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Abstract: Although various synthetic methodologies including organic synthesis, polymer chemistry,
and materials science are the main contributors to the production of functional materials, the im-
portance of regulation of nanoscale structures for better performance has become clear with recent
science and technology developments. Therefore, a new research paradigm to produce functional
material systems from nanoscale units has to be created as an advancement of nanoscale science.
This task is assigned to an emerging concept, nanoarchitectonics, which aims to produce functional
materials and functional structures from nanoscale unit components. This can be done through
combining nanotechnology with the other research fields such as organic chemistry, supramolecular
chemistry, materials science, and bio-related science. In this review article, the basic-level of nanoar-
chitectonics is first presented with atom/molecular-level structure formations and conversions from
molecular units to functional materials. Then, two typical application-oriented nanoarchitectonics
efforts in energy-oriented applications and bio-related applications are discussed. Finally, future
directions of the molecular and materials nanoarchitectonics concepts for advancement of functional
nanomaterials are briefly discussed.

Keywords: bio-related application; energy-oriented application; nanoarchitectonics; nanotechnology

1. Introduction

Advancements of nanoscale science require the creation of a new methodology to
produce functional materials systems from nanoscale units. As described in details later in
this review manuscript, this task of advancements of nanoscale science is assigned to an
emerging concept, nanoarchitectonics [1,2]. In this review article, various recent examples
on applications of the nanoarchitectonics concept for production of functional materials are
introduced, together with the basic processes of nanoarchitectonics. In this introductory
section, the background and outline of the nanoarchitectonics concept are briefly described.

Production of functional materials has been traditionally pursued by various synthetic
methodologies such as organic synthesis [3–6], polymer chemistry [7–10], and materials
science [11–14]. Research developments in these synthetic processes revealed the im-
portance of regulation of nanoscale structures within the corresponding materials for
better performance and function. In parallel, analyses, observations, and manipulations of
nanoscale objects have been scientifically and technologically developed in these decades.
This progress created a new paradigm, nanotechnology [15–18], which was originated in
the proposal by Richard Feynman [19–21] and reactivated in the late 20th century. Pro-
moted understanding of nanoscale phenomena along with technological advancements
in the manipulation and fabrications of ultrasmall objects opened huge possibilities for
material fabrication with nanoscale structural information [22–24]. This scientific and tech-
nological progress also overlapped with developments in the other research fields such as
supramolecular chemistry [25–28] and bio-related sciences [29–32] that deal with molecular
organization. Based on these historical backgrounds, a novel conceptual paradigm next to
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nanotechnology was awaited to create unified methodology for production of functional
material systems from nanoscale units. At the beginning of the 21st century, Masakazu
Aono proposed a new paradigm, nanoarchitectonics, through combining nanotechnol-
ogy with the other research fields such as organic chemistry, supramolecular chemistry,
materials science, and bio-related science (Figure 1) [33,34].
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Figure 1. The nanoarchitectonics methodology to produce functional materials and functional
structures from nanoscale unit components.

The nanoarchitectonics methodology is supposed to produce functional materials and
functional structures from nanoscale unit components through the combination and selec-
tion of various processes, including organic synthesis (especially heteromolecular synthe-
sis), atom/molecular manipulation, materials synthesis, self-assembly/self-organization,
field-assisted assembly, microfabrication, and bio-related processes [35,36]. Because these
features can be applied to many kinds of materials, nanoarchitectonics strategies have
been generally used for production of functional materials [37–39] and regulation of fine
structures [40–42]. Not limited to material synthesis and fabrication, the nanoarchitec-
tonics concept has been widely applied to various application-oriented fields such as
catalysts [43–45], sensors [46–48], devices [49–51], energy-related applications [52–54],
environmental applications [55–57], bio-related functions [58–60], and biomedical applica-
tions [61–63].

Unlike simple self-assembly processes based on equilibrated events, the nanoarchitec-
tonics approaches are made by combinations and step-wise applications of various unit pro-
cesses including energy-free equilibrium processes and energy-consuming non-equilibrium
processes. Therefore, the nanoarchitectonics methods are advantageous for the fabrication
of hierarchical structures [64]. This feature of nanoarchitectonics approaches is rather simi-
lar to the organization processes in biological systems upon certain energy consumption.

Since various uncertainties and fluctuations such as thermal fluctuations, statistical
distributions, and quantum effects are not avoided among nanoscale material interactions,
multiple interactions and processes have to be harmonized in the nanoarchitectonics pro-
cesses rather than simple summation of unit processes [65]. The latter feature is similar
again to those happening in biological systems where many functions work together in
excellent harmony in a series of well-defined processes to produce complicated hierarchi-
cal structures even under non-negligible thermal fluctuations. Formation of functional
materials systems by nanoarchitectonics approaches shares common features with the
organization of biological systems.
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Based on these backgrounds, basics and application examples of the nanoarchitecton-
ics approaches are briefly explained in this review article. In the initial parts, basic-level
nanoarchitectonics is mainly presented where atom/molecular-level structure formation
and conversion from molecular units into functional materials are discussed. In the later
sections, two typical application-featured nanoarchitectonics efforts in energy-oriented
applications and bio-related applications are exemplified. The described examples cannot
cover all the aspects but they provide the main common features in the nanoarchitecton-
ics approach. Finally, future directions of the nanoarchitectonics concepts especially for
advancement of nanoscale science are briefly discussed.

2. Basic Nanoarchitectonics

2.1. Atom/Molecular-Level Nanoarchitectonics, Observation

The smallest level of nanoarchitectonics events occurs at the atom/molecular scales [66].
Molecular-scale events such as chemical reactions and molecular associations have been in-
vestigated traditionally by various spectral methods through collecting average information
of numerous molecules in solution. However, rapid developments of probe microscopies
and electron microscopes enable us to directly observe individual molecules and their
behaviour. Atom/molecular-level nanoarchitectonics can be evaluated on the basis of
direct observations.

