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Abstract

Insects use their sensitive and selective olfactory system to detect outside chemical odorants, such as female sex
pheromones and host plant volatiles. Several groups of olfactory proteins participate in the odorant detection process,
including odorant binding proteins (OBPs), chemosensory proteins (CSPs), odorant receptors (ORs), ionotropic receptors
(IRs) and sensory neuron membrane proteins (SNMPs). The identification and functional characterization of these olfactory
proteins will enhance our knowledge of the molecular basis of insect chemoreception. In this study, we report the
identification and differential expression profiles of these olfactory genes in the black cutworm moth Agrotis ipsilon. In total,
33 OBPs, 12 CSPs, 42 ORs, 24 IRs, 2 SNMPs and 1 gustatory receptor (GR) were annotated from the A. ipsilon antennal
transcriptomes, and further RT-PCR and RT-gPCR revealed that 22 OBPs, 3 CSPs, 35 ORs, 14 IRs and the 2 SNMPs are uniquely
or primarily expressed in the male and female antennae. Furthermore, one OBP (AipsOBP6) and one CSP (AipsCSP2) were
exclusively expressed in the female sex pheromone gland. These antennae-enriched OBPs, CSPs, ORs, IRs and SNMPs were
suggested to be responsible for pheromone and general odorant detection and thus could be meaningful target genes for
us to study their biological functions in vivo and in vitro.
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Introduction

Insects use their sensitive and selective antennae, which express
various olfactory proteins, to detect air borne odorant molecules,
such as sex pheromones and plant volatiles. Species-specific
pheromone molecules and general plant volatiles enter the
sensillum lymph of the different types of antennae sensilla via
the multipores of the insect cuticle [1,2]. During the last 30 years,
our knowledge of the molecular and cellular basis of insect
chemoreception has greatly expanded. It is commonly accepted
that several different groups of antennae-enriched olfactory
proteins participate in the first stage of the detection of olfactory
signals, including odorant binding proteins (OBPs), chemosensory
proteins (CSPs), odorant receptors (ORs), ionotropic receptors
(IRs) and sensory neuron membrane proteins (SNMPs) [3].

Insect OBPs are small water-soluble olfactory proteins that are
presumed to be synthesized by non-neuronal auxiliary cells
(trichogen and tormogen cells) of the sensory neurons and secreted
into the sensillum lymph in high concentrations (up to 10 mM) [4—
7]. The insect OBPs are commonly believed act as carrier proteins
to transport odorants to the olfactory receptors. Functional studies
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of insect OBPs at both molecular and behavior levels have proven
that insect OBPs are indispensable in insect chemoreception. For
example, Drosophila OBP LUSH is required for the activation of
pheromone-sensitive chemosensory neurons by the pheromone
11-cis vaccenyl acetate (cVA) [8,9]. Additionally, in the fire ant
Solenopsis invicta, the pheromone binding protein gene Gp-9
regulates the colony social organization between the monogyne
social form (with a single queen) and the polygyne form (with
multiple queens) [10].

Insect CSPs, which were also called OS-D like proteins [11] or
sensory appendage proteins (SAPs) [12], represent one novel
group of olfactory proteins that are involved in insect olfaction.
These proteins have shown broad expression profiles in chemo-
sensory tissues, including antennae [13—17], maxillary palps [18],
labial palps [18,19] and proboscis [20]. However, these proteins
are also found in non-chemosensory organs, such as legs [21,22],
wings [23,24] and pheromone glands [15]. Functional studies of
insect CSPs revealed that these proteins have multiple-functions in
insect chemoreception, growth and development. For example, in
the tsetse fly Glossina morsitans morsitans, the female antennae-
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enriched CSP transcripts were showed remarkable expression
levels after a blood meal, which suggested that these proteins
participate in the female host-seeking behavior [14]. In the
American cockroach Periplaneta americana, one CSP homolo-
gous gene named PJI0 was expressed 30 times higher in
regenerating legs than in normal legs, which indicated that the
P10 gene had a putative function in the regeneration of insect legs
[21,22]. In the migratory locust Locusta migratoria, the antennae-
expressed CSP gene has been proposed to regulate the rapid
switch between attraction and repulsion behaviors [25].

The insect odorant receptors (ORs) are odorant-gated ion
channels which composed of one odorant-binding subunit and the
olfactory coreceptor Orco [26,27]. The functional study of insect
ORs, particularly the pheromone receptors (PRs), revealed their
essential role in insect olfaction [28,29]. The classical method to
identify and annotate insect OR genes is through bioinformatic
screenings of genomic sequences. At present, using this method,
insect OR genes have been identified and annotated from various
insect species, including Drosophila melanogaster [30-32], Anoph-
eles gambiae [33], Aedes aegypti [34], Apis mellifera [35], Nasonia
vitripennis [36], Bombyx mori [37], Tribolium castaneum [38], and
Acyrthosiphon pisum [39].

