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Abstract

Purpose: Lack of control for time‐varying exposures can lead to substantial bias in estimates

of treatment effects. The aim of this study is to provide an overview and guidance on some of

the available methodologies used to address problems related to time‐varying exposure and

confounding in pharmacoepidemiology and other observational studies. The methods are

explored from a conceptual rather than an analytical perspective.

Methods: The methods described in this study have been identified exploring the literature

concerning to the time‐varying exposure concept and basing the search on four fundamental

pharmacoepidemiological problems, construction of treatment episodes, time‐varying confounders,

cumulative exposure and latency, and treatment switching.

Results: A correct treatment episodes construction is fundamental to avoid bias in treatment

effect estimates. Several methods exist to address time‐varying covariates, but the complexity of

the most advanced approaches—eg, marginal structural models or structural nested failure time

models—and the lack of user‐friendly statistical packages have prevented broader adoption of

these methods. Consequently, simpler methods are most commonly used, including, for example,

methods without any adjustment strategy and models with time‐varying covariates. The magni-

tude of exposure needs to be considered and properly modelled.

Conclusions: Further research on the application and implementation of the most complex

methods is needed. Because different methods can lead to substantial differences in the treat-

ment effect estimates, the application of several methods and comparison of the results is recom-

mended. Treatment episodes estimation and exposure quantification are key parts in the

estimation of treatment effects or associations of interest.

KEYWORDS

cumulative exposure and latency, pharmacoepidemiology, time‐varying confounders, time‐varying

exposure, treatment episodes, treatment switching
1 | INTRODUCTION

Methodological challenges arise in longitudinal pharmacoepide-

miological and other observational studies of exposure‐outcome
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associations. The appropriate exposure definition is critical but can vary

by a number of factors including characteristics of the patient, the

indication, or the route of administration. These challenges differ

depending on the type of study, data availability, and study objectives
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KEY POINTS

• In longitudinal pharmacoepidemiological and other

observational studies, construction of proper treatment

episodes and correct modelling for time‐varying

confounders, cumulative exposure and latency, and

treatment switching are essential.

• Several methods have been proposed in the literature to

address problems related to time‐varying exposure and

confounding in pharmacoepidemiological and other

observational studies.

• The most advanced approaches such as marginal

structural models or structural nested failure time

models should be used to analyse longitudinal data

with time‐varying covariates in the presence of time‐

varying confounders or switching after taking into

account the involved assumptions.

• Further research on the application and implementation

of the most advanced methods is needed.

• Different methods can lead to substantial differences in

the estimates of the associations or effects of interest;

therefore, implementation of different methods and

comparison of the results are recommended.
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which has given rise a need to understand better themethods that meet

these challenges, and develop new methods if gaps exist. The aim of

this article is to review some of the methods proposed in the literature

and provide a guide for researchers who encounter these problems

in longitudinal pharmacoepidemiological and other observational

studies. Thiswork alsoaims toopenadialogueabout themethodological

areas less frequently pursued and identify areas that need furthermeth-

odological developments. Although there is a conceptual difference, for

practical reasons in the remainder of the article, the terms treatment and

exposure are used interchangeably, as are outcome and response.

In pharmacoepidemiological and other observational studies, the

exposure may be a single event, but may often be prolonged and vary

over time, with one or more exposure periods. However, even in the

latter case, exposure is often defined only as a baseline covariate.

When the focus of the investigation is to consider multiple exposures

over time, then all the time‐dependent changes of the involved factors,

including confounders, should be taken into account.

In a data structure with time dependency, a variety of issues can

arise simultaneously, ranging from a more complex exposure definition

to the identification and application of proper statistical methods for

time‐varying exposure and covariates. For simplicity of exposition in

the article, the problems are explored one at a time. Specifically, the focus

is on the following issues: treatment episode construction, time‐varying

confounders, cumulative exposure and latency, and treatment switching.

The exposure definition in a time‐varying context is complex,

and different definitions can lead to the construction of different

treatment episodes and potentially different conclusions to the

same research question; bias can also be inadvertently introduced.

Therefore, it is critically important to define treatment episodes

that reflect the actual exposure of the subjects, i.e., exhibiting as little

misclassification as possible, which requires the researcher to handle

multiple methodological issues. In pharmacoepidemiological studies,

one such issue derives from the fact that the available information about

exposure, i.e., subjects' actual drug intake, is often limited in registers of

dispensed or prescribed drugs. For practical purposes in the following,

the term prescription is used to mean both prescription and dispensing.

Usually in prescription registers only the date and amount prescribed

and rarely information about the prescribed dosage is known. For each

prescription, an exposure period can be assigned based on this

information. Variation in drug intake and other factors may lead to

irregular patterns, and temporal gaps between or overlaps of prescrip-

tions. A gap is defined as the number of days between the end of supply

from one prescription and the start of the subsequent prescription.

Conversely, an overlap is the number of days overlapping between

two consecutive prescriptions.1 As gaps and overlaps commonly occur

in practice, it is important to take these into account in the construction

of treatment episodes based on multiple prescriptions.

The dosage or duration of the treatment, or more generally the

exposure to it, which can vary over time, is an additional consideration.

Dynamic treatment regimens are usually, but not only, dependent on

the patient response to the drugs. In this case, there is often a

presence of time‐dependent confounding factors that are affected by

the previous exposure levels, and thus act as intermediates in the

causal pathway between the exposure and the outcome of interest.2

When a confounding factor is also an intermediate between the
exposure and the response variable, standard statistical methods may

lead to biased estimates of the effect of interest.

Because studies are often focused on treatment effect (adverse

and/or beneficial), the researcher needs to take into account the

cumulative exposure to the treatment (i.e., dose and duration) when

the exposure varies over time. For some outcomes, it may be reason-

able to classify subjects dichotomously as exposed or not exposed.

For other outcomes, however, the amount of exposure is crucial. The

evaluation of a treatment effect or an exposure‐outcome association

in this scenario depends strongly on the time since exposure3 and

the particular outcome of interest.

Finally, there is the issue that patients often switch to alternative

treatments. The reasons for the switch can vary, ranging from side

effects, unwillingness to continue, physician's suggestion, or

participation in clinical trials, where the switch is allowed by experi-

mental design.4,5 In the evaluation of treatment effects or associations,

the underlying switching mechanism should then be properly

considered.