Harano and co-authors have demonstrated various examples on observation of molec-
ular behaviours with high spatial precisions and ultrashort resolutions using their tech-
nique, single-molecule atomic-resolution real-time electron microscopic (SMART-EM)
with image recording [67,68]. For example, a single molecular level mechanical motions
with sub-angstrom and sub-millisecond precision were recorded. Real-time recordings of
nanoscale motions are realized using a fast camera with the aid of a denoising algorithm.
Nanoarchitectonics design of entrapped fullerene molecules (C60 molecules) within a car-
bon tube revealed shuttling and rotating behaviours of a single C60 molecule (Figure 2) [69].
The molecular motions are coupled with carbon nanotube vibrations and can be observed
in real-time mode with spatial resolution of 0.01 nm and standard error in time of 0.9 msec.
The observed motions exhibited non-linear and stochastic natures and were often non-
repeatable. This research revealed a molecular-level relationship between work and energy
that had not been detected previously with time-averaged measurements and microscopic
observations. In the used nanoarchitectonics motif, the carbon nanotube container and
the entrapped C60 molecules behaved together as a mechanical coupled oscillator to show
characteristics of chaotic systems. These observations would explain the infrequent and
stochastic motional behaviours of molecules attached to a carbon nanotube.

Harano and co-workers also reported a single molecular level observation of molecular
attachment to a surface of a carbon nanohorn (Figure 3) [70]. This chemical fishhook could
capture a single molecule from its solution and transfer the captured molecule into the nm-
scale view field of the electron microscope, which are essential processes in the SMART-EM
technique. As the initial stem of the chemical fishhook, an aromatic group was installed
on the surface of carbon nanohorns through the selective attachment reaction of in-situ-
generated aryl radicals from arylamines to strained parts of the graphitic surface with
negative and positive curvatures.

The other molecular moieties can be further attached through amide bond formation
and/or be assembled upon van der Waals interaction from their solution. The aryl group
was reacted perpendicular to the graphitic carbon nanohorn surface and otherwise ph-
ysisorbed on the surface. Characteristics of a biradical resonance between two bowl-like
strained pentagon moieties connected by aromatic linker were expected, but monoradical
addition was only observed on the most strained apex of the carbon nanohorn. The second
radical site may accept a hydrogen atom from the solvent used.
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Fundamentals of coordination processes can be investigated with this technique.
Atomic-level structure analyses on prenucleation clusters in syntheses of metal-organic
frameworks (MOFs) were carried out using the SMART-EM technique by Harano and
co-workers (Figure 4) [71]. As representative examples, two MOF structures (MOF-2 and
MOF-5) can be obtained from the same precursors—zinc nitrate and benzene dicarboxylic
acid—in dimethylformamide under different conditions.
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Figure 4. Two MOF structures (MOF-2 and MOF-5) obtained from the same precursors, zinc nitrate
and benzene dicarboxylic acid in dimethylformamide under different conditions.

This research revealed processes to differentiate these two MOFs formation at res-
olution level at a single prenucleation cluster. Two different types of the prenucleation
clusters were detected in the formation processes for MOF-2 and MOF-5 at 95 ◦C and
120 ◦C, respectively. Formation of a small amount of 1-nm-size cube and cube-like prenu-
cleation clusters was identified during MOF-5 synthesis processes. These prenucleation
clusters were in turn not detected in the MOF-2 formation process where linear and square
prenucleation clusters were only found. Bifurcation between MOF-2 and MOF-5 was
initiated even at the atomic structure level of prenucleation clusters. These basic structure
features are nanoarchitected into crystal-level morphologies with square MOF-2 and the
cubic MOF-5 lattices. Initiation of nanoarchitectonics process from metal ions and ligands
to macroscopic MOF materials can be visualized by forefront microscopic techniques in the
current technology.