Recently, a novel chemosensory receptor family called iono-
tropic receptors (IRs) was discovered in D. melanogaster [40]. In
total, 66 IRs, which included two putative conserved coreceptors,
IR25a and IR8a, were identified by screening D. melanogaster
genomic data [41]. The expression analysis revealed that 15
DmellR genes were specially expressed in the antennae [40]. The
misexpression of DmellR84a and DmellR92a conferred ectopic
olfactory responses to the electrophysiology-activated compounds
phenylacetaldehyde and ammonia, respectively [40]. Thus far,
different IR genes have been identified and annotated in various
insect species, including D. melanogaster [40], B. mori [41],
Spodoptera littoralis [42], A. gambiae [43], Manduca sexta [44],
Cydia pomonella [45], and Helicoverpa armigera [46].

Previously, functional studies of insect olfactory genes primarily
focused on model species, such as D. melanogaster and B. mori,
whose genomic data are available. However, the functional studies
of olfactory genes of other insect species have been restricted due
the deficiency of the genomic data for these species. Recently, the
high-throughput sequencing of antennae and other tissues have
proved to be an efficient strategy for identifying and annotating
different types of olfactory genes in various insect species,
including A. gambiae [43], M. sexta [44], C. pomonella [45], H.
armigera [46], Cotesia vestalis [47], Agrilus planipennis [48],
Aphis  gossypii [49], S. lttoralis [50], Ips typographus and
Dendroctonus ponderosae [51].

In the present study, using a next-generation sequencing (NGS)
454 GS FLX platform, we have identified and annotate several
families of chemosensory genes (including OBPs, CSPs, ORs, IRs
and SNMPs) from the antennae of the black cutworm moth
Agrotis ipsilon (Hufnagel) (Lepidoptera: Noctuidae), which is
known as a destructive pest of many crops [52-53]. Using semi-
quantitative  RT-PCR and real-time quantitative-PCR (R'T-
qPCR), we have screened a number of antennae-specific or
enriched olfactory genes from the A. ipsilon antennal transcrip-
tomes, which may play important functions in the chemoreception

of A. ipsilon.

Results and Discussion

454 sequencing and de novo assembly
Two non-normalized cDNA libraries of the male and female A.
ipsilon antennae were constructed. After a single sequencing run
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using the 454 GS FLX platform, a total of 551388 (mean length
539 bp) and 537572 raw reads (mean length 548 bp) were
produced from the male and female antennae samples, respec-
tively. After trimming adaptor sequences, contaminating sequenc-
es and low quality sequences, 550456 (mean length 531 bp) and
536474 clean reads (mean length 540 bp) from male and female
antennae, respectively, remained for the following assembly.

All clean reads from male and female antennae were assembled
and produced 40126 (mean length 1072 bp) and 41358 (mean
length 1054 bp) unigenes, respectively. Furthermore, we assem-
bled all clean reads from male and female antennae together and
finally generated 48795 unigenes. Among these unigenes, 41173
are contigs (84.4%) and 7622 are singletons (15.6%). The
assembled unigene lengths ranged from 100 bp to 15432 bp, with
an average length of 967 bp. The size distribution of the
assembled unigenes is shown in Figure 1. An overview of the
sequencing and assembly process is presented in Table 1.

Homology searching of A. ipsilon antennal unigenes with
other insect species

We search for homologs in other insect species using the
BLASTx and BLASTn programs with the e-value cut-off of 10e-5
[54]. The results indicated that 25180 of the 48795 unigenes
(51.6%) had BLASTx hits in the non-redundant protein (nr)
databases and that 17947 unigenes (36.8%) had BLASTn hits in
the non-redundant nucleotide sequence (nt) databases. Some
unigenes are homologous to more than one species. Most
annotated A. ipsilon antennal unigenes have the best hits with
Lepidoptera insect genes (8542 of the 17947 nt-hit unigenes); the
highest hits included 2818 unigenes that were homologous to B.
mort genes, 1820 unigenes that were homologous to H. armigera
genes. The second highest hits are with Dipteran species genes,
with 276 hits of D. melanogaster genes, and 392 and 383 hits that
were homologous to genes of the mosquitoes A. gambiae and A.
aegypti, respectively. The other unigenes were found to be
homologous to genes from the wasp N. vitripennis (348 hits), the
beetle T. castaneum (244 hits) and from the western honey bee A.
mellifera (261 hits) (Figure 2).