For each of the above problems, different methods have been

proposed and applied. The validity of inference for each method relies

on certain assumptions, and each method has its strengths and

weaknesses. The range of methods includes simpler techniques, such

as an intention‐to‐treat (ITT) analysis which only considers baseline

exposure and does not adjust for the confounding related to the

problems described above, to the more structured but less intuitive

methods such as structural nested failure time models (SNFTMs) which

adjusts for time‐varying confounders6 or switching. The present article



TABLE 1 Pharmacoepidemiological challenges in longitudinal studies

Problem Description Applied Example

1. Treatment
episodes
construction

The exposure to a treatment is usually not a single occurrence,
but may be prolonged and vary over time. Therefore, the
exposure definition needs to be handled in a time‐dependent
manner, and based on treatment histories as complete as
possible (dates, dosage, or duration of each prescription is
essential information). When estimating cumulative exposure,
reasonable assumptions on gaps and overlaps between
consecutive prescriptions are needed.

In a follow‐up study of antidepressant drug users,
Gardarsdottir et al.1 showed that different methods
accounting for different lengths of gaps and overlaps
between prescriptions led to different treatment episodes
estimates.

2. Time‐varying
confounders

In studies investigating time‐varying exposure, there may be a
presence of time‐varying confounders affected by previous
exposure levels, i.e., acting as intermediates in the pathway
between exposure and outcome.

In studying the effect of a drug to reduce glycaemia levels in
type II diabetes patients on the onset of cardiac events, a
measure of the blood glucose levels (HbA1c) can both be
affected by previous treatment dose and affect the
outcome (high HbA1c may increase the drug dosage and
the risk of cardiac event). See Daniel et al.2 for a detailed
description of the mechanism.

3. Cumulative
exposure and
latency

Dose and duration of exposure accumulated over time may
increase or decrease the effect on the outcome. It should be
considered that different outcomes have different latent
periods (time to initiation of the treatment to diagnosis).
Therefore, different drugs require different exposure periods
in relation to the latency. However, these latent periods are
usually unknown, and a long follow‐up period allows
different assumptions about latent period to be tested.

Sylvestre et al.3 showed that the magnitude of the effect of
a psychotropic drug prescribed to treat insomnia and fall‐
related injuries was strictly related to the cumulated dose
and time since exposure to it.

4. Treatment
switching

Individuals exposed to a treatment can switch to an alternative
during the follow‐up time. When considering a time‐varying
exposure the switching process complicates the estimation of
treatment effects because it cannot be considered a random
mechanism. When individuals are not under the initial
treatment during the entire follow‐up, the method to use
in the investigation should account for it.

Diaz et al.4 used different methods accounting for switching
to show the differences in treatment effect estimates in an
indirect comparison between renal cell carcinoma drugs.
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provides an overview of some of the methods that have been

proposed to account for important time‐varying exposure related

problems: treatment episodes construction, time‐varying confounders,

cumulative exposure and latency, and treatment switching. For each

of the problems, the identified methodologies are described from a

conceptual but not an analytical perspective.

In Table 1, a summary of the challenges and related applied

examples is provided. For each of the described methods, a short

description of the main strengths and limitations is provided in Table 2,

whereas in Table 3, references to the software for some of the most

complex methods are reported.
2 | METHODS

The starting point of the study was a literature search of studies

investigating or applying methodologies for time‐varying exposure

using relevant keywords such as time‐dependent, time‐varying, time

to event, time to treatment, and treatment switching. By viewing the

abstracts, we retained the resulting articles that were relevant to the

four topics of interest, construction of treatment episodes, time‐vary-

ing confounders, cumulative exposure and latency, and treatment

switching. A consistency among the references of some key methodo-

logical articles led to the identification of the most frequently

referenced methods for the investigated problems. By checking the

cited articles, we attempted to find other relevant publications. Lastly,

we searched for published studies in which the identified methods

were used.
3 | METHODS FOR CONSTRUCTION OF
TREATMENT EPISODES

Observational studies are becoming increasingly important for answer-

ing pharmacoepidemiological questions, which may not be readily

answered by randomised clinical trials because of their known limita-

tions (such as small population, selected patients, and short follow‐

up) and for practical reasons including complexity, costs, and ethical

issues. An observational study to investigate drug effects or associa-

tions with some outcome of interest can be performed as a record link-

age study of a drug prescription register with a patient register,

containing individual level longitudinal data on both drug exposure

and diagnoses. On the other hand, constructing well‐defined treatment

episodes from prescription registers, for the individuals under study, is

challenging.

Many problems arise because the registers usually do not contain all

the information about the dose and the duration of a treatment pre-

scribed to a patient. As a result, the treatment episodes often need to

be estimated on the basis of the purchasing date, when available, and

quantity.7 Data on purchased quantities of drug do not usually provide

the researcher with additional information about the intended indication

for the use of the drugs, the daily quantity used, and the duration of the

treatment. Moreover, investigators encounter temporal gaps and over-

laps among prescriptions in the attempt to construct treatment episodes

for a patient, and using different methods accounting for such problems

may lead to different estimates of drug effects.Wewill ignore, for simpli-

fication, any discussion of capturing how the patient actually consumes

the medication (consistently each day, varying dose or frequency, etc).



TABLE 2 Methods for longitudinal studies in pharmacoepidemiology

Methods

1. Treatment
episodes
construction

Main Assumptions Main Strengths Main Limitations

‐ use of the DDD The dose is the average use of the
drug in an adult patient and for
its main indication.

Facilitation of international
comparisons.

The drug under study could be
prescribed with a dosage different
from the average, with an
indication other than the main,
and/or in children.

‐ accounting for
gaps and overlaps

Predefined length for allowed gaps
(based on prior knowledge on drug
utilisation). Overlapping days can be
added to the treatment episode
duration or ignored.

Estimations of treatment episodes
accounting for gaps and overlaps
drive to a more accurate exposure
definition and allow the consideration
of the nature of the treatment under
study when deciding on the length of
gaps and the way to account for
overlaps.

Particular attention needs to be paid
in choosing the predefined length
for the allowed gap and the way to
account for overlaps. When the
assumptions on gaps and overlaps
are distant from the real drug
utilisation, the treatment episodes
estimates may be biased.

