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This study characterizes the phylogenetic relatedness of non-SARS human coronaviruses

(HCoVs) in southern Taiwan by sequencing the nucleocapsid (N), spike (S), and RNA-

dependent RNA polymerase (RdRp) genes directly from ten HCoV PCR-positive respira-

tory samples collected during 2012e2013. In the N, S1, and RdRp phylogeny, HCoV-OC43 in

one and three samples was clustered with genotypes F and G, respectively, and HCoV-OC43

in sample YC101/TWN/2013 represented a recombination event between genotypes F and

G. Amino acid substitutions in the S1 protein of HCoV-OC43 were also identified. In the N

phylogeny, HCoV-HKU1 in one and two samples clustered with genotypes A and B,

respectively, and HCoV-229E in two samples was clustered with genogroup 6. The geno-

types and genogroup detected here were in line with the prevalent phylogenetic lineages

reported outside of Taiwan during the contemporary period. In summary, three species of

non-SARS HCoVs with different genotypes cocirculated in the community, with genetic

evolution observed in HCoV-OC43.
Coronaviruses (CoVs) are enveloped positive-strand RNA vi-

ruses implicated in human and animal diseases. There are

currently seven known human coronavirus (HCoV) species:

HCoV-229E,-HKU1, -NL63, -OC43, severe acute respiratory

syndrome CoV (SARS-CoV), Middle East respiratory syndrome

CoV (MERS-CoV), and the novel SARS-CoV-2, which causes

coronavirus disease 2019 (COVID-19) [1]. The four former

species are associated with upper and occasionally lower
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respiratory tract infections (RTIs), whereas the latter three are

associated with more severe forms of RTIs [1]. HCoVs are

characterized by continuous evolution through homologous

RNA recombination and frequent nucleotide substitution,

which result in the emergence of novel variants [2].

With the recent introduction of molecular diagnostic

methods in Taiwan, the prevalence of non-SARS HCoVs in

respiratory tract infections has been better delineated, with a
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At a glance of commentary

Scientific background on the subject

The phylogenetic characteristics of non-SARS HCoVs in

Taiwan remain undescribed.

What this study adds to the field

HCoV-OC43, HCoV-HKU1, and HCoV-229E co-circulated

in a city during the 2012-2013 influenza season, and their

genotypes or genogroup were in line with the prevalent

phylogenetic lineages reported outside of Taiwan during

the contemporary period. Genetic recombination and

amino acid substitution could also be observed in HCoV-

OC43.
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reported rate of 3.6% in adults and 7.4% in children [3,4]. In

addition, our prior work examining nasopharyngeal or throat

swabs from 267 adults with RTIs attending outpatient and

emergency departments in a medical center and a regional

hospital in southern Taiwan between October 2012 and June

2013 revealed HCoVs in 13 (4.9%) patients, which included

HCoV-OC43, -HKU1, and -229E in seven, four, and two pa-

tients, respectively, by using PCR/electrospray ionization

mass spectrometry (PCR-ESI/MS) [5].

Despite an increase in the molecular detection of non-

SARS HCoVs in Taiwan, the phylogenetic characteristics of

local non-SARS HCoV strains remain undescribed because

isolation of non-SARS HCoVs in cell culture or sequencing

viral nucleic acids directly from clinical specimens are not

routinely performed for diagnostic purposes at hospital's
virology laboratories. Therefore, this study aimed to investi-

gate the phylogenetic relatedness of non-SARS HCoVs in

Taiwan by comparing Taiwanese and non-Taiwanese HCoVs.
Materials and methods

The nucleocapsid (N), spike (S), and RNA-dependent RNA po-

lymerase (RdRp) genes of HCoVs in the abovementioned 13
Fig. 1 Phylogenetic analysis based on the nucleocapsid, S1 domain

of human coronavirus OC43 from Taiwanese patients enrolled in

sequences retrieved from GenBank (accession number) and litera

from sample numbers YC101/TWN/2013, YC029/TWN/2013, YC02

respectively.

Please cite this article as: Wang H-C et al., Phylogenetic characte
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HCoV-positive respiratory samples detected by PCR-ESI/MS

(PLEX-ID ®, Abbott Laboratories, Illinois, U.S.) in our earlier

study were amplified and sequenced by using previously

described PCR primers and conditions for HCoV-OC43, -HKU1,

and -229E, respectively [6e8]. The corresponding positions

and lengths of the N, S, and RdRp genes used for analysis are

provided in Table S1.