Functional annotation of the A. ipsilon antennal unigenes

Similar to those genes that were found in the antennal
transcriptomes of M. sexta [44], S. littoralis [55] and H. armigera
[46], most A. ipsilon antennal unigenes (approximately 72%) could
not be assigned to a Gene Ontology (GO) category. In total, 11987
male antennal unigenes and 12240 female antennal unigenes were
annotated into different functional groups (biological process,
cellular components and molecular functions) according to GO
analysis [56] (Figure 3). Some transcripts were annotated into
more than one GO category. The numbers of each GO category
were similar between the male and female antennal transcriptomes
(Figure 3). The cellular process (6301 male antennal unigenes and
6425 female antennal unigenes) and metabolic process (5243 male
antennal unigenes and 5349 female antennal unigenes) GO
categories were most abundantly represented within the biological
process GO ontology. In the cellular components GO ontology,
the transcripts were primarily distributed in the cell (7148 male
antennal unigenes and 7308 female antennal unigenes) and in cell
part (6619 male antennal unigenes and 6752 female antennal
unigenes). The GO analysis also showed that the binding (4705
male antennal unigenes and 4787 female antennal unigenes) and
catalytic activity (5133 male antennal unigenes and 5210 female
antennal unigenes) were most abundant in the molecular function
ontology (Figure 3).
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Figure 1. The size distribution of the clean reads and assembled unigenes from A. jpsilon male and female antennal transcriptomes.

doi:10.1371/journal.pone.0103420.g001

Chemosensory genes are highly abundant in the A.

ipsilon antennae

Because a non-normalized ¢cDNA library was used for 454
sequencing in this study, the number of reads of per unigene can
represent the relative mRNA abundance in the A. ¢psilon antennal
transcriptomes. Among the top 500 most highly abundant
transcripts, 89 transcripts are annotated as olfactory genes, which
suggests their involvement in insect chemosensory reception,
including olfactory receptors, odorant-binding proteins, chemo-
sensory proteins, antennal cytochrome P450s, antennal-enriched
UDP-glycosyltransferases, antennal oxidoreductases, antennal
aldehyde oxidases, sensory neuron membrane proteins and
takeout-like proteins (Table S1).

Candidate odorant binding proteins in the A. ipsilon
antennae

OBPs are believed to be involved in the initial biochemical
recognition steps in insect odorant perception by capturing and
transporting odorant molecules to the olfactory receptors (ORs)
[57-59]. In the A. ¢psilon antennal transcriptomes, a total of 33
OBP genes were annotated (Table 2) based on the tBLASTn
results. The number of A. ipsilon OBP identified in present study is
a little fewer than the number identified from the genome of B.
mori (44) [60], A. gambiae (57) [61] and D. melanogaster (51) [62],
so there may still some OBP genes are not identified from the A.
ipsilon antennae due to their low expression level. Among the
identified 33 OBP genes, 28 have intact ORFs with lengths
ranging from 402 bp to 759 bp. The RPKM value analysis
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Table 1. An overview of the sequencing and assembly process.

Male Female Total
Raw reads 551388 537572 1088960
Clean read 550456 536474 1086930
Clean read mean length 531 bp 540 bp 535.5 bp
Singletons 3583 4039 7622
Contigs 36543 37319 41173
Unigenes 40126 41358 48795
Unigene mean length 1072 bp 1054 bp 967 bp
doi:10.1371/journal.pone.0103420.t001
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Figure 2. Top 20 best hits of the BLASTn results. All A. ipsilon antennal unigenes were used in BLASTn to search the GenBank entries. The best
hits with an E-value <=1.0E-5 for each query were grouped according to species.

doi:10.1371/journal.pone.0103420.g002

revealed that 9 OBP genes (PBPI, PBP2, PBP3, GOBPI,
GOBP2, OBP4, OBPI11, OBPI18 and OBP24) are highly
abundant in the male and female antennal transcriptomes
(RPKM>1000) (Table 2). The RT-PCR results indicated that
22 OBP genes (PBP1, PBP2, PBP3, GOBP1, GOBP2, OBPI,
OBP2, OBP4, OBP5, OBPY, OBP11, OBP12, OBP13, OBP15,
OBP16, OBP17, OBP19, OBP20, OBP21, OBP22, OBP24 and
OBP26) are uniquely or primarily expressed in the male and

100

female antennae (Figure 4). Based on the different expression
profiles of these OBPs in male and female antennae, we suggest
these male antennae-enriched expressed OBPs are involved in sex
pheromone detection, whereas female antennae-enriched ex-
pressed OBPs play important roles in locating suitable host plants
and oviposition sites.

