proost et al.,
2008; Loos et al., 2009).

RECEPTORS OF CXCL8: CXCR1 AND
CXCR2

The receptors that bind to CXCL8 are two G protein coupled
receptors (GPCR): CXCR1 and CXCR2 (Figure 1). The two
receptors that are both the ELR + CXC receptors sharing 78%
sequence homology between each other (Holmes et al., 1991;
Murphy and Tiffany, 1991). CXCR1 and CXCR2 show
different affinity to the different complexes of CXCL8. Both
monomer and dimer forms of CXCL8 show similar affinity to
CXCR2, however, only CXCL8 monomer functions as a
potent CXCR1 agonist (Nasser et al., 2009; Das et al., 2010;
Berkamp et al., 2017).

Upon CXCL8 binding, the following stable complexes will be
formed: CXCL8(monomer)-CXCR1/2-G protein and
CXCL8(dimer)-CXCR2-G protein (Park et al., 2012; Liu et al.,
2020), which induce a conformational change of CXCR1/2 and
facilitate the initiation of activation. Then, CXCR1/2 dissociate with
the heterotrimeric G protein and then release the βγ subunites from
the α subunite, which promotes the activation of several downstream
signaling cascades (Waugh and Wilson, 2008; Liu et al., 2016).
Similar to most GPCR, CXCR1/2 can also become phosphorylated,
desensitized, and internalized upon binding to CXCL8. Despite
evidenced that CXCR1/2 display similar downstream pathways,
there remain marked differences between CXCR1 and CXCR2 in
activation and signaling cascades. CXCR2 internalization occurs
more rapidly and at lower ligand concentrations than CXCR1, and
CXCR2 is also recycled back to the surface at a much slower rate
than CXCR1 (Alfaro et al., 2017; Helen et al., 2017), which might be
one possible mechanism that CXCR1 not CXCR2 can activate PLD
(Stillie et al., 2009; Raghuwanshi et al., 2012; Cheng et al., 2019).

Signaling Pathways of CXCL8-CXCR1/2
Axis
Upon CXCL8 binding, CXCR1/2 can active multiple
G-protein-mediated signalling cascades (Figure 2).
Phosphatidylinositol-3 kinase (PI3K)/Akt is one of the
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principal downstream signal of CXCL8, which plays vital roles
in modulating tumor motility, angiogenesis, and survival
(Wilson et al., 2006; Waugh and Wilson, 2008). In
androgen-independent prostate cancer, CXCL8 can also
increase the expression of Akt (MacManus et al., 2007).
PI3K can also act as an intermediate in coulping CXCR1/2
to MAPK and focal adhesion kinase (FAK)-Src signaling
cascades (Knall et al., 1996; Waugh and Wilson, 2008).
Phosphorylation of CXCR1/2 can also lead to two MyD88-
dependent MAPK pathway: Erk-MAPK and p38 MAPK (Knall
et al., 1997; Zhang et al., 2017; Cheng et al., 2019). Further, the
Erk-MAPK cascades can be activated in indirect ways.
Transactivation of epidermal growth factor receptor (EGFR)
has been shown to occur in response to ligands of various
GPCRs (Daub et al., 1996). The binding of CXCL8 to CXCR2
has been demonstrated to transactivate the EGFR resulting in
Ras-GTPase activation, and subsequently actives the Erk-
MAPK signaling cascades (Venkatakrishnan et al., 2000;
Luppi et al., 2007). Activation of phospholipase C (PLC) by
CXCL8 has been characterized in neutrophils and multiple
cancer cells (Waugh and Wilson, 2008). The activated protein
kinase C (PKC) can phosphorylate many cytoskeletal proteins
that trigger dynamic alternations, facilitate cell adhesion and
migration (Larsson, 2006; Quann et al., 2011). PKC can be
classified into three categories (Larsson, 2006), and CXCL8 can
active all the three categories of PKC mediated by PLC (Waugh
and Wilson, 2008; Alassaf and Mueller, 2020). As a result of
promoting these upstream signaling pathways, including
PI3K/Akt, MAPK, and PLC/PKC, the activation of