The phylogenetic trees based on the N, S, and RdRp genes

of HCoVs from this study and representative sequences

retrieved from GenBank and literatures were constructed

using neighbor-joining method and Kimura's two-parameter

model in MEGA X (http://www.megasoftware.net/) and eval-

uated with 1000 bootstrap pseudoreplicates [2,7,9e13]. The

assignment of genotypes or genogroups followed those

described in earlier studies [2,7,9e13]. Profiles of amino acid

substitutions in the S1 domain of the S protein of HCoV-OC43

were also analyzed.

The study was approved by the Institutional Review Board

(B-ER-101-031) of the study hospital with informed consent

from all patients.
Results

The N, S, or RdRp sequences could be obtained from ten (77%)

out of 13 HCoV PCR-positive respiratory samples and were

submitted to the DDBJ/EMBL/GenBank databases under the

accession numbers LC543620 to LC543641 (Table S2). All ten

patients presented with upper RTIs and did not travel abroad,

except one patient who tested positive for HCoV-229E (sample

ID221/TWN/2013) developed upper RTI one day after returning

to Taiwan from Macau, suggesting an imported case.

The N, S (S1 receptor binding domain), and RdRp genes

were successfully amplified and sequenced in five of seven

HCoV-OC43-positive samples. HCoV-OC43 in four samples

had congruent positions in the phylogenetic trees of the N, S,

and RdRp genes: sample YC031/TWN/2013 belonged to geno-

type F and samples YC006/TWN/2013, YC021/TWN/2013, and

YC029/TWN/2013 belonged to genotype G [Fig. 1]. However, for
of spike, and RNA-dependent RNA polymerase (RdRp) genes

this study (marked with symbols) and representative

tures [2,9e12]. Symbols , , , , and referred to sequences

1/TWN/2013, YC006/TWN/2013, and YC031/TWN/2013,
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Fig. 2 Phylogenetic analysis based on the nucleocapsid and S2 domain of spike genes of (A) human coronavirus HKU1 and (B)

human coronavirus 229E from Taiwanese patients enrolled in this study (marked with symbols) and representative sequences

retrieved from GenBank (accession number) and literatures [7,12,13]. Symbols , , and in (A) referred to HCoV-HKU1

sequences from samples YC049/TWN/2013, YC008/TWN/2013, and ID193/TWN/2013, respectively; symbols and in (B)

referred to HCoV-229E sequences from samples ID221/TWN/2013 and ER207/TWN/2013, respectively.
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HCoV-OC43 in sample YC101/TWN/2013, the S and RdRp

genes were clustered with genotype F, whereas the N gene

was clustered with genotype G, implying a recombination

event between genotypes F and G.

Through alignment to S1 (678 nucleotides assessed) of the

reference genotype D strain HK04-02, six and five shared

amino acid substitutions were identified in genotype F (T25P,

R26k, K90L, L152S, Y176H, K184N) and genotype G (P22T, T25P,

K90L, L152S, and K184N), respectively (Table S3). Of two

samples with S1 domain designated as genotype F, YC101/

TWN/2013 shared similar substitutions in S1 with a Malaysian

strain MY-U868-2012, though the former had an additional

P38L substitution, and YC031/TWN/2013 shared identical

substitutions with a French strain MDS6 [2,10]. Of samples

designated as genotype G, additional substitution P38S in

YC006/TWN/2013 and Y72F in YC029/TWN/2013 were

identified.

The N and S (S2 membrane fusion domain) genes

were successfully sequenced in three and one out of four

HCoV-HKU1-positive samples, respectively. Phylogenetic

analysis of the N gene revealed that HCoV-HKU1 in samples

YC008/TWN/2013 and YC049/TWN/2013 were clustered with

genotype B, and phylogenetic analysis of both the N and S
Please cite this article as: Wang H-C et al., Phylogenetic characte
2012e2013, Biomedical Journal, https://doi.org/10.1016/j.bj.2022.08.00
genes showed that HCoV in sample ID193/TWN/2013 was

clustered with genotype A [Fig. 2A].

The N and S (S2 membrane fusion domain) genes were

successfully sequenced in two and one out of two HCoV-229E-

positive samples, respectively. Phylogenetic analysis of the N

gene revealed that HCoV-229E in samples ER207/TWN/2013

and ID221/TWN/2013 were clustered with genogroup 6, and

the former had a congruent position in the phylogenetic tree

of the S2 gene (genogroup 6) [Fig. 2B].