Furthermore, real-time quantitative PCR (RT-qPCR) analysis
was performed to compare the accurate quantitative expression

12240,1198

1224,1198

Percent of genes

Number of genes

122,119

biological_process

cellular_component

molecular_function

Figure 3. Gene Ontology (GO) classifications of the male and female A. /jpsilon antennal unigenes according to their involvement in

biological processes, cellular component and molecular function.

doi:10.1371/journal.pone.0103420.g003
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Figure 4. A. ipsilon OBP and CSP transcript levels in different tissues as evaluated by RT-PCR. MA: male antennae; FA: female antennae;
Bo: body. Pheromone gland rather than body was used in the analysis of AipsOBP6 and AipsCSP2. Antennae specific or enriched genes are labeled
with a red pentagram. -actin was used as an internal reference gene to test the integrity of each cDNA template; the similar intensity of f-actin
bands among different tissues indicates the use of equal template concentrations.

doi:10.1371/journal.pone.0103420.g004

levels of these OBP genes among different tissues between sexes,
and the results suggested that the three PBP genes (PBPI, PBP2
and PBP3) are expressed higher in the male antennae than in the
female antennae (p<<0.01) (Figure 5). However, the RT-qgPCR
results lack concordance with the RPKM values, this reason may
be the sequencing depth of 454 is not good enough. PBP1 and
PBP2 showed high binding affinities with the two main sex
pheromones of A. ipsilon, whereas PBP3 specifically binds to the
minor amount sex pheromone Z11-16: Ac with a high binding
ability [63]. In contrast, the expression levels of GOBPI, GOBP2
and OBP17 were much higher in the female antennae than in the
male antennae (Figure 5). Interestingly, one OBP (OBP6) was
primarily expressed in the pheromone gland (PG) (Figure 4 and
Figure 5); this result was also reported in another study [64].
Unlike the common antennae-enriched OBPs, this PG-expressed
OBP may play a different role in odorant and pheromone
detection and transportation.

Candidate chemosensory proteins in the A. ipsilon
antennae

Chemosensory proteins (CSPs) represent a new class of soluble
carrier proteins in the lymph of insect antennal chemosensilla and
they are proposed to play similar functions as OBPs in insect
chemoreception [65]. In this study, we have identified 12 novel
CSP genes in the A. ipsilon antennae (Table 3). Based on the
extensive expression profiles of CSPs, the remaining CSPs which
expressed in other tissues such as legs and wings may not be
identified in present study. In total, 11 of the novel genes had
mntact ORFs, and the protein sequences had the typical four
conserved cysteines, which are recognized as the signature feature
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of insect CSPs [65]. The RPKM value analysis revealed that 4
CSP genes (CSP4, CSP7, CSP9 and CSP10) are highly abundant
in the male and female antennal transcriptomes (RPKM>1000)
(Table 3). The RT-PCR and RT-qPCR results indicated that 3
CSP genes (CSPS, CSPY and CSP10) are highly expressed in the
male and female antennae (Figure 4 and Figure 6). This result
suggested that these three antennae-enriched CSPs might play
essential roles in the chemical communication process in insects.
Interestingly, one CSP gene (CSP2) was not expressed in the
antennae but was specifically expressed in the female pheromone
gland (PG) (Figure 4 and Figure 6). CSPs that are expressed in the
pheromone gland of the cabbage armyworm M. brassicae can
bind sex pheromone analogs, which suggests that these CSPs may
play a role in pheromone capture [15]. In Heliothis virescens and
B. mori, CSPs are all detected in the pheromone gland [66—68].
This observation suggests the possible involvement of these
proteins in carrying and releasing sex pheromones, as demon-
strated for the antennal OBPs and CSPs. The insect may use these
female PG-enriched OBPs and CSPs to auto-detect and monitor
the sex pheromones released by themselves [69-70].

Candidate olfactory receptors in the A. ipsilon antennae

Insect olfactory receptors (ORs) are the most important players
in sex pheromone and general odorant detection. In the present
study, we have identified 42 OR genes (41 typical ORs and one
atypical coreceptor) from the A. ipsilon antennal transcriptomes
(Table 4). In insect, the axons from the sensory neurons converge
into glomeruli in the antennal lobe. There are 66 glomeruli in the
antennae lobe of the male A. ipsilon moth [71], based on the
hypothesis that the number of the glomeruli equals the number of
olfactory receptors [72,73], we predict there are about 24 OR
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Figure 5. A. ipsilon OBP transcript levels in different tissues as measured by RT-qPCR. MA: male antennae; FA: female antennae; Bo: body.
Pheromone gland rather than body was used in the analysis of AipsOBP6. The internal controls f-actin and ribosomal protein S3 were used to
normalize transcript levels in each sample. This figure was presented using f-actin as the reference gene to normalize the target gene expression and
to correct sample-to-sample variation; similar results were obtained with ribosomal protein S3 as the reference gene. The standard error is represented
by the error bar, and the different letters (a, b, c) above each bar denote significant differences (p<<0.05).