numerous transcription factors would be induced, one of
which was nuclear factor-κB (NF-κB) (Waugh and Wilson,
2008; Gales, et al., 2013). Besides, activation of NF-κB is also
one of the main mechanism to promote CXCL8 expression and
secretion (Hoffmann, et al., 2002; Gales, et al., 2013; Helen,
et al., 2017). Therefore, there exist a positive feedback between
CXCL8 secretion and NF-κB activation, which has also been
well described in a previous review (Gales, et al., 2013).
Additionally, Numerous studies have confirmed that CXCL8
can induce the phosphorylation of protein tyrosine kinases,
including FAK and Src kinases (Waugh and Wilson, 2008; Liu
et al., 2016; Ju et al., 2017; Mohamed et al., 2020). Activation of
FAK and Src kinases has been uncovered to promote cell
proliferation, invasion, survival, and motility (Sulzmaier
et al., 2014; Roskoski, 2015). In endothelial cells, it has
revealed that CXCL8 can induce vascular endothelial
growth factor receptor-2 (VEGFR2) phosphorylation
mediated by the activation of Src kinases (Petreaca et al.,
2007). CXCL8 can also promote dynamic and time-
dependent induction of Rho-GTPases family in prostate
cancer and endothelial cells (Schraufstatter et al., 2001;
Waugh and Wilson, 2008; Yan et al., 2016). Recently,
increased studies evidence that CXCL8 can induce the
activation of Janus kinases and signal transducer and
activator of transcription protein 3 (JAK/STAT3) signaling
in both cancer and immune cells (Fu et al., 2015; Guo et al.,
2017; Wu et al., 2019; Hu et al., 2020). Wu et al. demonstrated
that CXCL8 could impair the function of NK cells by
promoting STAT3 (Wu et al., 2019).

FIGURE 1 | Active and Inactive Structures of CXCR1/2 Complex. CXCR1/2 is in complex with Gαβγ in inactive state. When CXCL8 binds to the N-terminal of
CXCR1/2, α-GDP changes into α-GTP, and dissociates with βγ subunites, which would subsequently active associated signaling.
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FIGURE 2 | The major signaling pathways of CXCL8 in cancers.

FIGURE 3 | Genomic alterations of CXCL8 cross 27 cancer types; TCGA pan-cancer cohort from cBioPortal for Cancer Genomics were used for this analysis.
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Roles of CXCL8 in Tumor Biology
Expression of CXCL8 is significantly higher in numerous types
of cancers (Figure 3), and many studies have evidenced that
serum level of CXCL8 in patients with cancer can act as a
prognostic marker (Cheng et al., 2019; Fousek et al., 2021).
CXCL8 can promote tumor proliferation, survival, invasion,
angiogenesis, tumor stemness and suppress anti-tumor
immunity in direct and indirect manner (Figure 4)
(Table 1). Growing evidence indicates that CXCL8 can
directly contribute to the development of resistance to
chemotherapy, molecularly targeted therapy, and immune
checkpoint inhibition (ICI) therapy (Alfaro et al., 2017;
Fousek et al., 2021). Therefore, CXCL8 has already been
described as a pro-tumorigenic chemokine by impacting

cancer cells and modifying TME to promote tumor
progression and metastasis.

Promoting Tumor Cells Proliferation and
Survival by Novel Mechanisms
Many studies have proved that CXCL8 can promote cell
proliferation and inhibit apoptosis in multiple cancers, including
breast cancer, prostate cancer, lung cancer, colon cancer and so on
(Liu et al., 2016). CXCL8 can mediate cancer cell proliferation both
in autocrine and paracrine manner. Previous review has
demonstrated that CXCL8 could be secreted by tumor cells and
subsequently promote themselves growth and/or inhibit apoptosis
(Liu et al., 2016). Some recent researches again proved this

FIGURE 4 | The role of CXCL8 signaling in tumor biology. CXCL8 recruited MDSCs, TAMs, and TANs to the TME. CXCL8 could be secreted by tumor cells, CAFs,
MDSCs, and TAMs. CXCL8 could promote tumor cells proliferation and EMT, directly and indirectly. CXCL8 could facilitate the accumulation of pro-tumorigenic immune
cells and tumor immune suppression, and inhibit anti-tumor immune cells in direct and indirect ways.
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mechanism (Guo et al., 2017; Cui et al., 2018; Jia et al., 2018; Kumar
et al., 2019).