‐ prospectively
filling gaps

Predefined length for allowed gaps. Assuming gaps of a fixed number of
days avoids the immortal bias that
could be introduced if the allowed
gaps would depend by future
prescriptions. The time between the
two subsequent prescriptions would
be risk‐free (immortal) time.

Particular attention needs to be paid
in choosing the predefined length
for the allowed gap trying to
emulate the real drug utilisation
patterns.

2. Time‐varying
confounders

Main assumptions Main strengths Main limitations

‐ methods without
any adjustment
strategy

There are no time‐varying confounders
or they can be treated as baseline.

Simplicity of application. The time dependency of the
variables involved in the study is
not considered introducing bias in
the treatment effect estimates.

‐ time‐varying
covariates and
propensity scores
methods

Time‐varying confounders are not
intermediate factors.

Accounting for the time dependency
of the confounders. Simplicity of
the application.

Not accounting for the potential role
of intermediate that a confounder
can assume in a time‐varying
analysis.

‐ MSMs Stable unit treatment, positivity, and no
unmeasured confounders.

Controlling for time‐varying
confounders without conditioning on
them. Natural extension of Cox and
logistic models.

The no unmeasured confounders
assumption requires information
on all the variables of interest for
the study. The complexity of
application with respect to
standard methods limits the
availability of statistical packages.

‐ SNFTMs Stable unit treatment, positivity, and no
unmeasured confounders.

Interactions between time‐varying
covariates and treatment can be
included in the model. Efficiency.

The no unmeasured confounders
assumption requires information
on all the variables of interest for
the study. Computationally
intensive. The complexity of
application with respect to
standard methods limits the
availability of statistical packages.

3. Cumulative
exposure and
latency

Main assumptions Main strengths Main limitations

‐ methods without
any adjustment
strategy

The amount in dose and duration of
exposure does not affect the
outcome and can be ignored.

Simplicity of application. Undervaluation of the importance of
all the aspects of the magnitude of
exposure.

‐ WCD models The form of the weight function has to
be estimated using cubic regression
B‐splines.

It accounts for the quantity of exposure
and the time since exposure.

Not accounting for the potential role
of intermediate that a confounder
can assume in a time‐varying
analysis.

‐ fractional
polynomials

Selection of the fractional polynomial
function, representing the cumulative
exposure, to include in the regression
model.

No assumptions on the functional form
of the hazard. The model accounts for
time‐varying covariates and time‐
varying covariate effects.

Not accounting for the potential role
of intermediate that a confounder
can assume in a time‐varying
analysis.

4. Treatment
switching

Main assumptions Main strengths Main limitations

‐ methods without
any adjustment
strategy

The switching is a random ignorable
mechanism.

Simplicity of application. Ignoring that switch can affect the
treatment effect estimates.

(Continues)
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TABLE 2 (Continued)

Methods

‐ excluding and
censoring
switching

The switching is a random ignorable
mechanism.

Simplicity of application. Ignoring that switch can affect the
treatment effect estimates.

‐ models with a
time‐varying
covariate for the
switch

The switch is not affected by previous
treatment levels.

Simplicity of application. Ignoring that switch can be affected
by the treatment while affecting
the outcome.

‐ MSMs with IPCW Stable unit treatment, positivity, and no
unmeasured confounders.

Emulation of the population in
absence of switching. Accounting,
in the treatment effect estimates,
for what would have happened in
absence of switching.

The no unmeasured confounders
assumption requires information
on all the variables of interest for
the study. The complexity of
application with respect to
standard methods limits the
availability of statistical packages.

‐ SNFTMs Stable unit treatment, positivity, and no
unmeasured confounders.

The survival can be derived accounting
also for the counterfactual event
times of the switchers emulating
what would have happened at the
treatment effects in the absence of
switching.

The no unmeasured confounders
assumption requires information
on all the variables of interest for
the study. Computational
intensive. The complexity of
application with respect to
standard methods limits
the availability of statistical
packages.

For all the probabilistic models involved in the above methods, a further assumption of correct model specification must be considered.

TABLE 3 Software for some of the most complex methods

Methods Software

‐ MSMs The weights for a MSM can be implemented in the R
package ipwwhich offers the possibility to estimate
the weights but not the final MSM. At the website
of the Harvard School of Public Health (https://
www.hsph.harvard.edu/causal/software/), an
example of the code to implement a marginal
structural Cox model is provided in Stata and SAS.

‐ SNFTMs The code that can be used as a reference for
implementing a SNFTM is available at the website
of the Harvard School of Public Health (https://
www.hsph.harvard.edu/causal/software/).

‐ WCD models The R packageWCE is available in the Comprehensive
R Archive Network (CRAN) website (http://cran.r‐
project.org/web/packages/WCE).

‐ fractional
polynomials

The R package mfp is available in the CRAN website
(https://cran.r‐project.org/web/packages/mfp/).
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Several methods have been proposed in applications covering

different therapeutic areas to control for this type of information bias.

However, there is still a lack of more homogeneous guidelines on how

to construct treatment episodes, which could facilitate, among other

things, the international comparison of drug effectiveness and safety

studies. Because of the current methodological differences in the

construction of the treatment episodes, the comparison among studies

for the same exposure‐response association becomes difficult, if not

impossible. In the following of the section, some of the methods used

to define the exposure to a treatment, considering different aspects

involved, are described.
3.1 | Methods using the defined daily dose (DDD)
assumption

When there is no information about the prescribed dosage, a

common approach is to assume that the patients take 1 DDD of
the prescribed drug per day.8-11 The formal definition of the DDD

was introduced in 1979 by the WHO Collaborating Centre for Drugs

Statistics Methodology. It states that, “the DDD is the assumed average

maintenance dose per day for a drug used for its main indication in

adults”.12

Based on a critical literature review performed by Merlo et al. in

1996, the DDD has been advocated as the standard unit to be used

in pharmacoepidemiological investigations. However, the DDD defini-

tion is subject to strong limitations because the unit refers only to the

average use of the drug for an adult patient and for its main indica-

tion. The patients included in a study population may take the drug

for other indications, and they may not be adults. Moreover, the real

dosage prescribed to a patient is usually a function of other

characteristics such as weight, height, and other health status‐related

factors. While the use of DDDs may facilitate international compari-

sons of population‐based drug utilisation studies (Merlo et al.), the

assumption of 1 DDD used per day affects the estimation of the

treatment duration, which can lead to biased pharmacoepidemiological

conclusions in individual‐based studies.7,13-15 Further methodological

research is needed on the strengths and weaknesses of the DDD

assumption so strongly affecting the exposure definition of a study.
3.2 | Methods accounting for overlaps and gaps
between drug prescriptions