2.2. Atom/Molecular-Level Nanoarchitectonics, Synthesis

Molecular level nanoarchitectonics are driven by non-covalent molecular associations
and/or covalent organic reactions. Some innovative molecular-level nanoarchitectonics ap-
proaches from nanocarbon-related molecular nanoarchitectonics are exemplified below. As
an example of the molecular association approach, Toyota et al. reported successful prepa-
ration of a nano-Saturn structure through supramolecular association between anthracene
macrocyclic ring and ellipsoidal C70 molecule (Figure 5) [72]. Unlike typical supramolec-
ular complex such as alkali ion trap by crown ethers, weaker CH-π interactions have
significant contributions in this ring-body supramolecular complex. Association constant
of C70 molecules to the anthracene macrocyclic ring was twice larger than that for complex
formation with C60 molecule. the central fullerene guest can float from the center of the ring
without causing serious deterioration of their binding constant. This nanoarchitectonics
motif is advantageous to form supramolecular complexes with non-spherical fullerenes.
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Several recent examples have demonstrated the contributions of skilled organic syn-
thesis approaches to nanoarchitectonics to produce nanocarbon materials. Segawa and
co-workers successfully demonstrated the synthesis of a carbon nanobelt, which is a closed
loop of fully fused edge-sharing benzene rings (Figure 6A) [73]. The carbon nanobelt was
synthesized through iterative Wittig reactions that were followed by a nickel-mediated
aryl-aryl coupling reaction. It is expected to further nanoarchitect carbon nanotube ma-
terials with well-defined structures using the carbon nanobelt molecules as seed units.
Carbon nanotube materials with uniform diameter and single chirality would be produced
upon programmed synthesis with carbon nanobelt derivatives. Sun, and co-workers also
demonstrated the synthesis of cylindrical C304H264 molecules with 40 benzene (phenine)
units bonded mutually at the 1, 3, and 5 positions as a finite phenine nanotube with peri-
odic vacancy defects (Figure 6B) [74]. Nanoarchitecting carbon nanotubes with electronic
properties modulatable by periodic vacancy defects upon fusion of the synthesized cylinder
molecules were suggested by computational approaches.
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Nanoarchitectonics from organic molecules to two-dimensional nanocarbon has been
also investigated as exemplified in a recent review article by Xu et al. [75–77]. Synthesis of
the structure-defined graphene nanoribbons was accomplished through fusion of discrete
polycyclic aromatic hydrocarbons at a solid surface. Therefore, this type of synthetic
approach is often called on-surface synthesis. Figure 7 shows one example where precursor
molecules with a dimethyltetracene core and two bromoanthryl units were fused into
structure-defined graphene nanoribbons. Precisely prepared graphene nanostructures
including graphene nanoribbons and graphene quantum dots are capable of having open
bandgaps because of their quantum confinement effect. This characteristic is much different
from zero-bandgap graphene and is attractive for semiconductor-related applications such
as optoelectronics and nanoelectronics. However, preparation of precisely structurally
controlled graphene nanostructures is difficult with conventional material processing.
Bottom-up nanoarchitectonics from molecular precursors to well-defined nanocarbon with
on surface synthesis would open many possibilities of nanocarbon technology.
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Kawai and co-workers demonstrated on-surface synthesis for regioisomeric graphene
nanoribbons through fusion of two kinds of precursor molecules (Figure 8) [78]. Three
different regioisomeric junctions were synthesized from 10,10’-dibromo-9,9’-bianthryl
and 1,3,6,8-tetrabromopyrene on a Au (111) surface. When a sufficient amount of 10,10’-
dibromo-9,9’-bianthryl relative to 1,3,6,8-tetrabromopyrene was supplied, 10,10’-dibromo-
9,9’-bianthryl molecules were reacted at bromo-substituted sites in 1,3,6,8-tetrabromopyrene
through an Ullmann-type reaction. Depending on the geometric relation between two reac-
tion sites, subsequent cyclodehydrogenation upon high-temperature annealing resulted
in graphene nanoribbon junctions with different connecting angles. Further analyses by
scanning tunnelling spectroscopy with a CO-terminated tip with the aid of density func-
tional theory (DFT) calculations revealed chemical structures and the electronic properties
of these structure-defined graphene nanoribbons. The demonstrated nanoarchitectonics
strategy would be applied to the other units to produce various carbon nanostructures.
Nakamura et al. reported the synthesis of π-extended diaza[8]circulene through a combi-
nation of in-solution and on-surface syntheses (Figure 9) [79]. The final form of π-extended
diaza[8]circulene possessing six hexagons and two pentagons cannot be obtained only with
solution-based reaction processes. The final cyclodehydrogenation step has to be done on a
Au(111) surface.
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In more advanced approaches to organic molecular nanoarchitectonics, tip-induced
reactions have been investigated. Organic syntheses are mediated through molecular
manipulations using the tip of probe microscopes that is called local probe chemistry.
In a recent example reported by Kawai et al., three-dimensional graphene nanoribbons
were first prepared by on-surface chemical reaction and tip-induced debromination with
substitution reaction were demonstrated (Figure 10) [80]. The debromination process
resulted in unstable radical species through cleaving the out-of-plane C-Br bond. The
local probe chemistry was carried out at low temperature under ultra-high vacuum, which
stabilized unstable debrominated radical species. Subsequently, a fullerene C60 molecule
attached to the tip apex of the probe was directly transferred to the reactive radical site
on graphene nanoribbon to complete substitution reactions. This example implies that
nanoscale science would play important roles even in organic chemistry, which would
enable us to synthesize target molecules through even atom-by-atom nanoarchitectonics.
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Tip-mediated manipulations can be applicable to inorganic semiconductor materials as
reported by Hasegawa and co-workers who proposed a nanoarchitectonics strategy to con-
trol the numbers of dopant atoms within solid electrolyte nanostructures (Figure 11) [81]. A
Pt tip was positioned above α-Ag2+σS nanodots as a model system with non-stoichiometry
excess dopants at a tunnelling distance. Electrochemical precipitation of Ag atoms to form
a Ag protrusion was initiated when the bias voltage was increased to 100 mV. Step heights
of protrusion growth corresponded to multiples of single atomic plane of Ag (111) and
finally reached to equilibrated height at the given bias. These stepwise precipitations of
Ag resulted in tuning of the numbers of excess dopants at an atomic level. As the results,
atom-by-atom-level tuning of electrochemical potential energy can be achieved. The pro-
posed nanoarchitectonics approach to manipulate the numbers of dopant atoms in solid
electrolyte materials upon control of applied bias leads to discrete regulation of electrical
properties of nanomaterials. Eventually, this could become a promising method to develop
nanomaterial devices with single ion/atom transfer capability.
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Figure 11. Nanoarchitectonics strategy to control the numbers of dopant atoms within solid elec-
trolyte nanostructures using a Pt tip.

Another target of atomic-level precise nanoarchitectonics would be synthesis of metal
clusters with discrete numbers of atoms. Ultimately, functional metal clusters are desirably
prepared in ultraprecise control of their size at a single atom level. In a recent review
article by Imaoka and Yamamoto [82–84], chemical approaches to synthesize atomically
precise metal clusters are discussed. Their strategies basically utilized basicity gradient
within structurally defined dendrimers to which metal ions can be coordinated. In the
case of the dendrimer template depicted in Figure 12, 12 metal ions can be complexed
at the coordination sites up to the dendrimer second layer and 28 atoms can coordinate
up to the third layer. Based on the clear differences of the basicity of coordination sites
between the second and third layers, discrete numbers of metal ions were isolated within
the dendrimer cores to give metal cluster with precisely controlled number (12 atoms). For
example, synthesis with use of phenylazomethine-based dendrimer template provided
atomically controlled Pt clusters on the basis of sufficient basicity gradient strength of the
dendrimer template.

These examples demonstrate various types of atom/molecular-level nanoarchitecton-
ics to create functional structures and materials from atomic and molecular structural unites.
In addition to chemical techniques and surface sciences, nanotechnological tools such as
tips of probe microscopies are used in advanced examples. Although organic syntheses are
recognized as well-established research fields, advanced nanoscale technique can open new
pages even in this classic science. This would be a successful nanoarchitectonics example
of field fusion between nanotechnology and traditional science.
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2.3. Nanoarchitectonics toward Materials

In order to prepare functional systems useful in many occasions, conversion from
molecular units (or nanomaterial units) to functional materials is a crucial process. In such
conversions, reflection of structural and functional features of nanounits is important to
keep the high functions in material level. These nanoarchitectonics processes from nano to
materials have potential contributions to many research fields including supramolecular
chemistry [85–88] and materials chemistry [89–92] although they were not recognized
as parts of nanoarchitectonics. However, many of them bear features of material-level
nanoarchitectonics. For preparation for nanofeature-bearing functional materials, vari-
ous assistant factors such as guiding by template structures and asymmetrical structure
formation at interfacial environments have important roles in addition to conventional
self-assembly.

