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Simple Summary: Precision animal husbandry based on computer vision has developed promptly,
especially in poultry farming. It is believed to improve animal welfare. To achieve the precise target
detection and segmentation of geese, which can improve data acquisition, we newly built the world’s
first goose instance segmentation dataset. Moreover, a high-precision detection and segmentation
model was constructed, and the final mAP@0.5 of both target detection and segmentation reached
0.963. The evaluation of the model showed that the automated detection method proposed in this
paper is feasible in a complex environment and can serve as a reference for the relevant development
of the industry.

Abstract: With the rapid development of computer vision, the application of computer vision to
precision farming in animal husbandry is currently a hot research topic. Due to the scale of goose
breeding continuing to expand, there are higher requirements for the efficiency of goose farming. To
achieve precision animal husbandry and to avoid human influence on breeding, real-time automated
monitoring methods have been used in this area. To be specific, on the basis of instance segmentation,
the activities of individual geese are accurately detected, counted, and analyzed, which is effective
for achieving traceability of the condition of the flock and reducing breeding costs. We trained
QueryPNet, an advanced model, which could effectively perform segmentation and extraction of
geese flock. Meanwhile, we proposed a novel neck module that improved the feature pyramid
structure, making feature fusion more effective for both target detection and instance individual
segmentation. At the same time, the number of model parameters was reduced by a rational design.
This solution was tested on 639 datasets collected and labeled on specially created free-range goose
farms. With the occlusion of vegetation and litters, the accuracies of the target detection and instance
segmentation reached 0.963 (mAP@0.5) and 0.963 (mAP@0.5), respectively.

Keywords: precision animal husbandry; computer vision; instance segmentation; target detection;
neck module

1. Introduction

With the rapid growth in the world’s population, the demand for meat and egg
products with high nutritional value is increasing.

In 2020, 76.39 million tons of pork, cattle, sheep, and poultry meat were produced
in China, of which 23.61 million tons of poultry meat were produced, an increase of
5.5% year-on-year, accounting for 30.9% of the total meat production. Goose farming is
one of the important industries in poultry farming, and it can provide abundant egg and
meat agricultural products. In 2020, global goose slaughter reached 740 million, an increase
of 316 million compared to 2019 and an increase of 74.53% year-on-year [1].

In the process of large-scale livestock breeding, the risk of epidemics in animals
increases due to the increase in breeding density, and the difficulty and cost of monitoring
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and management by hand increases due to the expansion of the breeding scale [2]. For this
reason, realized intelligent precision farming can improve the poultry-rearing scale and
product quality of farming, as well as the welfare and management of poultry farming to
provide sustainable agricultural products [3]. Hence, how to visually monitor and control
breeding while livestock farming has become an important topic in precision farming [4,5].
Typically, precision livestock farming often uses wearable devices for the precision farming
of animals [6]. For example, pigs and cattle are identified in livestock farming through
radio frequency technology (RFID) [7].

In recent years, due to improvement in computing power, deep learning has ballooned,
thus bringing more solutions for computer vision. Computer vision has been gradually
applied to people’s lives and production in various ways, such as face recognition, human
flow detection, etc. [8]. Based on this, it is gradually being applied in animal husbandry
farming. Non-invasive monitoring methods using sensors and cameras to acquire data and
then processing the data through computer vision is a research hotspot in precision animal
husbandry today [9]. The acquisition of livestock images using cameras and other means,
followed by automated monitoring with the aid of computer vision, can result in substantial
labor and equipment cost savings. Zheng Xingze et al. estimated the sex of sisal ducks
through a two-stage detection method with target detection and a classification network
and achieved an accuracy rate as high as 98.68% [10]. Lin Bin et al. conducted a study
related to the estimation of fish pose using rotating target detection and a pose estimation
algorithm [11]. Liao Jie et al. effectively classified the sound of pigs with TransformerCNN.
The correct rate reached 96.05% [12].

Instance segmentation is a new and important branch of computer vision that has
emerged in recent years and is also challenging. It requires not only detecting all objects in
an image, but also accurately segmenting each instance. Kai-Ming He et al. proposed Mask
R-CNN based on Faster R-CNN with only a small increase in overhead and won the best
score in the COCO Challenge 2016 [13]. Daniel Bolya et al. proposed a simple fully convo-
lutional instance segmentation model, YOLACT, which was able to guarantee 33.5 on Titan
XP [14]. Xinlong Wang et al. proposed a simpler and more flexible instance segmentation
framework, SOLO, by introducing the concept of “instance class” and avoiding the tradi-
tional strategy of detection followed by segmentation (e.g., mask R-CNN) [15]; this was
followed by SOLOV2, which improved the instance mask representation scheme so that
each instance in the image could be segmented dynamically without using bounding boxes
for detection and reduced the overhead through novel matrix non-maximum suppression
(NMS) [16]. Hao Chen et al. proposed BlendMask by effectively combining instance-level
information with low-granularity semantic information, which improved the prediction of
masks and was 20% faster than Mask R-CNN [17]. Yuxin Fang et al.’s QueryInst instance
segmentation method driven by the parallel monitoring of dynamic masks exploited the
intrinsic one-to-one correspondence among object queries at different stages, as well as
one-to-one correspondence between mask RoI features and object queries at the same stage,
and achieved the best performance among COCO, CityScapes, and Youtube VIS, and other
tasks, obtaining excellent test results and, in particular, the best performance in video
instance segmentation and struck a decent speed–accuracy trade-off [18].