It has been shown that the presence of a gap between prescriptions

does not with certainty indicate the absence of drug consumption.16

Conversely, for practical reasons, patients may collect newmedications

before finishing the previously purchased quantity, thus introducing

in prescription registers the so‐called overlaps. Gardarsdottir et al.

observed that using different methods to account for temporal gaps

and overlaps between prescriptions may lead to different estimates of

https://www.hsph.harvard.edu/causal/software
https://www.hsph.harvard.edu/causal/software
https://www.hsph.harvard.edu/causal/software
https://www.hsph.harvard.edu/causal/software
http://cran.r-project.org/web/packages/WCE
http://cran.r-project.org/web/packages/WCE
https://cran.r-project.org/web/packages/mfp
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the treatment duration, and hence different conclusions on the effec-

tiveness and safety of a drug. One method took into account the over-

laps between prescriptions by adding the overlapping days to the

theoretical end (or gap) of the following prescription, providing longer

length of the treatment episode. Another method simply ignored the

overlaps so that the resulting treatment episode will have shorter dura-

tion, which affects the results of drug‐outcome epidemiological investi-

gations. In addition, the work of Gardarsdottir et al. investigated two

other methods accounting for gaps. The first method allowed for gaps

of a predefined number of days (from 0 to 180 days), and the second

allowed for gaps calculated as a certain percentage of usage days (i.e.,

from 0% to 150%). The methods allowing for gaps in different ways do

not produce strong differences in median lengths of the treatment, but

the length of the allowed gap should be chosen considering the nature

of the treatment under study. In case of short‐term treatment, only gaps

of a few days should be allowed and vice versa. Gardarsdottir et al. had

data on the prescribed dosage, so the only estimated quantity was the

duration of the treatment. However, exact information on dosage is

not always available, which complicates the definition of the treatment

episodes and the interpretation of the results opening a discussion

about the need of further research on this specific problem.
FIGURE 1 DAG A: Relationship between a confounder variable C, a
treatment variable T, and an outcome variable Y in a time point study.
DAG B: Relationships between a time‐varying exposure, a time‐
varying confounder (which also acts as an intermediate factor), and an
outcome variable in a longitudinal study. The double role of the
confounder level C1 is indicated drawing a double arrow. The
observations at each time point of the time‐varying exposure and the
time‐varying confounder are indicated, respectively, with T0, T1, C0,
and C1 since they are measured at time 0 and at time 1. The variable
Y indicates the outcome. For simplicity of the graphical
representations, in DAG A and in DAG B a variable representing the
set of potential unmeasured confounders has been omitted
3.3 | Method of prospectively filling gaps

In many pharmacoepidemiological investigations, the study design is

driven by the use of pre‐existing data, and more specifically the study

population is derived from a retrospective exposure‐based cohort. In

this type of study, the individuals under observation are identified after

the exposure definition. Because the data already exist, often investi-

gators define the exposure by looking at data for the entire observa-

tion period. In such a process, gaps present in prescription data can

be filled retrospectively if the patients have subsequent drug prescrip-

tions for the same kind of medication. The approach of exploring the

data to define the exposure may lead to a particular type of bias

resulting from the fact that the temporal gaps among prescriptions

can be related to the future of the patients' behaviours with respect

to the treatment and to the outcome under investigation.17 In such a

way, the exposure definition is affected by future circumstances, and

the allowed gaps become risk‐free time, leading to an underestimation

of the effect or association. This is often referred to as immortal time

bias.13,18,19 The method proposed to avoid this kind of bias is a pro-

spective filling of the gaps. With this method, a subject under study

is considered exposed until the moment the last dispensed supply is

not completely elapsed, or, if it elapses, within the predetermined

number of days allowed as a gap. Nielsen et al. showed via simulation

studies that allowing gaps between prescriptions only if an individual

will have a subsequent prescription can cause underestimation of the

risk. They simulated data to emulate a study on the effect of hormone

therapy on the risk of fatal acute myocardial infarction. In the

estimation of treatment episodes, they allowed for a gap of 90 days,

extending the duration of the episode, only in case an individual will

redeem a new prescription. The 90 days between the first prescription

and the second represent immortal time because the women under

study needed to be alive, and hence fatal acute myocardial

infarction‐free, to redeem the second prescription. They showed that
this bias can be avoided assuming a predetermined number of days

for allowed gaps without the use of any prior knowledge on future

individual's prescriptions.
4 | METHODS FOR TIME‐VARYING
CONFOUNDERS

In studies investigating associations between a time‐varying exposure

and an outcome of interest, i.e., a follow‐up study for a particular drug‐

response association, some complications arise from the presence of

time‐varying confounders. Time‐varying confounders affect the out-

come and the future levels of the exposure, and they can be affected

by the previous levels of the exposure, i.e., acting as intermediate fac-

tors in the drug‐response pathway. For example, in studies for the

comparison of antiglycaemic drugs in patients with type II diabetes,

measurement over the time of the blood glucose levels can be affected

by the type of antiglycaemic received, and at the same time they can

affect the next level of the drug (dose or type) and particular outcomes

of interest as cardiac events.20 In Figure 1, two directed acyclic graphs

(DAG)2 are shown to represent the set of relationships among the

confounder, the treatment, and the outcome variables, first for a single

time point exposure, cross‐sectional study (DAG A), and then for a

longitudinal study (DAG B). In a cross‐sectional study, the confounder

variable C affects both the treatment (T) and the outcome (Y) variables.