doi:10.1371/journal.pone.0103420.g005
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doi:10.1371/journal.pone.0103420.g006

genes still need to be identified. In total, 12 of the 42 ORs have
mtact ORFs. The RPKM value analysis revealed that the ORco
had the highest expression level among the 42 ORs, with RPKM
value of 741 and 997 in the male and female antennae,
respectively. The other 41 typical ORs, however, showed a
relative low expression level (RPKM ranged from 0 to 567)
compared with the ORco, OBP and CSP genes. Three ORs
(ORI, OR3 and OR4) showed a higher RPKM in the male
antennae than in the female antennae (more than 20 times)
(Table 4). The RT-PCR and RT-qPCR results indicated that 35
ORs were exclusively or primarily expressed in the antennae.
Among these ORs, 4 ORs (ORI, OR3, OR4 and ORI14) have
male antennae-specific expression (Figure 7 and Figure 8), which
suggests that these ORs may play essential roles in the detection of
sex pheromones. In total, 4 ORs (OR6, OR7, ORS8 and OR23)
have female antennae-enriched expression (Figure 7 and Fig-
ure 8), which suggests that these ORs may play important roles in
the detection of general odorants, such as host plant volatiles. The
OR tree from three Lepidoptera insects are extremely divergent;
however, the olfactory coreceptor family and the pheromone
receptor family are highly conserved (Figure 9).

Candidate ionotropic receptors in the A. ipsilon antennae

Insect chemosensory ionotropic receptors (IRs) belong to an
ancient chemosensory receptor family, that was first discovered in
D. melanogaster and are expressed in sensory neurons that
respond to different odorants but that do not express either ORs
or gustatory receptors (GRs) [40]. The misexpression of D.
melanogaster IRs conferred ectopic odorant responsiveness [40].
At present, 66 IRs in D. melanogaster [41], 12 IRs in the noctuid
S. lttoralis [42], 15 IRs in C. pomonella [45] and 12 IRs in H.
armigera [46] have been identified. In the present study, we have
identified 24 IRs, including two highly conserved coreceptors,

PLOS ONE | www.plosone.org

IR8a and IR25a, from the A. ipsilon antennal transcriptomes
(Table 5). Five of the IR genes, including coreceptors IR8a and
IR25a, had intact ORFs. Eighteen of these 24 IRs showed high
amino acid identity (52%—-90%) with three Lepidoptera insects, C.
pomonella, S. littoralis and B. mori. Similar to the ORs, the
RPKM value analysis revealed that all the 24 IRs showed a
relative low expression level (RPKM value ranged from 0 to 69)
compared with the OBPs and CSPs. The antennae-enriched IRs
may play important roles in odorant detection; 15 D. melanogaster
IRs [40], 10 H. armigera IRs [46] and 7 S. littoralis IRs [42] were
expressed exclusively in the antennae. Our RT-PCR and RT-
gPCR results indicated that 14 A. ¢psilon IRs (IR8a, IR25a,
IR21a,IR41a,IR75q.1,IR75q.2, IR76b, IR87a,IR1, IR3, IR4,
IR8, IR12 and IR13) are highly expressed in the antennae; in
particular, one IR JTRI2 was specifically expressed in the male
antennae (Figure 7 and Figure 10), which suggested that this IR
may be devoted to the response to the female sex pheromones. IRs
from different insect species are extremely divergent; however, the
two coreceptors IR8a and IR25a are highly conserved among
different insect species (Figure 11).

Candidate sensory neuron membrane proteins and
gustatory receptors in the A. ipsilon antennae

Insect SNMPs are two trans-membrane domain-containing
proteins that are suggested to play significant roles in insect
chemoreception [74-76]. Two SNMP subfamilies, SNMP1 and
SNMP2, were identified in insects; however, these subfamilies
showed different expression profiles in the antennae sensilla:
SNMP1 proteins are detected in pheromone-sensitive olfactory
receptor neurons (ORNGs) [77-79]; however, the SNMP2 proteins
are expressed in the supporting cells [78,79]. In the present study,
we have identified two SNMP genes, SNMP1 and SNMP2, in the
A. tpsilon antennal transcriptomes (Table 5). Both have intact
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Figure 7. A. jpsilon OR, IR, SNMP and GR transcript levels in different tissues as evaluated by RT-PCR. MA: male antennae; FA: female
antennae; Bo: body. Genes that are equally expressed in the male and female antennae are labeled with a red pentagram. Genes that are specifically
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actin bands among different tissues indicates the use of equal template concentrations.

doi:10.1371/journal.pone.0103420.9g007

ORFs with lengths of 1569 bp and 1563 bp for SNMPI and
SNMP2, respectively, in agreement with our previous analyses
[79]. The RT-PCR and RT-qPCR results revealed that both
SNMP1I and SNMP2 were primarily expressed in the antennae of
both sexes (Figure 7 and Figure 10). Furthermore, one gustatory
receptor (AipsGR63) was identified in the A. ipsilon antennal
transcriptomes (Table 5); AipsGR63 showed 46% amino acid
identity with the B. mori gustatory receptor 63. The RT-PCR and
RT-qPCR analyses showed that AipsGR63 was expressed in both
the antennae and body part (Iigure 7 and Figure 10).