Recently, increased evidence highlighted several novel
mechanisms. As metabolism reprogramming has already
become a hallmark of cancer, Xu et al. illustrate that
CXCL8 could mediate enhancement of aerobic glycolysis in
colorectal cancer (CRC) cells and reduce intracellular reactive
oxygen species (ROS) levels, which subsequently promote
CRC cell proliferation and invasion (Xu et al., 2017). We
have also shown that CXCL8 can reduce the level of
intracellular ROS by inhibiting the function of GSK-3β to
suppress prostate cancer cell apoptosis (Sun L. et al., 2019).
Components of TME play a vital role in progression and
metastasis of cancer and can induce an upregulated
cytokines and chemokines, such as CXCL8. Two studies
conducted in CRC and pancreatic ductal adenocarcinoma
indicated that mesenchymal stem cells (MSCs) and cancer-
associated fibroblasts (CAFs) could promote cancer cells
secreting CXCL8, then enhancing the ability of proliferation
and invasion (Wang et al., 2015; Awaji et al., 2019).
Furthermore, Yang et al. have demonstrated that there
exists a positive feedback between CRC and neutrophil
extracellular traps (NETs) mediated by CXCL8 (Yang L.
et al., 2020). In addition to malignant cells, cells in TME
can also secret CXCL8 and promote cancer cell
proliferation, which can be supported by a recent study that
suggested that CAFs in TME can release CXCL8 to increase the
proliferation ability of gallbladder cancer cells (Chen et al.,
2020).

Promoting Tumor Cells Invasion and
Migration by Novel Mechanisms
One of the main mechanisms used by tumor cells to obtain
invasiveness and motility is the epithelial-to-mesenchymal
transition (EMT). Present studies have proved that CXCL8 is
essential for tumor cells to acquire and maintain this aggressive
phenotype (Long et al., 2016; Fousek et al., 2021). As displayed

above, components of TME can secret or promote cancer cells to
secret CXCL8 which can also subsequently mediate the EMT of
tumor cells. Further, there also exists an autocrine positive
feedback loop between EMT and CXCL8 (David et al., 2016;
Long et al., 2016). Many published researches indicate the
important role of EMT in tumor resistance to chemotherapy,
molecularly targeted therapy, and immune checkpoint inhibition
(ICI) therapy (Horn et al., 2020b). Additionally, there are many
excellent reviews about other mechanisms of CXCL8 in tumor
therapy resistance (Alfaro et al., 2017; Cheng et al., 2019; Horn
et al., 2020a; Fousek et al., 2021).

Emerging investigations have highlighted several novel
mechanisms that are associated with the role of CXCL8 in
cancer cell invasion and migration, including tumor
heterogeneity, formation of feedback loop, and interacting
with TME. Tumor heterogeneity is a vital feature of cancers,
and cell sub-populations may interact with others to facilitate
tumor progression (Meacham and Morrison, 2013). In the
context of CRC, both hypoxic and fusobacterium nucleatum
infected cancer cells can secret CXCL8 which subsequently
contribute to the EMT of normoxic and noninfected cancer
cells (Casasanta et al., 2020; Mi et al., 2020). Maynard et al.
also demonstrate that only part of prostate cancer cells express
CXCL8 in prostate cancer tissue microarrays, and high level of
CXCL8 is associated with a more aggressive disease (Maynard
et al., 2020). Pro-tumor feedback loops mediated by CXCL8 has
been observed in multiple types of cancers. Xu et al. reported an
intracellular feedback loop between CXCL8 and PTEN in
HNSCC (Xu et al., 2020). Similarly, PTEN loss can also
selectively upregulate the CXCL8 signaling in prostate cancer
cells (Maxwell et al., 2013). Effects of CXCL8 on tumor cells could
also influence the TME or be influenced by the components of
TME. MSCs and NET can also form a positive pro-tumor
feedback loop with osteosarcoma and glioma cells via CXCL8,
respectively (Kawano et al., 2018; Zha et al., 2020). Previous
reviews andmany recent studies have illustrated that multiple cell
types in TME can directly secret CXCL8, or regulate the
expression of CXCL8 in cancer cells, or be regulated by