For example, Kawai and co-workers successfully synthesized ultrathin Au nanowires
in aqueous systems with guiding of molecular assemblies of ascorbic acid derivatives,
and subsequent alignment of the synthesized Au nanowires with precise intervals was
demonstrated (Figure 13) [93]. Au nanowires with a diameter of ca. 1.7 nm were fabricated
through an oriented attachment growth mechanism. Ascorbic acid derivatives with octade-
cyl chains weakly attached on the Au(111) crystal face induced oriented growth of the Au
nanowire. Elongation of the nanowires was effectively facilitated in the presence of Cl−

ions to give nanowires with a length of over a few µm. Drying processes of the aqueous Au
nanowire solutions on a solid substrate resulted in parallel allays of the Au nanowires with
regular wire-by-wire intervals. Mainly narrow intervals of 2.9 nm and wide intervals of
9.1 nm were observed. The former intervals (2.9 nm) correspond to the bthickness of the in-
terdigitated bilayer of the ascorbic acid derivatives. Formation of a non-interdigitated four
layer (double bilayer) between the Au nanowires can explain the wide interval (9.1 nm).
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These examples demonstrate that simple amphiphile assemblies can guide the formation
of micro-level structures with sub-nanometer-level internal structural precision.
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narrow interval of 2.9 nm and wide interval of 9.1 nm, corresponding to interdigitated bilayer and
non-interdigitated four layer of the ascorbic acid derivatives, respectively.

A similar guiding method can be applied to other material systems. As summarized
an extensive recent review article by Akagi [94,95], chiral conjugate polymer materials with
the guide of chiral liquid crystalline templates. Helical screw directions (materials chirality)
can be selected by the chiral dopants in liquid crystals. Controlled helical structures
of conjugated polymers was led to chiroptical properties such as circularly polarized
luminescence. Furthermore, helical conjugate polymer materials can be converted into
graphitic carbons without causing structural deteriorations of the original helical structures
by iodine-doped carbonization.

Interfaces are nice playgrounds to produce various functional material properties [96].
Nanoarchitectonics at interfaces is advantageous for delicate tuning of functions [97]. For
example, Ajayaghosh and co-workers delicately nanoarchitected the surface of conven-
tional alumina materials to regenerate the bio-like wettability functions of rose petal and
lotus leaf effects (Figure 14) [98]. The former effect induces sticky water droplets through
droplets pinned on surface nanostructures, and slippery water droplets are observed with
the latter effect with droplet sitting on the top surface of the nanostructures. Intrinsically
hydrophilic aluminum surface was first modified with (E)-4,4’-(diazene-1,2-diyl)bis(4,1-
phenylene))bis(oxy)dibutanoic acid to give a water contact angle of 145◦ with high contact
angle hysteresis of ±69◦ advantageous for water sticking. Further coordination with Zn2+

ions resulted in a higher contact angle to water (165◦) and lower contact angle hysteresis
(±2◦) for water slipping. In both the cases, coating with an aromatic bis-aldehyde with
alkoxy chain substituents were required to express rose petal and lotus leaf effects. This
adduct worked as nanowaxy cuticle in naturally occurring systems. Surface nanoarchitec-
tonics with light tuning of modification and coating structures can convert conventional
alumina materials into bio-like functional surfaces.
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Liquid surfaces such as gas-liquid interfaces and liquid-liquid interfaces have sev-
eral advantages for nanoarchitectonics processes from molecular/nanomaterial level to
functional materials. Interfacial environments between two immiscible liquids would
give encountering opportunities for molecular components with different solvent affini-
ties. These situations are well suited to nanoarchitect two-dimensional metal-organic
frameworks (MOFs) [99–101] and covalent organic frameworks (COFs) [102–104]. Drastic
changes of component solubilities at liquid-liquid interfaces are used for materials nanoar-
chitectonics through liquid-liquid interfacial precipitation. For example, upon the liquid-
liquid interfacial precipitation, fullerene molecules (C60, C70 and so on) can be nanoar-
chitected into various nano and microstructures [105–107] including one-dimensional
rods/tubes/whiskers [108,109], two-dimensional sheets [110,111], three-dimensional cubes [112],
hierarchical structures such as rod-on-cube [113,114] and hole-in-cube [115], and the other
integrated structures [116–118].

2.4. Langmuir-Blodgett Nanoarchitectonics

As one of the typical thin film nanoarchitectonics methods, the Langmuir-Blodgett (LB)
technique [119–122] is basically used at the air-water interface, where molecular recognition
capabilities are drastically enhanced as compared with bulk aqueous phase [121,122], which
has been demonstrated experimentally [123–126], spectroscopically [127–130], and theo-
retically [131,132]. This nature can be used for preparation of two-dimensional molecular
patterns which have macroscopic lateral dimensions and sub-nanometer-level internal pat-
tern structures [133]. Highly anisotropic motional freedoms at the air-water interface enable
us to manipulate molecules by macroscopic motion like hand motion [134,135]. Macro-
scopic motions such as sub-meter-level compression and expansion of Langmuir monolayer
in lateral direction can be coupled with molecular-level functions within nanometer-level
thickness at the air-water interface. Regulation of molecular machines [136] by hand-
like macroscopic mechanical motions such as reversible guest capture [137,138], enantio-
selective amino acid discrimination [139], faint tuning of nucleic acid base recognition [140],
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control of fluorescence resonance energy transfer [141], molecular rotor rotation [142,143],
molecular pliers operation [144,145], molecular flapping [146], and nanocar actions [147]
have been actually demonstrated. As depicted in Figure 15, faint orientational changes of
double-paddled binuclear PtII complexes through macroscopic mechanical compression
of their monolayer at the air-water interface [148]. Molecular-level orientation change of
the binuclear PtII complexes into chromophore emergence from water through molecular
flapping from perpendicular to parallel was successfully induced accompanied with a
drastic increase of phosphorescence. This emission increase by floating-up molecules from
aqueous phase is called submarine emission.
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Figure 15. Faint orientational changes of double-paddled binuclear PtII at the air-water interface
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submarine emission.

With dynamic process at the air-water interface, molecular precursors can be con-
verted into structure-controlled nanomaterials as exemplified in Figure 16 [149]. In
this case, carbon ring molecule (9,9’,10,10’-tetrabutoxycyclo-[6]-paraphenylene-[2]-3,6-
phenanthrenylene) was selected as a molecular precursor. A molecular film of the carbon
ring molecule was first spread through dropping its chloroform solution onto a water
with a vortex rotating motion. This is called the vortex Langmuir-Blodgett (vortex LB)
method [150]. Two-dimensional uniform thin films of carbon ring molecules were formed
with the aid of vortex motion of the water phase. Analyses on the transferred film from
the water surface onto a solid substrate revealed a uniform ultrathin nature (thickness of
ca. 10 nm and width of tens of micrometers) and insulative properties. Calcination of the
transferred film at 850 ◦C for 3 h under a N2 gas flow successfully converted the assembled
film from a nanocarbon film without any structural deterioration accompanied with drastic
increase of electrical conductivity (1.98 × 103 Sm−1). Addition of pyridine during the
initial vortex LB process efficiently resulted in nitrogen-doped carbon nanosheets with
further increase of conductivity. Easy nanoarchitectonics methods from simple molecules
into nitrogen-doped carbon nanosheet would become useful for preparation of efficient
catalysts for oxygen reduction reactions in fuel cell applications.
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Figure 16. Nanoarchitectonics for preparation of carbon nanosheet from carbon ring molecule
(9,9’,10,10’-tetrabutoxy-cyclo-[6]-paraphenylene-[2]-3,6-phenanthrenylene) through vortex Langmuir-
Blodgett (vortex LB) method and calcination at 850 ◦C under N2 gas flow.