Conclusions

Olfaction is an important sensory modality in insect. In present
study we have successfully identified and annotated several groups
of olfactory genes in the antennae of the noctuid moth A. ipsilon.
The expression profile analysis revealed that 22 OBPs, 3 CSPs, 35
ORs, 14 IRs and the 2 SNMPs are uniquely or primarily
expressed in the male and female antennae. These antennae-

PLOS ONE | www.plosone.org

10

enriched OBPs, CSPs, ORs, IRs and SNMPs may play important
physiological function in the pheromone and general odorant
detection; thus, these genes could be meaningful targets for the
study their biological functions, both in vivo and in vitro. An
important direction of our future research will be the functional
study of these olfactory genes.

Materials and Methods

Ethics statement

The black cutworm moth Agrotis ipsilon is common agricultural
insect pests and are not included in the “List of Endangered and
Protected Animals in China”. All operations were performed
according to ethical guidelines in order to minimize pain and
discomfort to the insects.

Insect rearing and tissue collection

The A. ipsilon colony was established in our laboratory in 2006.
The larvae were reared with an artificial diet that was composed of

August 2014 | Volume 9 | Issue 8 | 103420
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wheat germ, casein and sucrose as the main components
[63,64,79]. The laboratory colony was kept at 24°C with 75%
relative humidity and a 16:8 light:dark cycle. Pupae were sexed
and maintained separately in hyaline plastic cups before emer-
gence. Adult moths were given a 20% honey solution after
emergence. Antennae were excised from 3-day-old male and
female moths and immediately frozen and stored in liquid nitrogen
until use.

Female
29
997

RPKM value
Male

16

10

741

% ldentify

56%
61%
45%
58%
63%
77%
71%
97%

RNA extraction and cDNA library construction

400 antennae from each sex were polled for total RNA
extraction using TRIzol reagent using TRIzol reagent (Invitrogen,
Carlsbad, CA, USA) following the manufacturer’s instructions.
The quantity of RNA samples was determined using a NanoDrop
spectrophotometer (Thermo Scientific, Wilmington, DE, USA)
and 1.1% agarose electrophoresis. Approximately 500 ng messen-
ger RNA was further purified from 50 pg total RNA using a
PolyATtract mRNA Isolation System III (Promega, Madison, WI,
USA). The mRNAs were then sheared into approximately 800
nucleotides via RNA Fragmentation Solution (Autolab, Beijing,
China) at 70°C for 30 sec, then cleaned and condensed using an
RNeasy MinElute Cleanup Kit (Qiagen, Valencia, CA, USA).
The first-strand cDNA was synthesized using N6 random primers
and MMLV reverse transcriptase (TaKaRa, Dalian, China).
Then, the second strand cDNAs were synthesized using secondary
strand cDNA synthesis enzyme mixtures (Autolab, Beijing, China).
The cDNAs with the desired length were purified using a
QIAquick PCR Purification Kit (Qiagen, Valencia, CA, USA)
and eluted with 10 pl elution buffer. After blunted and appended
with a poly-A tail at the 3’ end according to Roche’s Rapid
Library Preparing protocols (Roche, USA), the purified cDNAs
were linked to GS-FLX Sequencing Adaptors (Roche, USA).
Finally, the cDNAs that were shorter than 500 bp were removed
using AMPure Beads according to the manufacture’s instructions
(Beckman, USA) before the preparation of the cDNA library for
next generation sequencing.

E-value
4e-160
1e-36
2e-30
2e-22
6e-38
1e-69
2e-73
0.0

Score
120
100
117
199

470
135
238

969

454 sequencing

Pyrosequencing of the ¢cDNA library was performed by the
Beijing Autolab Biotechnology Company using a 454 GS-FLX
sequencer (Roche, IN, USA) according to the manufacturer’s
mstructions. All sequencing reads were deposited into the Short
Read Archive (SRA) of the National Center for Biotechnology
Information (NCBI), and can be accessed under the accession
numbers SRR838973 and SRR838974 for the male and female
antennal transcriptomes, respectively.

gb|AFC91738.1| putative odorant receptor OR30, partial [Cydia pomonella]

gb|AFL70813.1| odorant receptor 50, partial [Manduca sexta]
gb|EHJ67735.1| olfactory receptor [Danaus plexippus]
gb|ABK27848.1| odorant receptor 33 [Bombyx mori]
tpg|DAA05980.1| TPA_exp: odorant receptor 22 [Bombyx mori]
gb|AEF32141.1| odorant receptor [Spodoptera exigual
ref[NP_001091818.1| olfactory receptor 42 [Bombyx mori]
dbj|BAG71415.1| olfactory receptor-2 [Mythimna separata]