TABLE 1 | The role of CXCL8 in common cancers. CSCs=Cancer Stem Cells

Cancer type Function

Breast Cancer Proliferation, Invasion and Migration, Angiogenesis, CSCs, Tumor Immune Suppression
Prostate Cancer Proliferation, Invasion and Migration, Angiogenesis, CSCs, Tumor Immune Suppression
Lung Cancer Proliferation, Angiogenesis, CSCs, Tumor Immune Suppression
Colon Cancer Proliferation, Invasion and Migration, Angiogenesis, CSCs
Head and Neck Squamous Cell Carcinoma Proliferation, Invasion and Migration
Osteosarcoma Invasion and Migration
Glioma Invasion and Migration, CSCs
Clear Cell Renal Cell Carcinoma CSCs
Bladder Cancer CSCs
Esophageal Carcinoma CSCs
Hepatocellular Carcinoma CSCs
Melanoma Proliferation, Invasion and Migration, Angiogenesis, Tumor Immune Suppression
Ovarian Cancer Proliferation, Invasion and Migration, Angiogenesis, Tumor Immune Suppression
Diffuse Large B-Cell Lymphoma Tumor Immune Suppression
Pancreatic Cancer Proliferation, Invasion and Migration, Angiogenesis, Tumor Immune Suppression
Gastric Cancer Proliferation, Invasion and Migration, Angiogenesis, Tumor Immune Suppression
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CXCL8 derived from cancer cells to promote tumor invasion and
migration (Zheng et al., 2018; Cheng et al., 2019; Nie et al., 2019;
Fousek et al., 2021).

Promoting Tumorogenic Angiogenesis
Angiogenesis has been recognized as a hallmark of cancer,
which is necessary for tumor survival and disseminating to a
new location (Hanahan and Weinberg, 2011). Effect of CXCL8
on tumor angiogenesis has been widely investigated, and
CXCL8 has already be defined as a pro-angiogenesis
chemokine (Liu et al., 2016; Cheng et al., 2019; Fousek
et al., 2021; Ueda et al., 2022). Human vascular endothelial
cells constitutively express CXCR2 (Cheng et al., 2019). Upon
cancer cells and some types of stroma cells secreting CXCL8 in
TME, endothelial cells begin to express and secret matrix
metalloproteinases (MMPs) to break down the extracellular
matrix (ECM), then, resulting in angiogenesis (Li et al., 2003).
In addition, CXCL8 can also induce recruitment of endothelial
cells which participate directly in vascularization (Strieter
et al., 1995). Intriguingly, there is also a crosstalk between
CXCL8 and VEGFR2 in angiogenesis (Petreaca et al., 2007). In
this context, a loop in endothelial cells have been discovered,
which is that CXCL8 can increase the secretion of VEGF-A and
induce the expression of VEGFR2 in endothelial cells (Martin
et al., 2009; Alfaro et al., 2017).

Promoting Development of Cancer Stem
Cells
A plethora of literature indicates that CXCL8 is involved in the
maintenance of cancer stem cells (CSCs) which is always
associated with tumor development and progression,
treatment resistance and used to explain heterogeneity in
solid tumors (Raza et al., 2022). Generally, the CXCL8-
CXCR1/2 axis plays impact roles on formation,
development or invasion of CSCs in colon cancer (Luo
et al., 2018; Fisher et al., 2019; Kim et al., 2021), breast
cancer (Choi et al., 2009), glioblastoma (Zhou et al., 2014;
McCoy et al., 2019), clear cell renal cell carcinoma (ccRCC)
(Corrò et al., 2019), pancreatic cancer (Chen et al., 2014),
hepatocellular carcinoma (HCC) (Kahraman et al., 2019), lung
cancer (Shimizu and Tanaka, 2019), bladder cancer (Zhou
et al., 2021) and esophageal carcinoma (Huang et al., 2017).
Furthermore, CXCL8 has also been found to promote the
interaction between CSCs and mesenchymal stem cells
(MSCs) to further enlarging the population of CSCs in
colon cancer (Ma et al., 2020; Ma et al., 2021). Given the
crucial role of CXCL8 in CSCs, targeting CXCL8-CXCR1/2
axis as a component of combination therapy has also been
explored. Pre-clinical studies demonstrate that combining
CXCR1/2 inhibitors with the human epidermal growth
factor receptor 2 (HER2)-targeted therapies has potential as
an effective treatment strategy to repress CSCs activity in
breast cancer (Singh et al., 2013). In HCC, after inhibiting
CXCR1/2 by Reparixin or knockdown CXCL8, CSCs features
of HCC were reduced, and sensitivity to Sorafenib increased
significantly (Kahraman et al., 2019).