In nanoarchitectonics processes from molecules to materials, regulation of molecular
orientations within the nanoarchitected materials becomes key one of the important key fac-
tor for functions. As described in a recent review article by Kido and co-workers [151–153],
molecular orientation is an indispensable factor to achieve high performances in organic
light-emitting devices. They even expect that molecular engineering to nanoarchitect
horizontal molecular orientation would open a golden era of vibrant research for organic
light-emitting devices. Therefore, nanoarchitectonics methods to achieve well-controlled
molecular orientation in materials such as ultrathin films become crucially important.
Some established techniques such as the LB method [154,155] and layer-by-layer (LbL)
assembly [156–158] have been applied to this task. However, fabrication of functional
molecules and polymers into well-organized high quality thin films is not always easy,
unlike conventional assembly of lipid molecules. Functional molecules with conjugated
aromatic cores tend to form undesirable aggregates even in these conventional fabrication
processes for ultrathin films.

Very recently, Ito et al. have demonstrated a breakthrough method, the 100 ◦C-
Langmuir-Blodgett (100-LB) method, to fabricate highly oriented uniform ultrathin films of
polymeric semiconductors (Figure 17) [159]. In common sense of science and technology, a
conventional LB method is conducted at around room temperature. Because of unavoidable
disturbances by vapours of water as a subphase liquid, LB processes above 40 ◦C are usually
unfavourable. This limitation of operational temperature ranges is not advantageous to
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suppress undesirable aggregations of aromatic conjugate molecules. Ito et al. used ethylene
glycol as a solvent for the subphase instead of water. The liquid range of ethylene glycol
(−12.9 to 197.3 ◦C) led to a wide operational temperature for the LB technique where
relatively low vapor pressures and high surface tensions can be maintained. Actually,
LB film preparation was demonstrated up to 100 ◦C using a polymeric semiconductor
molecule, poly[2,5-bis(3-tetradecylthiophen-2-yl)thieno(3,2-b)-thiophene] (PBTTT), which
is known as a highly aggregative polymers with low solubility.
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ented uniform ultrathin films with edge-on orientation of polymeric semiconductors, poly[2,5-bis(3-
tetradecylthiophen-2-yl)thieno(3,2-b)-thiophene] (PBTTT), on ethylene glycol as a solvent for subphase.

Thin films of this polymeric semiconductors were prepared through Langmuir-Schaefer-
type transfer of surface films that were compressed after spreading at various temperatures
up to 100 ◦C. LB films with defined thickness with high homogeneity over millimeter scales
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were obtained. Observation of the film surface morphology by laser confocal microscopy
verified this high film homogeneity. High contrast in polarized optical microscopy im-
ages with different polarization angle implied significant orientation of the film where
the main chains of polymeric semiconductor was highly oriented at least in a length scale
of several hundred micrometer. Further analyses of the LB films with grazing incidence
X-ray diffractions and grazing incidence wide-angle X-ray scattering revealed uniaxially
aligned highly crystalline nature with edge-on lamellar orientation that is desirable for
facilitated charge transport. The degree of crystallinity and alignment the LB films of the
polymeric semiconductor tended to be enhanced with the increase of process temperature.
The mobilities along the direction parallel to main polymer chains for the LB films pre-
pared at 80 ◦C were obtained as high as 0.54 cm2V−1s−1. The obtained values are much
higher than those observed for conventional thin films and that for room-temperature
prepared LB film (0.17 cm2V−1s−1). The mobility parallel to main chains of the polymeric
semiconductor in LB films prepared at 80 ◦C was eight times higher than that measured
for the perpendicular direction to the main chains in the same LB film. These facts clearly
proves the excellent performances of the polymeric semiconductor films based on higher
degree of crystallinity and unidirectional properties through nanoarchitectonics of the high
temperature LB technique.

As mentioned above, nanoarchitectonics from molecules to materials can produce
various possibilities of functional materials with inside nano-organized structure. In-
terfacial processes that often play important roles in the fabrication of materials with
nanostructure-based functions [160,161].

3. Advanced Nanoarchitectonics Applications

Fabrication of fine structures is important for the production of functional materials
with high efficiency and high specificity. Nanoarchitectonics approaches to fabricate func-
tional materials from nanoscale units are promising strategies. Even though the term of
nanoarchitectonics is not directly mentioned, features and essences of the nanoarchitec-
tonics are widely included in many examples to produce functional material systems. In
the following sessions, several examples of functional material systems fabricated with
essences of nanoarchitectonics concept are introduced mainly for two major practical fields,
energy-oriented applications and bio-related applications.

3.1. Energy-Oriented Applications

Energy-related applications to produce energy and manage energy are undoubt-
edly socially important issues in current science and technology [162–164] as well as
environmental problems [165–167] accompanied with sensing [168–170] and remediation
technologies [171–173]. Electrochemical and electrical charge storages and energy con-
versions with various catalysts including chemical catalysts [174–176], electrochemical
catalysts [177–179], and photocatalysts [180–182] have important roles in the correspond-
ing functions. In the most of approaches for these research targets, structural constructions
with nanoscale components (nanoarchitectonics) are actually investigated to get better
performances [183,184].