FIGURE 2 Two DAGs representing how different statistical methods
account for a variable that acts as intermediate. MSMs and SNFTMs
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In a longitudinal study where the time‐varying confounder also acts as

intermediate, the treatment levels at each time point (T0 and T1) can

affect the subsequent levels of the confounder variable (T0 affects C1

in the example depicted in DAG B). In DAG B, both the levels of the

variable C at each time point (C0 and C1) have the role of

confounders, but at time 0 the C0 acts only as a confounder, while at

time 1 the level C1 acts both as a confounder and an intermediate var-

iable. The double role of the variable C, confounder and intermediate,

is stressed by drawing different arrows. In this context it is important

to have methods that properly adjust for such variables in order to

avoid biased estimates. Many methods have been used in studies

affected by this problem, but only some of them properly adjust for

the time‐varying confounders.

consider all the arrows that connect the level of the variable C with the
level of the treatment variable T and an outcome variable Y. Methods

such as regression models with time‐varying covariates and propensity
score methods cannot adjust in the analysis for the arrow going from
the value of the treatment variableT0 and the value of the confounder
variable C1 so removing from the estimation the indirect effect that the
exposure to the treatment has on the outcome passing through the
intermediate variable. For simplicity of the graphical representation, in
the DAGs, a variable representing the set of potential unmeasured
confounders has been omitted
4.1 | Methods without any adjustment strategy

In many studies, methods that do not take into account time‐varying

confounding factors have been used, attempting to estimate the

association between the treatment and the outcome conditioning only

on the baseline characteristics of the subjects (ITT approach). These

kinds of methods essentially assume that the randomization balance

of the treatment is preserved, in the sense that each subject receives

the randomly assigned treatment during the entire follow‐up. How-

ever, the assumption of treatment randomization, either at baseline

or over time, does not hold in pharmacoepidemiological investigations

using observational data. Consequently, the ITT approach, which only

considers baseline exposure and does not adjust for the time

dependency of the confounders is not a proper estimation method

for longitudinal studies, because it does not guarantee the comparabil-

ity over time of the groups of interest.
4.2 | Models with time‐varying covariates and
propensity score‐based methods

Usually baseline (or time‐fixed) values of potential confounding factors

are used to estimate the propensity score. However, a time‐varying

propensity score to be added to the outcome model could be esti-

mated to consider the variability of the data. Regression methods with

time‐varying covariates21-27 or time‐varying propensity score can be

used to adjust for time‐varying confounders only in the scenario that

the time‐varying confounders are not affected by previous levels of

the exposure, ie, they are not intermediates between the exposure

and the outcome. In the most common scenario where the time‐

varying confounder is also an intermediate between exposure and out-

come, both regression with time‐varying covariates or time‐varying

propensity score methods provide biased estimates.28 This adjustment

will underestimate or overestimate the total effect of the exposure on

the outcome because conditioning on intermediate variables removes

from the estimation the indirect effect that the exposure has on the

outcome passing through the intermediate variable.28 Using the pro-

pensity score for matching or stratification can lead to some bias even

if the assumption of no unmeasured confounding holds because the

method can fail to completely control for the time dependency of

the confounding factors present in the study28 as depicted in

Figure 2. Moreover, using time‐varying covariates and or time‐varying
propensity score methods to adjust for a time‐varying confounder that

is also intermediate may cause bias because such methods do not take

into account the possibility that unmeasured confounders between

intermediate factors and outcome can exist.29
4.3 | Marginal structural models

Marginal structural models (MSMs)30-32 are mainly, but not exclusively,

observational‐based methods and an important statistical tool pro-

posed by Robins to adjust for time‐varying confounders. These models

work under an extension for longitudinal data, of the potential out-

comes framework proposed by Rubin.33 One of the most common

and intuitive ways to estimate the parameters of a MSM is using the

inverse probability of treatment weighted estimator (IPTW). The IPTW

method enables accounting for both baseline and time‐varying

confounders. A weighting system gives each unit under observation a

weight corresponding to an inverse function of the probability to

be exposed conditional on the history of the previous level of the

exposure and baseline and time‐varying confounders. In the stabilised

weights, the numerator is given by the probability of being exposed

conditional on the history of the previous level of the exposure and

only baseline confounders. To reduce the variability deriving by

dominant subjects in the study, stabilised weights are recommended

rather than the “non‐stabilised” weights (with numerator equal to

one34), especially in the presence of strong correlation among the

covariates and the treatment. The weight at each time point for each

unit under observation incorporates the past weights' history multipli-

catively. When the underlying assumptions of stable unit treatment

value, correct model specification of the weights model, sequential

positivity, and no unmeasured confounders35 hold, the IPTW creates

a pseudo‐population in which the assignment of the treatment is like

randomised, because controlling for the time‐varying confounders

ensures both that they no longer are affected by the previous
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treatment levels and that they do not affect the subsequent treatment

levels. A MSM is particularly useful in the case the time‐varying

confounder is also an intermediate between the treatment and the

response because it produces unbiased estimates of the effect of

interest not conditioning on the intermediate variable.28 The main

appeal of MSMs is the fact that they are a natural extension of the

classical logistic and Cox model, i.e., a marginal structural logistic model

is a weighted logistic model where the weights are constructed

following the above technique, and similarly a marginal structural Cox

model25 can be implemented. Some particular scenarios, as for

example strong association between covariates and exposure, and

deviation from one of the weight expectation, make it difficult to draw

robust inferences from the MSM parameter estimates.36 One main

limitation in the application of MSMs, as well as all the more advanced

methods, is the lack of user‐friendly statistical packages for the

most commonly used software where the methods can be fully imple-

mented. Hernán et al. implemented a MSM to estimate the causal

effect of zidovudine on the survival of HIV‐positive men.37 The

weights for a MSM can be implemented in the R package ipw38 which

offers the possibility to estimate the weights but not the final MSM.

In the website of the Harvard School of Public Health (https://www.

hsph.harvard.edu/causal/software/), an example of the code to

implement a marginal structural Cox model is provided in Stata and

SAS.
4.4 | Structural nested failure time models

In the context of survival analysis, SNFTMs are observational‐based

methods that allow the unbiased estimation of the causal effect of

an exposure on a time to event outcome, in the presence of time‐

varying confounders that are also intermediates. An important

assumption behind the model is the presence of the counterfactual

failure times—time of death or time of another event of interest, e.g.,

time of the onset of a disease39—for each unit under study. Each indi-

vidual must be a potential receiver of all possible treatment histories in

such a way to have a counterfactual failure time under each possible

treatment path. The counterfactual (counter to the facts) yields

intuitive understanding that those failure times are potential outcomes

for each individual, but that they could not actually have occurred,

because each individual can only have 1 factual treatment history. A

causal association between an exposure and an event of interest can

be derived contrasting counterfactual failure times representing differ-

ent treatment regimes. Suppose that the parameter of interest of a

pharmacoepidemiological study is the average treatment effect40 of a

certain drug in the survival of the study population. It can be defined

as the difference in survival among treated and untreated individuals.