Summary of sequence identities of N, S and RdRP within

(intra-) and among (inter-) genotypes or genogroups of three

HCoV species is presented in Table S4, in which all the se-

quences shown in Figs. 1 and 2 were included for analysis. Of

HCoV-OC43, S1 domain had the highest genetic diversity

(92.0%e100%), whereas RdRp remained highly conserved

(99.4%e100%), followed by N (97.1%e100%).
Discussion

HCoV-OC43 was the major HCoV species detected in respira-

tory tract infections in our previous study in 2012e2013, which

was in line with observations elsewhere [14,15]. To date,
ristics of Non-SARS human coronavirus in southern Taiwan,
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eleven genotypes (A to K) have been identified [2,9]. Genotypes

A and B emerged around the 1950s and 1990s, respectively,

while genotypes C, D and E were detected around the 2000s

with the latter two originating from natural recombination

[2,6,14]. Genotypes F and G were first described in a molecular

surveillance study during 2012e2013 in Malaysia, in which

analysis inferred that genotypes F and G might probably

diverged concurrently around the late 2000s to early 2010s

from a genotype D-like common ancestor through natural

recombination and have co-circulated in China, Japan,

Thailand, and Europe [2]. The presence of genotypes F and G in

Taiwan in 2012e2013 is consistent with the Malaysian report.

Our study also revealed a recombination event occurred be-

tween genotypes F and G, which has not been reported yet.

Later, novel genotypes H (from recombination between ge-

notypes B, D-like and E strains), I (no recombination event

observed), J (from recombination between genotypes H and I),

and K (derived from genotype I) were sequentially recovered

after 2014 in China [9,16,17].

Besides recombination, this study also identified non-

synonymous (amino acid) substitutions in the S1 protein of

HCoV-OC43 and revealed a greater genetic diversity in S1 than

in N and RdRp in HCoV-OC43. S1 protein is a major antigenic

surface protein exposed to human humoral immunity.

Whether and how substitutions in S1 identified here affect

viral transmissibility or pathogenicity warrants further

investigation. However, studies demonstrated that in HCoV-

OC43, S1 accumulated adaptive substitutions faster than S2

and RdRp [18]. Such antigenic evolution (or antigenic drift) of

S1 plays an important role in response to continuous selective

pressure exerted by host immunity and genotype persistence

in human populations [18]. On the contrary, RdRp exhibits a

lower rate of nonsynonymous substitutions and hence re-

mains highly conserved over time given its essential role in

viral replication and lack of antibody exposure [18]. Taken

together, these observations underline the importance of

recombination and nucleotide substitution in driving the

evolution of HCoV-OC43 and the need of continuous molec-

ular surveillance to monitor emergent variants.

HCoV-HKU1 has evolved into three distinctive genotypes

(A to C) with genotype A dated to late 1990 and both genotypes

B and C traced back to the early 2000s [15]. HCoV-HKU1

detected in Malaysian patients in 2012e2013 belonged to ge-

notype A (27.3%) or B (72.7%), while HCoV-HKU1 strains

detected in Thai patients all belonged to genotype B [15,19].

Later, HCoV-HKU1 strains detected among children in South

China and Hong Kong belonged to either genotype A (46.7%) or

genotype B (53.3%) in 2014e2015 [20]. The HCoV-HKU1 geno-

types identified herein (A and B) were consistent with the

prevalent genotypes reported in nearby countries during the

contemporary period.

To date, six distinct HCoV-229E genogroups have been

revealed based on the phylogeny of S gene, with the former

five genogroups 1, 2, 3, 4, and 5 comprising strains detected

from 1979e1982, 1982e1984, 1989e1995, 2001e2005, and

2005e2011, respectively [13]. The latest group, genogroup 6,

was first described by Lau et al., in 2011 and comprised strains

detected in 2011e2020, including those from China (2011),

Germany (2015), Haiti (2016), the United States (2015e2019),

and patients with upper or lower RTIs in Hong Kong
Please cite this article as: Wang H-C et al., Phylogenetic characte
2012e2013, Biomedical Journal, https://doi.org/10.1016/j.bj.2022.08.00
(2011e2020) [13]. The detection of HCoV-229E genogroup 6 in

our two patients, one of whom had recently returned from

Macau, suggesting that genogroup 6 extended its geographical

distribution to cover Macau and Taiwan.

In conclusion, this study demonstrates for the first time the

phylogenetic characteristics of non-SARS HCoVs in Taiwan

and co-circulation of three non-SARS HCoV species belonging

to different genotypes in a city during one influenza season.

Although Taiwan is geographically separated from the main

Eurasian continent, HCoVs in Taiwan shared similar prevalent

phylogenetic lineages with those outside of Taiwan and

continued to evolve. A periodic surveillance programwould be

warranted to monitor emergent HCoV variants and to assess

their impacts on viral diagnostics and disease severity.
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