For example, Yamauchi and co-workers proposed a nanoarchitectonics approach to
fabricate hollow nanobubbles with monocrystalline shells of MOFs and their carbonized
materials by combined processes of MOF coordination self-assembly, site-selective etch-
ing, and calcination (Figure 18) [185]. The mother MOF structure, zeolitic imidazolate
framework (ZIF-8), was first synthesized and further etched into nanobubble structures.
During the etching process, protons for etching diffused into central core region of ZIF-8
through pores and nanochannels, resulting in selective core-etching with nanoscale struc-
tural precision. The outer region on ZIF-8 remained intact to give monocrystalline shell
framework structures. The nanoarchitected materials possessed a uniform size of less
than 100 nm and 10-nm-thick monocrystalline shells. The hollow ZIF-8 nanobubbles were
further converted into nanoporous carbon nanobubbles through pyrolysis without causing
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any structural deteriorations. The fabricated structures exhibited enhanced performance
of fast Na+/K+ ion intercalation as capacitor-type intercalation behaviours. Because con-
ventional MOFs and related carbon materials cannot show similar superior performances,
the proposed nanobubble nanoarchitectonics opens a new avenue of nanoshell-dependent
electrochemistry for superior battery performance.
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and calcination.

In fields in micro-electromechanical systems (MEMS), portable micro-supercapacitors
would have high usability because of their cyclability and high power density. The nanoar-
chitected nanocarbon materials are further integrated into flexible micro-supercapacitors as
recently reported by Henzie and co-workers (Figure 19) [186]. In their approach, nanocar-
bon materials prepared from ZIF-8 particles were immobilized through a simple elec-
trophoresis process onto the corresponding electrodes. The ZIF-8 particles were first
carbonized into nanocarbon materials under a nitrogen atmosphere at 800 ◦C. The ob-
tained nanocarbon materials were then dispersed in water with Mg(NO3)2. Supercapacitor
electrodes were prepared through an electrophoresis process in the nanocarbon-including
aqueous suspension. Integrated electrode structures can be simply fabricated by this elec-
trophoresis method. The prepared flexible micro-supercapacitors would be promising
candidates for miniaturized flexible power supply systems in future applications.
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electrophoresis method nanocarbon materials prepared from ZIF-8 particles.

For fabrication of hierarchic structures for electrocatalysts in energy-oriented appli-
cation, Azzaroni and co-workers reported a nanoarchitectonics approach on the basis of
LbL assembly of conductive polymers and MOF complexes (Figure 20) [187]. For one of
the key processes in energy converting electrochemical applications, materials to exhibit
better oxygen reduction reaction have been actively explored. In their nanoarchitecton-
ics approach, colloidal polymer suspensions of polyaniline/polystyrene sulfonate and
MOF (ZIF-8) coated with polyallylamine hydrochloride were first prepared, and then
they were alternately assembled into hierarchical layered structures. With the prepared
nanoarchitectonics structures, catalytic performances for oxygen reduction reaction were
enhanced through synergic effects of electrocatalytic properties of the conducting polymer
and O2-absorbing MOF structures. Hierarchic construction of two different components
with their own roles leads to better performances upon synergic functional coupling.
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The abovementioned examples are only part of the huge number of approaches in the
corresponding energy-orientated applications. However, these examples well elucidate nec-
essary common features in these applications. Energy conversion functions requires several
functional relays and the individual functional units have to be structurally well integrated.
Therefore, better functional units have to be constructed into better structures for better
energy performances. As shown above, nanoarchitectonics processes from nano-units to
materials systems can satisfy these demands. The nanoarchitectonics strategies would play
important roles in energy-related applications although this concept has been utilized in
throughout of the corresponding research histories without being paid much attention.

3.2. Bio-Related Applications

Bio-related research results are undoubtedly important for social life activities in-
cluding environmental monitoring [188,189], sensing [190,191], bio-remediations [192,193],
drug delivery [194,195], therapies [196,197], and the other biomedical applications [198,199].
In addition, biomaterials such as amino acids, peptides, proteins, oligosaccharides, and
nucleic acids are regarded as powerful components to form self-assembled structures in
supramolecular chemistry and materials science [200–202]. Indeed, the hierarchical con-
structions of biological systems can be regarded as naturally occurring nanoarchitectonics
systems where hierarchical assemblies of biomolecules result in incredibly high functional
organizations such as living cells. Based on similarities between biological organizations
and nanoarchitectonics-based structure-formations, bio-related applications would be the
most important targets of nanoarchitectonics approaches.

Various bio-molecules have been used as components of nanoarchitectonics-based
structural organizations. As summarized in a recent review article by Liang and co-
workers [203], DNA and RNA can work as programmable nanoarchitectonics components
to form advanced supramolecular structures such as interlocked structures and molec-
ular machines (Figure 21). As interlocked nanoarchitectures, catenanes, rotaxanes, and
their connectors can be constructed through specific complementary base-pairing of pro-
grammed DNA and RNA. Further nanoarchitectonics processes of these parts lead to
formation of machine-like structures with dynamic functions including molecular walkers,
molecular transporters, molecular shuttles, nanorobots, nanopumps, molecular amplifiers,
and molecular logic gates. Fundamental designs of DNA and RNA are based on linkages
of (deoxy)ribose, and phosphate, and, nucleobases. The former two units are common
within any DNA or RNA structures, and only sequential differences of four kinds of nu-
cleobases (adenine, guanine, cytosine, and thymine (or uracil)) decides their structures
and roles. It is amazing fact that such a simple design concept can create a huge variety of
molecular machines. As seen in these examples, biomolecules probably have optimized
structure designs for molecular organization through billions of years of natural evolution.
Biomolecules are highly useful for molecule-to-material nanoarchitectonics [204,205].