Therefore, the average treatment effect can be derived through a

SNFTM contrasting the average counterfactual event times under

treatment with the average counterfactual event times under no treat-

ment. The model for the estimation of the counterfactual failure times

relates them to both observed treatment history and failure time, so

that they can be estimated only for individuals with an observed failure

time. The parameter of a SNFTM can be estimated with the g‐estima-

tion procedure.41 The g‐estimation procedure has been less popular in

applications, probably due to the computational intensity and the low
intuitiveness with respect to the more applied MSMs.42 An advantage

of SNFTMs over MSMs is that interactions among covariates and

treatment variable can be considered in the model. SNFTMs provide

valid statistical inferences of a drug effect of interest under stable unit

treatment value and no unmeasured confounding. Chevrier et al.43

implemented a SNFTM with g‐estimation procedure to estimate the

effect of exposure to metalworking fluids, when a healthy‐worker

survivor effect is present, performing a comparison with other

standard methods. To the best of our knowledge, the only available

code that can be used as a reference for implementing a SNFTM is

available at the website of the Harvard School of Public Health

(https://www.hsph.harvard.edu/causal/software/).
5 | METHODS FOR CUMULATIVE
EXPOSURE AND LATENCY

In designing studies to investigate effects of a particular treatment,

researchers should consider that different outcomes can occur at

different instances and have different latency periods3 (time to initia-

tion of the treatment to diagnosis). Therefore, different drugs require

different exposure periods in relation to the latency. However, these

latent periods are usually unknown, and a long follow‐up period allows

different assumptions about latent periods to be tested. Different side

effects, for example allergic reactions, infections, cardiovascular conse-

quences, or cancers, require different times since exposure to occur.

Moreover, while for some outcomes being exposed once is sufficient

to consider the subject as exposed, the exposure to high cumulative

duration or high cumulative dose is crucial for the majority of the

associations. Consequently, the exposure definition and the temporal

window considered should be a function of the particular outcome of

interest in the plan of a study. For example, a short follow‐up would

be sufficient, and simple estimation methods can be appropriate to

investigate the association between a certain type of drug and allergic

reactions or infections. However, a longer follow‐up and consequently

more advanced methods are needed in investigating the association

between a drug and a long‐term outcome, such as cancer. Several

methods have been introduced which attempt to model a cumulative

exposure and the latency, from less flexible approaches where the

latency needs to be specified by a prior parametric function,44 to more

flexible approaches where the latency is modelled with flexible cubic

splines techniques.45,46 In the next section, some of these methods

are discussed.
5.1 | Methods without any adjustment strategy

Considering the problem of interest related to outcomes that occur in

long term after the exposure, the use of models that do not take into

account in any way the time since exposure and the magnitude of

the exposure will produce biased results. Moreover, the outcome of

interest should be properly considered in the study design. In this

sense, when data are available, the duration of the follow‐up should

be appropriate for the outcome. The use of the same temporal

window, for example, to investigate the effect of a particular treatment

on the onset of allergic reactions and cancers will not be a good

https://www.hsph.harvard.edu/causal/software
https://www.hsph.harvard.edu/causal/software
https://www.hsph.harvard.edu/causal/software
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practice, because this approach will assume that time since exposure,

duration of exposure, and cumulative dose have the same effect on

both outcomes. A non‐acute adverse outcome such as cancer can be

developed many years after the beginning of the exposure, requiring

longer follow‐up and quantification of the exposure, whereas an acute

allergic reaction can occur shortly after the first dose, requiring shorter

follow‐up and a simpler exposure definition.
5.2 | Weighted cumulative dose (WCD) model

Dixon et al. reported that the effect of glucocorticoid therapy on the

risk of serious infection can change on the basis of how the exposure

was modelled. They compared several different standard modelling

approaches with a flexible WCD model47 introduced by Sylvestre

et al. in 2009. A flexible WCD model attempts to consider 2 important

factors in a time‐varying analysis: firstly, that the effects of the expo-

sure can cumulate over time, and secondly, that the different time

points of the exposure have different impacts on the outcome. In the

study performed by Dixon et al., the exposure was modelled as a

weighted sum of doses, with the weighting system reflecting the

importance of the different time points of consumption of the dose.

The functional form of the weights can be estimated using cubic

regression B‐spline. In the approach proposed by Sylvestre, the func-

tional form of the weights is estimated from the data using a regression

spline‐based method for modelling the time‐varying cumulative expo-

sure. The final model for the survival analysis is a Cox model with a

time‐varying covariate representing the cumulative weighted expo-

sure. The semi‐parametric estimation of the weighted cumulative

exposure function does not require the researcher to specify a prior

functional form for a continuous exposure avoiding misspecification

problems. A potential limitation of the method is that in this time‐

varying data structure, time‐varying confounders that act as intermedi-

ates are not accounted for, because a Cox model with time‐varying

covariates cannot properly adjust for them. A WCD can be imple-

mented with the R package WCE developed by Sylvestre et al. and

available in the Comprehensive R Archive Network (CRAN) website

(http://cran.r‐project.org/web/packages/WCE).
FIGURE 3 DAG depicting the potential relationships between a time‐
varying exposures T, a time‐varying confounder C (which is also
intermediate), a switching variable S, and an outcome variable Y in a
longitudinal study. The observations at each time point of the time‐
varying exposure and the time‐varying confounder are indicated,
respectively, with T0, T1, C0, and C1since they are measured at time 0
and at time 1. The observation of the switching variable is indicated
with S1, measured at time 1 when patients may start to switch to an
alternative treatment. The variable Y indicates the outcome. For
simplicity of the graphical representation, in the DAG has been omitted
a variable representing the set of potential unmeasured confounders
5.3 | Fractional polynomials for the effect of
cumulative duration of exposure