BLASTx annotation

Sequence analysis and assembly

Base calling of the raw 454 reads in SFF files were performed
using the python script sfl_extract.py that was developed by
COMAV (http://bioinf.comav.upv.es). All the raw reads were
then processed to remove low quality and adaptor sequences using
the programs TagDust [80], LUCY [81] and SeqClean [82] with
default parameters. The resulting sequences were then screened
against the NCBI UniVec database (http://www.ncbinlm.nih.
gov/VecScreen/UniVec.html) to remove possible vector sequence
contamination. The cleaned reads that were shorter than 60 bases
were discarded based on the assumption that these reads might
represent sequencing artifacts [83].

Two steps were taken to assemble the clean reads. First, the
sequence assembler MIRA3 [84] was used with the assembly
settings of a minimum sequence overlap of 30 bp and a minimum
percentage overlap identity of 80%. Then, CAP3 was used with
the assembly parameters of an overlap length cutoff >30 and an

ORF (bp)
1182
1422

Length (bp)

1380
312
417
312
267
402
540
3033

Gene
OR35
OR36
OR37
OR38
OR39
OR40
OR41
ORco
represent that gene is partial and has not intact ORF. The nucleotide sequences of all 42 OR genes are listed in Table S2.

doi:10.1371/journal.pone.0103420.t004

Table 4. Cont.
Unigene
Unigene_13081
Unigene_25508
Unigene_27934
Unigene_15945
Unigene_22364
Unigene_18944
Unigene_13402
Unigene_5611

u_n
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Figure 8. A. ipsilon OR transcript levels in different tissues as measured by RT-qPCR. MA: male antennae; FA: female antennae; Bo: body.
The internal controls f-actin and ribosomal protein S3 were used to normalize transcript levels in each sample. This figure was presented using f-actin
as the reference gene to normalize the target gene expression and to correct sample-to-sample variation; similar results were obtained with
ribosomal protein $3 as the reference gene. The standard error is represented by the error bar, and the different letters (a, b, c) above each bar denote
significant differences (p<0.05).

doi:10.1371/journal.pone.0103420.g008
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Figure 9. Neighbor-joining tree of candidate odorant receptor proteins from A. jpsilon (red), B. mori (green) and H. virescens (blue).
The protein names and sequences of ORs that were used in this analysis are listed in Table S5.

doi:10.1371/journal.pone.0103420.g009

overlap percent identity cutoff >90% [85]. The resulting contigs
and singletons that were more than 100 bases were retained as
unigenes and annotated as described below.

Homology searches and functional classification
Following the assembly, homology searches of all unigenes were
performed using the BLASTx and BLASTn programs against the
GenBank non-redundant protein (nr) and nucleotide sequence (nt)
databases at NCBI [86]. Matches with an E-value that was less
than 1.0E-5 were considered significant [54]. Gene names were
assigned to each unigene based on the best BLASTx hit with the

highest score value.

PLOS ONE | www.plosone.org
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Gene Ontology terms were assigned by the tool Blast2GO [87]
through the BLASTx program with an E-value less than 1.0E-5.
Then, the WEGO [88] software was used for the assignment of
each GO ID to the related ontology entries. The longest open
reading frame (ORF) of each unigene was determined by an ORF
finder tool (http://www.ncbi.nlm.nih.gov/gorf/gorf.html).

Identification of A. ipsilon chemosensory genes

The tBLASTn program was performed, with available
sequences of OBP, CSP, OR, GR, IR and SNMP proteins from
Lepidoptera species as “query” to identify candidate unigenes
encoding putative OBPs, CSPs, ORs, GRs, IRs and SNMPs in the

August 2014 | Volume 9 | Issue 8 | 103420
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Figure 10. A. jpsilon IR, SNMP and GR transcript levels in different tissues as measured by RT-qPCR. MA: male antennae; FA: female
antennae; Bo: body. The internal controls f-actin and ribosomal protein S3 were used to normalize transcript levels in each sample. This figure was
presented using f-actin as the reference gene to normalize the target gene expression and to correct sample-to-sample variation; similar results were
obtained with ribosomal protein S3 as the reference gene. The standard error is represented by the error bar, and the different letters (a, b, c) above

each bar denote significant differences (p<<0.05).
doi:10.1371/journal.pone.0103420.9010

A. ipsilon. All candidate OBPs, CSPs, ORs, GRs, IRs and SNMPs
were manually checked by the BLASTx program at the National
Center for Biotechnology Information (NCBI). The nucleotide
sequences of all chemosensory genes that were identified from the
A. ipsilon antennal transcriptomes are listed in Table S2.
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Comparative analysis of chemosensory genes in the A.
ipsilon male and female antennae