Exploration of artificial molecules that specifically interact with DNA would lead to
various bio-related functions. For example, N-methylpyrrole (P) and N-methylimidazole (I)
polyamides can be designed to act as sequence-specific DNA-binding ligands as described
in a recent review article by Bando and Sugiyama [206]. The synthesized PI polyamides can
bind to minor groove of double-stranded DNA and would have functions to regulate the
specific gene expression or to visualize specific DNA sequences in living cells. One example
of binding motif of PI polyamides to DNA is shown in Figure 22. The PI polyamides adopts
bending hairpin structures through an aminobutyric acid spacer and binds to the minor
groove of DNA upon hydrogen bond formation to specific nucleobases. Artificial gene
switches can be nanoarchitected using the PI polyamide motifs for controlling expression
of specific genes and further for binding better treatments for certain kinds of diseases. PI
conjugate molecules capable of binding to target gene sequences are also developed as
DNA imaging reagent. These molecular nanoarchitectonics with DNA binding capability
would lead to development of specific gene-targeting drugs.
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Roy and Govindaraju reported regulation of supramolecular assembly of arylenedi-
imide derivatives with amino acid side groups [207]. Amino acid molecules have basic
capability of forming hydrogen bonding, and their assembled motifs can be a widely
modulated depending on side chain structures. As exemplified in Figure 23, assem-
bling structures of naphthalenediimides conjugated with amino acid residues shifted with
changes of α-substituents. Not limited to morphological controls in zero-, one-, two-, and
three-dimensional structures, optical properties were also modulated through interaction
of aromatic groups. Exciplex was preferentially formed in assembly of naphthalenedi-
imides with phenyl substituents. Assembly of naphthalenediimides with isoleucine led to
formation of excimers with specific zero-dimensional particles. Tyrosine and tryptophan
substituents induced formation of charge transfer complex. Assembly-based nanoarchi-
tectonics structures can be delicately modulated only with changes of tiny molecular
structures. These molecular-based approaches are also called molecular architectonics.
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Yan and co-workers are developing peptide-based nanoarchitectonics for bio-related
applications [208]. Even and short peptides form various assembled structures, and these
peptides also co-assemble with the other components. Therefore, variously shaped assem-
bled materials with various components can be nanaoarchitected using short peptides. The
obtained materials are utilized in may applications including phototherapy, biomimetic
photosystems, and oriented microtubes for optical waveguiding. For example, they nanoar-
chitected photothermal nanodots from peptide-porphyrin conjugates for photothermal
antitumor therapy (Figure 24) [209]. In the assembled nanodots, emission of fluorescence
and production of singlet oxygen were efficiently suppressed upon strong π-stacking for
highly efficient light-to-heat conversion process. The nanodots of the peptide-porphyrin
conjugates are highly biocompatible and are capable of efficient tumour ablation. Flexibility,
versatility, and adaptability of the peptide nanoarchitectonics approach can be extended to
various systems toward versatile clinical translation.
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antitumor therapy.

Yan and co-workers include coordination-driven self-assembly of amino acids for
tumour accumulation of curcumin with sufficient biological stability [210]. In this case,
curcumin-including nanoagents were formed through self-assembly of amino acid deriva-
tive (9-fluorenylmethyloxycarbonyl-l-histidine) with the aid of coordination with Zn2+. The
nanoarchitected nanoagents are capable of protecting curcumin from attack by hydroxide
ions upon molecular stacking and metal coordination. The sizes of the curcumin-including
nanoagents were kinetically thermodynamically controlled upon appropriate combinations
of coordination and the other noncovalent interactions, which optimized antitumor ther-
apy effects. In tumour-like environments, high loading capabilities of the drug and their
responsible release properties were confirmed in addition to the enhanced stability. These
features are advantageous for antitumor therapy. Because many antitumor drugs often
bear metal-binding sites, this strategy can be applied to many targets. Nanoarchitectonics
approaches to coordination-assisted self-assembly of biomolecules would be useful for
antitumor therapy.

They also applied this strategy to preparation of antimicrobial biometallohydrogels by
coordination with Ag ions [211]. Hydrogel nanofibers were prepared with Fmoc-protected
amino acids such as alanine, histidine, leucine, and proline (Fmoc: 9-fluorenylmethyloxyca-
rbonyl group). Based on coordination capability of the prepared hydrogel materials,
Ag+ was immobilized, which was further converted into Ag nanoparticles upon local
and mild mineralization (Figure 25). The finally nanoarchitected biometallohydrogels
have several advantages in bio-related applications including sustained release, localized
delivery, prolonging drug effect, and reduced drug dosage. At contact events of the
biometallohydrogels with cells, Ag+ and Ag nanoparticles can directly interact with the
cell surfaces of bacteria. Morphological changes of the cell walls were then induced
accompanied with alteration of the permeability of the cell membrane. Detachment of
the plasma membrane and subsequent leakage of the cytoplasm occurred, resulting in
cell death. Antibacterial effects were significantly triggered for Gram-negative and Gram-
positive (Escherichia coli and Staphylococcus aureus, respectively) bacteria in living cells
and mice. As shown in this example again, coordinated self-assembly with amino acids,
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short peptides, nucleic acids, and metal ions is capable of nanoarchitecting biocompatible
materials for various bio-related applications.
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Mihara and co-workers utilized well-designed oligopeptides for various biomedical
applications [212]. The designed peptide (Ac-EYEYKYEYKY-NH2: E, glutamic acid; Y,
tyrosine; K, lysine) formed networked nanofibers and hydrogel in the presence of Ca2+

(Figure 26). The designed sequence of alternate hydrophobic and hydrophilic residues
is advantageous to form hydrophobic and hydrophilic sides within nanofibers with a
β-sheet conformation. This amphiphilic nature of the basic assembling structure also assist
further assembly to hierarchical structures. Glutamic acid at the N-terminal of the peptide
sequence had a crucial role in responses to Ca2+. These nanoarchitected structures can
work as mimics of natural extracellular matrices for drug delivery, cell culture, and tissue
engineering applications. The formed hydrogels provided cell-compatible environment
for cell adhesion, growth, and differentiation with freedoms of shape-forming. High
drug-loading capability and shape-shifting nature of the hydrogel leads to fabrication
of injectable materials for therapies of local delivery. In addition, construction of three-
dimensional tissue and organ mimics would become possible with these features.

As seen in naturally occurring systems, the ultimate peptide nanoarchitectonics goal
would be the construction of protein-like and enzyme-like structures with functions. Materi-
als conversion by enzymes is one of the sophisticated functional bio-actions with incredibly
high specificity and efficiency working under ambient mild conditions [213,214]. Therefore,
research efforts to develop artificial enzymes using supramolecular structures [215,216] and
nanomaterials [217,218] have been continuously made. Instead of using non-biomaterials,
modification of bio-originated materials based on their advanced intrinsic structures is
also promising method to fabricate artificial enzymes. Tanaka and Vong summarized
their approaches to nanoarchitect artificial metalloenzymes on the basis of glycosylation
of proteins [219]. As depicted in Figure 27, introduction of glycan-dependent targeting
modules and metallic biocatalytic sites to the original protein body produces glycosylated
artificial metalloenzymes. This kind of nanoarchitectonics strategy on naturally occurring
biomolecules is a promising way to construct highly functional systems.