Inhibiting Anti-Tumor Immunity
CXCL8 also has potent ability on modulating immune cell
chemotaxis and functions. CXCL8 derived from tumor can act
in a paracrine manner to change the composition of immune
infiltration in TME, resulting the accumulation of pro-
tumorigenic immune cells and tumor immune suppression
(Alfaro et al., 2017; Horn et al., 2020b). Published reports
collectively suggest that CXCL8 can recruit tumor-associated
macrophages (TAMs), myeloid derived suppressor cells
(MDSCs), and neutrophils to the TME, resulting in
dampening the anti-tumor immune response of cytotoxic
immune cells. Correspondingly, it can also attenuate the anti-
tumor activity of dendritic cells (DCs) and NK cells (Alfaro et al.,
2017; Fousek et al., 2021).

Neutrophils make up a sizeable part of immune cells in TME,
so-called tumor-associated neutrophils (TANs), which can be
divided into antitumor N1 and pro-tumor N2 phenotypes
(Fridlender et al., 2009). Further, the N2 TANs promote
tumor progression by activating tumor angiogenesis,
suppressing the function of anti-tumor T cells, and recruiting
T regulatory cells (Tregs) (Rodriguez et al., 2004; Nozawa et al.,
2006; Mishalian et al., 2014; David et al., 2016). Unfortunately,
there are no groups directly investigating the relationship
between CXCL8 and N2 phenotype. Several recent reports
preliminary demonstrate the effect of CXCL8 on TANs. In
ovarian cancer, CXCL8 can recruit TANs in TME and induce
the expression of Jagged2 (JAG2) in TANs which subsequently
inhibit the activity of CD8(+) T cells (Yang M. et al., 2020).
Additionally, TANs in the TME of diffuse large B-cell lymphoma
(DLBCL) can also increase the secretion of april mediated by
CXCL8, and promote DLBCL progression (Manfroi et al., 2017).

MDSCs are known as a heterogeneous population of
immature immunosuppressive cells, which derive from
myeloid progenitor cells, accumulate in the circulation and the
TME of most cancer patients (Gabrilovich and Nagaraj, 2009;
David et al., 2016). Generally, MDSCs can be divided into two
subtypes: granulocytic (CD33 + CD11b + HLA-DR-/low CD15+,
PMN-MDSC) or monocytic (CD33 + CD11b + HLA-DR-/low
CD14+, M-MDSC) (Poschke and Kiessling, 2012). In TME,
MDSCs have been shown to act as a driver of immune
suppression by inactivating T cell receptors, starving T cell,
inhibiting T cell proliferation, recruiting CAFs, and inducing
Tregs (David et al., 2016; Horn et al., 2020a). Increasing
investigations evidence the role of CXCL8 in attracting and
enhancing the function of MDSCs which then attenuate the
activation of CD8(+) T cell (Asfaha et al., 2013; Katoh et al.,
2013; Dominguez et al., 2017; Najjar et al., 2017; Li et al., 2018).
Interestingly, CXCL8 can recruit the both subtypes of MDSCs to
TME, but they play different functions (Alfaro et al., 2016). The
M-MDSCs can directly suppress the activity of T cells, however,
the PMN-MDSC subset only induce the formation of NETs
which might facilitate tumor cell migration. Further, a recent
report indicates a novel subtype of MDSCs that attract by CXCL8
in human gastric cancer (Mao et al., 2018). After attracting
CD45(+)CD33(low)CD11b(dim) MDSCs to TME, CXCL8 will
promote this novel subset MDSCs expressing arginase I that
contributes to CD8(+) T cell suppression via PI3K/Akt signaling.
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Supportively, in prostate cancer and melanoma, the increasing
level of circulating MDSCs are evidenced to be associated poor
clinical outcomes and high plasma CXCL8 concentration (Chi
et al., 2014; Tobin et al., 2019).