Fractional polynomials is a method introduced by Royston et al. in

199448 to model the functional form of the relationship between a

continuous independent variable and a dependent variable. This

approach has been readapted tomodel the association between a cumu-

lative duration of exposure to a treatment and an outcome of interest,

especially adverse outcomes. The cumulative duration of exposure can

be incorporated in the final regression model selecting a proper frac-

tional polynomial transformation. The main advantage of the method

is the possibility to model time‐varying covariates effects, allowing for

the variation over each time point of the follow‐up, of the effects of such

covariates on the outcome. It also allows to avoid assumptions on the

functional form of the hazard. In studies of the potential adverse out-

comes of a treatment, the duration and dosage of the received treat-

ment play an important role in the analysis. As in the WCD model
approach, the final model for the survival analysis is a Cox model with

a time‐varying covariate representing the cumulative duration of expo-

sure. Austin et al. in 2014 applied the methods in 2 case studies, one

on the association between the cumulative duration of previous amioda-

rone use and thyroid consequences, and the other investigating associ-

ation between bisphosphonates use and atypical femoral fractures in

women older than 68 years of age. They demonstrated the role of this

method in modelling cumulative exposure‐adverse outcomes relation-

ships, providing also guidelines for the use of this method to more gen-

eral problems. Also, in this case, a potential limitation of the method is

that time‐varying confounders acting as intermediates are not

accounted for. Fractional polynomials can be implemented using the R

package mfp available in the CRAN website (https://cran.r‐project.org/

web/packages/mfp/).
6 | METHODS FOR TREATMENT
SWITCHING

In longitudinal studies assessing a treatment effect, the fact that

patients can switch treatment during the follow‐up is a common issue.

The reasons for switching can be different, ranging from adverse reac-

tions, failure of therapeutic effects, to the individual behaviour of the

patient in the compliance to the treatment.49 The DAG for the time‐

varying confounder problem of Figure 1 can be extended to the

switching problem as shown in Figure 3. The switching process from

a treatment to an alternative treatment can be represented in a DAG

(Figure 3) with a time‐varying indicator variable (S1) describing if the

patient remains under the initial treatment or passes to an alternative.

The potential relationships between the switching indicator variable S1

and the other variables under study are depicted with bolded arrows in

http://cran.r-project.org/web/packages/WCE
https://cran.r-project.org/web/packages/mfp
https://cran.r-project.org/web/packages/mfp
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the DAG. The graph shows that the switching process cannot be con-

sidered at random because it may be affected by many variables under

study, and it may also affect the outcome of interest. To avoid bias in

the investigation of drug effects, researchers should account for the

mechanism behind the switching and not consider it a random process.

Many methods have been proposed and used in studies affected by

switching, but not all of them properly adjust for the confounding

arising.4,50
6.1 | Methods without any adjustment strategy

Unadjusted regression methods are also used in the presence of

treatment switching. The assumption behind such methods is that

the treatment switching is a random mechanism and can be ignored

in the estimation of a treatment effect because it does not affect

the outcome of interest. Such methods adjust only for baseline con-

founders and evaluate the treatment effect as if all individuals remain

under the assigned treatment until the end of the follow‐up (ITT

approach).
6.2 | Excluding and censoring switchers

Another category of methods evaluates the treatment effect excluding

or censoring switchers from the analysis. Like methods without any

adjustment strategy, the main assumption behind these approaches

is that the switching happens at random such that it can be ignored

in the investigation. Excluding and censoring switchers assume that

there are no confounders that affect both the switch and the

outcome, and moreover censoring switchers is equivalent to assuming

that the censoring is not informative, in such a way that it is not

related to the outcome.4 This is not a valid assumption and it may

cause bias.
6.3 | Models with time‐varying covariates

In some applications, the switch is added to a regression model as a

time‐varying covariate. A regression model with time‐varying covari-

ates produces unbiased estimates only in the case of no time‐varying

confounders2,37 that are also affected by the previous treatment

levels. Moreover, adding a time‐varying covariate for the switch

assumes that the switch is not an intermediate variable, and in this

sense it is not affected by the prior treatment levels while affecting

the outcome. This assumption is unlikely to hold because the prior

treatment level is often one of the reasons for switching.
6.4 | Marginal structural models with inverse
probability of censoring weights

Inverse probability of censoring weighting (IPCW) is a method close to

the IPTW estimator. Because in practice, longitudinal studies are often

affected by both time‐varying confounders and switching, a MSM

incorporating weights for both confounders and switching can be a

useful tool. The weights for the non‐switchers are constructed to

create a pseudo‐population in which all individuals have the counter-

factual outcome as if they have never switched treatment. The model

for the weights is based on an inverse function of the probability of not
switching conditional on the history of the previous level of the

exposure and baseline and time‐varying confounders. To recreate the

population that would have been, in the case no switching had

occurred, switchers are censored from the analysis, but they are repre-

sented through larger weights given to non‐switchers with similar

history as the switchers. The advantages and limitations of MSM with

IPCW are the same as reported in the time‐varying confounders

section. However, another factor should be considered in the

switching scenario. In the case the switching depends on clinical

reasons (as for example tolerance to the treatment), the switcher

should not be censored, but left in the analysis. Diaz et al. used a

MSM with IPCW to perform an indirect comparison between the

drugs pazopanib and sunitinib used in advanced renal cell carcinoma51

comparing MSM with IPCW to both simpler and other advanced

methods. For the implementation of a MSM with IPCW, the R package

ipw is available in the CRAN website (https://cran.r‐ project.org/web/

packages/ipw/) for the estimation of the weights, and the code pro-

vided in the website of the Harvard School of Public Health (https://

www.hsph.harvard.edu/causal/software/) can be used as reference

to fully implement a MSM with IPCW.
6.5 | Structural nested failure time models

SNFTMs produce an unbiased estimate of the effect of a treatment

on a survival outcome also in the presence of treatment switching.

In the time‐varying confounders scenario, the method is used to

estimate the counterfactual times to event of all the individuals with

an observed failure time. In the switching context, the method can be

used to estimate the counterfactual event times for patients who

switch treatment as if they would not have switched. In this

situation, to estimate the counterfactual times for the switchers, their

observed times to event become the sum of the time during which

the patients were under treatment and the time that the patients

were not under treatment. In such a way, the overall survival can

be derived accounting also for the counterfactual event times of

the switchers. The method estimates the overall survival relative to

a specific treatment, constructing a pseudo‐population that

hypothesises what would have happened to the survival of the

switchers, if they would not have switched to the alternative

treatment. The pseudo‐population derived through this method

attempts to emulate the original randomization of the treatment.