To compare the differential expression of chemosensory genes
in the A. ipsilon male and female antennal transcriptomes, the
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Figure 11. Neighbor-joining tree of candidate ionotropic receptor proteins from different insect species. The protein names and

sequences of IRs that were used in this analysis are listed in Table S6.
doi:10.1371/journal.pone.0103420.g011

read number for each chemosensory gene between male and
female antennae was converted to RPKM (Reads Per Kilobase per
Million mapped reads) [89], using the formula: RPKM
(A)=(1,000,000xC x1,000)/(NxL), where RPKM (A) is the
expression of chemosensory gene A, C is the number of reads
that are uniquely aligned to chemosensory gene A, N is the total
number of reads that are uniquely aligned to all unigenes, and L is
the number of bases in chemosensory gene A. The FDR (false
discovery rate) was used to determine the threshold of the P-value
for multiple testing. FDR <0.001 and absolute values of the
logoratio >1 were used as the threshold to determine significant
differences in gene expression. The RPKM method eliminates the
influence of gene length and sequencing depth on the calculation
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of gene expression. Thus, the calculated gene expression can be
directly used to compare gene expression between samples.

Sequence and phylogenetic analysis

The putative N-terminal signal peptides and the most likely
cleavage site were predicted using the SignalP V3.0 program [90]
(http://www.cbs.dtu.dk/services/SignalP/). Sequence alignments
were performed using the program ClustalX 2.1 [91] with default
gap penalty parameters of gap opening 10 and extension 0.2, and
were edited using the GeneDoc 2.7.0 software. A neighbor-joining
tree [92] was constructed using the program MEGA 5.0 [93] with
a p-distance model and a pairwise deletion of gaps. The bootstrap
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support of tree branches was assessed by re-sampling amino acid
positions 1000 times.

RT-PCR and RT-gPCR analysis

Two biological samples each with 150 male antennae, 150
female antennae and two moth body part (mixture of heads,
thoraxes, abdomens, legs, wings) were used for RNA extraction
using TRIzol reagent. Before transcription, total RNA was treated
with RQ] RNase-Free DNase (Promega, Madison, USA) to
remove residual genomic DNA. c¢cDNAs from male antennae,
female antennae and the body part were synthesized using a
GoScript Reverse Transcription System (Promega, Madison,
USA). An equal amount of ¢cDNA (200 ng) was used as RT-
PCR and RT-qPCR templates. Specific primer pairs that were
used for RT-PCR were designed with the program Primer 3
(http://frodo.wi.mit.edu/) (see Table S3). The f-actin (GenBank
Acc. JQ822245) of A. ipsilon was used as the control gene to test
the integrity of the cDNAs. The PCR was performed under
following conditions: 95°Ci for 2 min, followed by 25-35 cycles
(depending on the expression level of each gene) of 95°C for
30 sec, 56°C for 30 sec, 72°C for 1 min, and a final extension for
10 min at 72°C. PCR products were analyzed on 1.2% agarose gel
and visualized after staining with ethidium bromide. To reach
reproducibility, each sample was performed at least six times with
two biological samples.

RT-qPCR analysis was conducted using an ABI 7500 Real-
Time PCR System (Applied Biosystems, Carlsbad, CA). The
primers that were used for RT-qPCR were designed using the
program Beacon Designer 7.90 (PREMIER Biosoft International)
(see Table S4). Two reference genes, f-actin (GenBank Acc.
JQ822245) and ribosomal protein S3 (GenBank Acc. JQ822246)
were used for normalizing the target gene expression and for
correcting for sample-to-sample variation. Each RT-qPCR
reaction was conducted in a 25 pl reaction mixture containing
12.5 ul of SuperReal PreMix Plus (TianGen, Beijing, China),
0.75 wl of each primer (10 pM), 0.5 pl of Rox Reference Dye, 1 ul
of sample cDNA, and 9.5 pl of sterilized HyO. The RT-qPCR
cycling parameters were as follows: 95°C for 15 min, followed by
40 cycles of 95°C for 10 sec and 60°C for 32 sec. Then, the PCR
products were heated to 95°C for 15 sec, cooled to 60°C for
1 min, heated to 95°C for 30 sec and cooled to 60°C for 15 sec to
measure the dissociation curves. Negative controls without either
template or transcriptase were included in each experiment. To
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check reproducibility, each RT-qPCR reaction for each sample
was performed in three technical replicates and two biological
replicates. The comparative 27 85T ethod [94] was used to
calculate the relative quantification between tissues. The compar-
ative analyses of each target gene among various tissues were
determined using a one-way nested analysis of variance (ANOVA),
followed by Tukey’s honestly significance difference (HSD) test
using the software SPSS Statistics 18.0 (SPSS Inc., Chicago, IL,
USA). When applicable, values were presented as the mean*SE.
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