Tumor-associated macrophages (TAMs) are present in all
stages of tumors and exert a dual effectiveness on tumor
progression (Noy and Pollard, 2014; Mantovani et al., 2017).
Similar to TANs, TAMs have been divided into two subsets:
antitumor M1-like and tumor-promoting M2-like phenotype
(Noy and Pollard, 2014). Numerous studies have concentrated
on the role of TAMs on CXCL8, which have indicated that TAMs
can express or induce tumor cell secreting CXCL8 to contribute to
tumor progression (Chen et al., 2003; Chen et al., 2018; Zheng
et al., 2018). Emerging reports uncover that CXCL8 also have vital
roles in recruiting and directing the polarization of TAMs. The
findings of Zhang and colleagues suggest that the CXCL8-CXCR2
axis can promote trafficking of CXCR2(+) CD68(+) macrophages
to pancreatic cancer TME, and the recruitment TAMs can inhibit
the efficacy of PD1 blockade (Zhang et al., 2020). Further
investigation performed in gastric cancer indicates that TAMs
can induce themselves increasing the expression of PD-L1 and
decrease CD8(+) T cells infiltration by secreting CXCL8 (Lin
et al., 2019). Meanwhile, CXCL8 also plays a role in inducing a
shift in TAMs toward the M2 phenotype (Krawczyk et al., 2017;
Ning et al., 2018).

DCs and NK cells play important roles in adaptive and innate
anti-tumor immune response, respectively. Previous studies
suggest that CXCL8 derived from tumor cells can disorients
DCs migration without impairing the stimulation of T-cell
(Feijoó et al., 2005; Alfaro et al., 2011; Li et al., 2021). A
recent investigations indicates that tumor cells can secret
CXCL8 to impair the functions of NK cells via STAT3
signaling (Wu et al., 2019).

CXCL8 in Immune Checkpoint Therapy
Many excellent reviews demonstrate the role of CXCL8-CXCR1/
2 axis in target therapy, chemotherapy and the prognostic role of
plasma level of CXCL8 in cancer (Liu et al., 2016; Alfaro et al.,
2017; Cheng et al., 2019; Fousek et al., 2021). Here, we highlight
current preclinical and clinical studies correlating CXCL8 to
immunotherapy. Immune checkpoint inhibitions (ICIs) has
become the cornerstone of immunotherapy in many types of
cancers (Ribas andWolchok, 2018; Bakouny and Choueiri, 2020).
However, not all cancer patients have a good response to ICIs,
and early determining the clear group which is sensitive or
resistant to ICIs can improve clinical outcomes. Recent
evidences suggest that CXCL8 plays an important role in
response quality on ICIs.

A small retrospective trial suggests that increasing level of
serum CXCL8 can predict resistant to anti-PD-1 treatment in
non-small-cell lung cancer (NSCLC) patients (Sanmamed et al.,
2017). To further investigating the role of CXCL8 in predicting
response of patients treated with ICIs, two recent trials with large
sample size have been performed to evaluate the correlation
between plasma CXCL8 and cancer progression (Schalper
et al., 2020; Yuen et al., 2020). Schalper et al., using a large
cohort with 1,344 patients, show that high baseline plasma

CXCL8 level is associated with poor clinical outcomes in
participants with advanced melanoma, NSCLC, and renal-cell
carcinoma (RCC) treated with nivolumab or ipilimumab,
everolimus or docetaxel, which indicate that serum CXCL8
level is an unfavorable factor in tumor immunobiology and
can act as an independently predictive biomarker in patients
receiving ICIs (Schalper et al., 2020). Another multiple
randomized trials with 1,445 patients in metastatic urothelial
carcinoma (mUC) and mRCC confirms this finding (Yuen et al.,
2020). Both trials further suggest that greater CXCL8 expression
in tumor is associated with higher plasma CXCL8 level, an
immunosuppressive myeloid-enriched TME, and T cell
suppression (Schalper et al., 2020; Yuen et al., 2020).
Additionally, Yuen and colleagues also further stratify patients
using plasma CXCL8 level and T cell effector signature score.
Patients with high T cell effector signature score and low plasma
CXCL8 level can derive best benefit from ICIs (Yuen et al., 2020).