The complexity of the method increases with more treatment choices

under comparison and with the number of switchers, because the

counterfactual event times should be calculated for all the switchers

for each treatment line. The advantages and limitations of the

method are the same as reported in the time‐varying confounders

section. Korhonen et al.5 used a rank‐preserving structural failure

time (RPSFT) model (a subcase of SNFTMs for clinical trials) in the

RECORD‐1 trial of effectiveness of Everolimus in metastatic

renal‐cell carcinoma. To the best of our knowledge, the same as for

the time‐varying confounders problem, the only available code that

can be used as reference to implement a SNFTM is provided in the

website of the Harvard School of Public Health (https://www.hsph.

harvard.edu/causal/software/).

https://cran.r
http://project.org/web/packages/ipw
http://project.org/web/packages/ipw
https://www.hsph.harvard.edu/causal/software
https://www.hsph.harvard.edu/causal/software
https://www.hsph.harvard.edu/causal/software
https://www.hsph.harvard.edu/causal/software
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7 | DISCUSSION

This paper is an attempt to address methodological issues related to

time‐varying data in pharmacoepidemiological studies by a critical,

and not general, review of the literature. We focused our exposition

on four problems related to longitudinal data: construction of treat-

ment episodes, time‐varying confounders, cumulative exposure and

latency, and treatment switching. For each of the topics, several meth-

odologies have been identified and described. The characterisation of

the methods is not intended to provide an analytical illustration, but

rather a conceptualization of the theoretical approach adopted

attempting to address the involved complications.

In constructing treatment episodes, researchers used a number of

approaches including methods using DDD assumption, methods

accounting for overlap and gaps between drug prescriptions, and

methods prospectively filling gaps to avoid bias.

When data on exact dose are missing, the use of the DDD

assumption may be a useful standard to provide comparability of the

studies. On the other hand, 1 DDD per day may not be the dose actu-

ally prescribed or consumed by the individual patient and may result in

misclassification bias. Methods accounting for overlap and gaps

between drug prescriptions and methods prospectively filling gaps

are useful tools to properly build treatment episodes accounting for

gaps and overlaps existing in prescription registers.

The choice of method to construct treatment episode depends on

the therapeutic area of interest. In some therapeutic areas for example

the assumption of consumption of 1 DDD per day of the prescribed

drug may hold because it is close to the real dosage prescribed by

the physicians. In other therapeutic areas, the real prescribed dosage

may be very different. In the definition of the allowed gap, the partic-

ular type of treatment plays an important role; in fact, treatments can

be long or short term, occasional or limited to 1 prescription. Generally,

it is a good practice to allow gaps of few days for short term treat-

ments and longer gaps for long‐term treatments.1 It is also recom-

mended to perform a sensitivity analysis to assess how different

assumptions influence the effect estimates.

A time‐varying exposure can be followed by the presence of time‐

varying confounders, and different methods have been used including

methods without any adjustment strategy, models with time‐varying

covariates, and propensity score‐based methods, MSMs, and SNFTMs.

Methods without any adjustment strategy, models with time‐varying

covariates, and propensity score methods provide biased results in

the presence of time‐varying confounders that act as intermediates

between the exposure and the outcome. Conversely, MSMs and

SFTMs can provide unbiased estimates of the treatment effect under

the main assumption of no unmeasured confounders. The need of

more user‐friendly statistical packages for the most advanced and

complex methods calls for further research in this field to make a more

extended use of appropriate methods.

For cumulative exposure and latency, the investigated approaches

are methods without any adjustment strategy, WCD models, and frac-

tional polynomials for the effect of cumulative duration of exposure.

More advanced methods such as WCD models and fractional polyno-

mials, and also longer follow‐up time, are recommended for long‐term

outcomes. These advanced methods are useful tools when the effect
of a treatment or a covariate on the outcome varies during follow‐

up. Such methods account for the fact that the time since exposure

has an impact on the response variable. One limitation of the methods

is that potential time‐varying confounders that are also intermediates

cannot be included as time‐varying covariates in the model because

such strategy may provide a biased estimate of the treatment‐

response relationship. In the presence of time‐varying confounders, a

cumulative exposure could be modelled using a method such as

MSM, but the assumption of no unmeasured confounders should be

taken into account by the researchers.

For treatment switching, the investigated approaches are as fol-

lows: methods without any adjustment strategy, excluding and censor-

ing switchers methods, models with a time‐varying covariate for the

switching, MSMs with IPCW, and SNFTMs. Methods without any

adjustment strategy, excluding and censoring switchers methods, and

models with time‐varying covariates produce biased results because

the switching mechanism is not properly accounted for. Conversely,

MSMs with IPCW and SFTMs models correctly adjust for the

switching mechanism under the main assumption of no unmeasured

confounders. As previously stressed, more statistical packages

implementing the advanced methods are greatly needed.

In longitudinal studies, a proper exposure definition, considering

all the aspects of the magnitude of the exposure, such as duration

and quantity, is strongly advised. Moreover, the presence of time‐vary-

ing confounders or treatment switching can lead to problems in the

correct estimation of the effect of interest. In the literature, many

applications do not consider the problem using methods that do not

properly adjust for the bias introduced by a confounder that acts also

as intermediate or a switching process. Methods such as MSMs and

SNFTMs correctly adjust for such confounding, but the assumption

of no unmeasured confounders in the use of these methods should

be taken into account by the researchers. The applicability of such

advanced methods depends strongly on the quality and the complete-

ness of the data.

In the literature, many advanced methods have been proposed to

try to address issues connected with longitudinal studies, but the most

advanced methods are not commonly implemented. One of the rea-

sons for this underuse of the methods could be the methodological

complexity and the limited availability of implementation packages in

commonly used statistical software.

Several advanced methods are developed that provide less biased

results and hence can help to guide clinical decision making. However,

these methods should be implemented and compared in order to iden-

tify which provide reasonably accurate results but is not overly com-

plex to use and interpret. Further research on the application and

implementation in pharmacoepidemiology of the most advanced and

complex methods, as MSMs and SNFTMs, is needed. Construction of

treatment episodes and models accounting for cumulative exposure

and latency are research areas with a wide perspective for further

investigations.
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