Molecules 2021, 26, 1621 25 of 35Molecules 2021, 26, x FOR PEER REVIEW 27 of 37 
 

 

 
Figure 26. Formation of networked nanofibers and hydrogel with designed peptide (Ac-EYEY-
KYEYKY-NH2: E, glutamic acid; Y, tyrosine; K, lysine) with the aid of Ca2+. 

As seen in naturally occurring systems, the ultimate peptide nanoarchitectonics goal 
would be the construction of protein-like and enzyme-like structures with functions. Ma-
terials conversion by enzymes is one of the sophisticated functional bio-actions with in-
credibly high specificity and efficiency working under ambient mild conditions [213,214]. 
Therefore, research efforts to develop artificial enzymes using supramolecular structures 
[215,216] and nanomaterials [217,218] have been continuously made. Instead of using non-
biomaterials, modification of bio-originated materials based on their advanced intrinsic 
structures is also promising method to fabricate artificial enzymes. Tanaka and Vong sum-
marized their approaches to nanoarchitect artificial metalloenzymes on the basis of glyco-
sylation of proteins [219]. As depicted in Figure 27, introduction of glycan-dependent tar-
geting modules and metallic biocatalytic sites to the original protein body produces gly-
cosylated artificial metalloenzymes. This kind of nanoarchitectonics strategy on naturally 
occurring biomolecules is a promising way to construct highly functional systems. 

Figure 26. Formation of networked nanofibers and hydrogel with designed peptide (Ac-
EYEYKYEYKY-NH2: E, glutamic acid; Y, tyrosine; K, lysine) with the aid of Ca2+.

Molecules 2021, 26, x FOR PEER REVIEW 28 of 37 
 

 

 
Figure 27. Nanoarchitectonics of artificial metalloenzyme on the basis of glycosylation of proteins. 

The section above describes several examples of bio-related applications based on 
nanoarchitectonics approaches. Of course, these applications are only a limited selection 
from the huge variety of bio-related applications. However, essential features of bio-re-
lated nanoarchitectonics are included. Because biological functional systems are orga-
nized through self-assembly of molecular nano-units, bio-molecules and their mimic mol-
ecules must be good components for nanoarchitectonics from molecules to functional ma-
terial systems. Bio-related applications would be promising and powerful targets for 
nanoarchitectonics research [220–223]. 

4. Perspectives 
In this review article, the basics and some application examples of the nanoarchitec-

tonics approaches are briefly explained. Some examples on atom/molecular-level nanoar-
chitectonics to create functional materials and related structures from atomic and molec-
ular unites reveal the indispensable contributions of surface science and nanotechnology 
to organic chemistry. Although organic syntheses are thought to be well-established re-
search fields, advanced nanoarchitectonics protocols can open new pages even in this clas-
sic science field. For further assembly of molecular units into materials, media for nano-
architectonics become important. Interfacial environments are beneficial for fabrication of 
materials with nanostructure-based functions where molecular unit can be assembled an-
isotropically with certain orientations. Advanced applications such as energy conversion 
and antitumor therapies often require functional relays of individual components. Nano-
architectonics fabrication of asymmetric and hierarchic organization with functional com-
ponents is indispensable for material functions with better performances. Upon strong 
social demands, huge research efforts for social demands for energy [224–226], environ-
ment [227,228], and biomedical [229,230] issues are continuously made with promising 
results. Introduction of nanoarchitectonics into materials design and synthesis for these 
important demands would lead to further improvement and innovation of functional sys-
tems. 

Figure 27. Nanoarchitectonics of artificial metalloenzyme on the basis of glycosylation of proteins.



Molecules 2021, 26, 1621 26 of 35

The section above describes several examples of bio-related applications based on
nanoarchitectonics approaches. Of course, these applications are only a limited selec-
tion from the huge variety of bio-related applications. However, essential features of
bio-related nanoarchitectonics are included. Because biological functional systems are
organized through self-assembly of molecular nano-units, bio-molecules and their mimic
molecules must be good components for nanoarchitectonics from molecules to functional
material systems. Bio-related applications would be promising and powerful targets for
nanoarchitectonics research [220–223].

4. Perspectives

In this review article, the basics and some application examples of the nanoarchitec-
tonics approaches are briefly explained. Some examples on atom/molecular-level nanoar-
chitectonics to create functional materials and related structures from atomic and molecular
unites reveal the indispensable contributions of surface science and nanotechnology to
organic chemistry. Although organic syntheses are thought to be well-established research
fields, advanced nanoarchitectonics protocols can open new pages even in this classic sci-
ence field. For further assembly of molecular units into materials, media for nanoarchitec-
tonics become important. Interfacial environments are beneficial for fabrication of materials
with nanostructure-based functions where molecular unit can be assembled anisotropically
with certain orientations. Advanced applications such as energy conversion and antitumor
therapies often require functional relays of individual components. Nanoarchitectonics
fabrication of asymmetric and hierarchic organization with functional components is indis-
pensable for material functions with better performances. Upon strong social demands,
huge research efforts for social demands for energy [224–226], environment [227,228], and
biomedical [229,230] issues are continuously made with promising results. Introduction
of nanoarchitectonics into materials design and synthesis for these important demands
would lead to further improvement and innovation of functional systems.

Despite various examples on nanoarchitectonics approaches in the preparation of
functional materials systems at different scale regions, total constructions from simple
molecules (or atoms) into complicated material organizations with sophisticated functions
have not been accomplished well, even with nanoarchitectonics approaches. As compared
with simple equilibrium self-assembly, the nanoarchitectonics strategies are supposed to
be much more capable of organizing complicated functional structures with sufficient
asymmetry and hierarchy. Hierarchical structural features from molecules to total materials
systems are commonly observed in biological functional systems such as energy and signal
conversion systems. Therefore, currently existing functional biosystems would be nice
masterpiece specimens for successful nanoarchitectonics [231,232]. The nanoarchitectonics
approaches have strong bio-similar features, and constructions of bio-like high functional
systems would be one of the ultimate goals [233,234]. Sophisticated functions and structures
in biological systems are the result of evolutionary processes over billions of years, but
nanoarchitectonics have to be complete their task within a few decades [235]. Newly
developed technologies such as machine learning and artificial intelligence [236–239]
could assist the rapid evolution of molecular and materials nanoarchitectonics approaches.
In addition, analytical sciences including advanced sensors could contribute to these
research flows [240,241]. Especially, developments of novel analytical methods allow one
to visualize the actual process and identify the products but so far their practical application
for obtaining larger quantities of product still has to be elaborated.
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