Emerging studies suggest that combination of targeting
CXCL8-CXCR1/2 axis and ICIs can provide further benefit in
anti-tumor efficacy. In the context of breast and lung cancer,
combined SX-682, an bioavailable small-molecule inhibitor of
CXCR1 and CXCR2, and anti-PD-1/PD-L1 can achieve best
tumor control in murine model (Sun Y. et al., 2019; Horn
et al., 2020b). Interestingly, both studies indicate that
inhibition of CXCR1/2 eventually results in reducing
infiltration with PMN-MDSCs which play a vital role in T cell
suppression. Zhang et al. discover that treated with interferon
gamma (IFN-γ) can suppress a variety of pancreatic cancer
derived CXCL8 and tumor-derived CXCL8 deficiency inhibit
the trafficking of M2 TAM (Zhang et al., 2020). Further,
combined IFN-γ and anti-PD-1 treatment enhance the anti-
tumor efficacy. As for directly targeting CXCL8, in triple-
negative breast cancer (TNBC), HuMax-IL8, a fully human
monoclonal antibody that inhibits CXCL8, can significantly
reduce the infiltration of PMN-MDSCs to TME and enhance
the efficacy of immunotherapy (Dominguez et al., 2017).

Bilusic et al. conduct a phase I clinical trial including 15
patients with metastatic or unresectable solid tumors treated
with HuMax-IL8 (Bilusic et al., 2019). The results of this trial
indicate that HuMax-IL8 is safe and well-tolerated. This trial
could be a basic evidence for further evaluating the combination
of CXCL8 blockade and other immunotherapies. In addition,
several ongoing studies have been designed to evaluate the safety
and efficacy of combined HuMax-IL8 and immunotherapy in
cancer patients (Table 2).

Future Directions
Expression of CXCL8 is significantly higher in numerous types of
cancers, and high expression of CXCL8 is significantly associated
with shorter median overall survival in many kinds of cancers
based on TCGA database (Table 3). The findings of numerous
researches involving preclinical in vitro and in vivo models
illustrate that combination of targeting CXCL8-CXCR1/2 axis
and ICIs can provide further benefit in anti-tumor efficacy. In
addition, clinical trials demonstrate that CXCL8 plays an
important role in response quality on ICIs. Furthermore,
activation of CXCL8-CXCR1/2 axis and its downstream
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signaling pathways play important roles in tumor survival and
invasion, and suppress antitumor immune responses in the TME.
Therefore, therapies targeting this axis are likely to benefit
patients with cancer by inhibiting tumor growth and
stimulating antitumor immunity. Clinical trials are ongoing to
prove this.

As metabolism reprogramming has already become a
hallmark of cancer, the relationship between CXCL8 and
tumor metabolism reprogramming is not widely explored.
How CXCL8 influences tumor metabolism and subsequently
facilitate cancer proliferation needing further investigation. In
addition, present studies demonstrated that part of CRC cells
could secreted CXCL8 which contributed to the EMT of the
remaining cells not secreting CXCL8. However, the
mechanism of this phenomenon is not clear. Further
exploration is needed to determine if other types of cancer
exist similar phenomenon. As mentioned, CXCL8 can recruit
TANs in TME. Unfortunately, there are no groups directly
investigating the relationship between CXCL8 and N2
phenotype. Meanwhile, CXCL8 also plays a role in inducing
a shift in TAMs toward the M2 phenotype. However, the
mechanism is unclear.

CONCLUSION

The Chemokine CXCL8 is well accepted to play a crucial role
in tumor survival, invasion, and TME angiogenesis, immune
suppression via several types of intracellular signaling
pathway. To date, many novel mechanisms to mediate the
above tumor biology by CXCL8 have been highlighted. More

and more evidences indicate that CXCL8 should be considered
as a pro-tumor factor with dual roles: directly promoting
tumor survival and affecting components of TME to
indirectly facilitate tumor progression. Further, CXCL8 can
also act as an important predictor of the clinical outcomes for
ICIs. As cancer therapy advances, some emerging clinical trials
are ongoing to explore the efficacy and safety of combining
anti-CXCL8 and ICIs therapy.
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