Although instance segmentation provides more valuable segmentation detection
results, few studies have applied it to agricultural farming due to its complexity. Jennifer
Salau et al. applied Mask R-CNN to the farming of dairy cattle with a given IOU threshold
of 0.5 for bounding box (0.91) and segmentation mask (0.85). Ahmad Sufril Azlan Mohamed
et al. extracted individual contours of cattle in images using enhanced Mask R-CNN and
obtained a mAP of 0.93 [19]. Johannes Brünger et al. followed a relatively new definition of
panoramic segmentation and proposed a new instance segmentation network that obtained
a 95% F1 score with 1000 hand-labeled images [20].

Instance segmentation can be effective for counting, behavioral detection, body size
estimation, and automated monitoring of livestock individuals in agriculture. However,
there are few example segmentation studies related to poultry species applied at present.
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To realize precision livestock farming for geese, this paper improves the feature fusion part,
thus proposing a model that can be applied to the instance segmentation of geese flocks
to achieve more accurate segmentation and more comprehensive information extraction,
thereby allowing for comprehensive breeding information monitoring and analysis.

Concretely, the contributions consist of the following main points:

1. We propose a novel neck module to obtain multiscale features of targets for fusion,
shortening the path of feature fusion between high and low levels and making both
the detection of targets and the segmentation of individual instances more effective.

2. We construct a new and efficient query-based instance segmentation method by
reducing the number of training parameters through a rational design and combining
it with the neck module.

3. We build a new goose dataset containing 639 instance segmentation images including
80 geese, which can be used as a reference for poultry instance segmentation research.
The goose dataset comes from a meat goose free-range farm. The dataset images
have both single, individual goose and dense geese activities, which are disturbed
by natural factors, such as vegetation shading, non-goose animals, water bodies, and
litter. Such datasets come from free-range production farming, which has a more
complex background environment than captive breeding and can make the trained
model more robust.

In this paper, the dataset collection work is elaborated on in Section 2, the model part is
explained in detail in Section 3, the training and experimental results of this paper’s model
are presented in Section 4, and the results and future research directions are summarized
in Section 5.

2. Materials and Methods
2.1. Data Collection

Geese data were collected from a private meat goose farm in Jiaxing City, Zhejiang
Province. The farm uses a free-range farming method and has several breeding sites with a
single-site breeding population of around 80 geese, which can be slaughtered in around
70–80 days. Set near the coast, it has access to sufficient water for the fattening of the geese
in a flexible stocking system. The free-range method of breeding gives the geese a more
natural growing environment compared to the captive breeding method, so the raised
geese have better quality meat. The data on geese obtained in this environment are also
more informative.

The recording device used was the DJI pocket2, a sports camera released by DJI in
2020 with 1/1.7” CMOS and 64 million effective pixels, a lens FOV of 93◦ f/1.8, a lens
equivalent focal length of 20 mm, and a maximum photo resolution of 9216 × 6912 pixels
that supports up to 4K Ultra HD when recording video. To ensure that the data had the
maximum processing space, the 4K60FPS mode was chosen for recording, and a total of
3.5 h of raw video data were captured by randomly sampling multiple geese in different
locations and camera positions.

To ensure that the dataset had better representativeness, we sampled the original video
data at 10 frames and randomly acquired image data, obtaining a total of 3247 datasets.
After data preprocessing, we obtained 639 final datasets of acceptable quality and controlled
the image size at 1920 × 1080 for data annotation. The annotation was performed by four
colleagues in the lab who had experience in data annotation using labelme with the coco
dataset format. The final partial dataset images and annotations are shown in Figure 1.

Considering the following tips, the goose dataset was a daunting task for the segmen-
tation network.

1. Green, scientific, free-range farming methods are more complex compared to the
narrow and homogeneous environment of captivity, with various vegetation, running
water, and other shading factors; the dataset had strong interference, making the
experiment more challenging.
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2. The background environment of the dataset had feed-feeding core areas, edge areas,
etc. There were frequent change situations in goose location, as well as image balances
of geese in sparse and dense distributions, which made our network design have
stronger robustness and generalization ability.

3. The existence of a high degree of similarity in appearance between goose bodies made
it difficult for both the human eye and the network to distinguish between specific
geese, making it difficult for later flock analysis, so improving segmentation accuracy
was key.

4. In the goose detection task, it was also a great challenge to detect individual goose
instances in a complex environmental context.

Our goose dataset was, therefore, highly representative and could be effectively tested
against the model.
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Figure 1. Goose breeding dataset and labeling schematic. (a) Original drawing represents the original
dataset images. (b) Annotation represents a schematic representation of the dataset labels.

2.2. Data Enhancement

The captured video dataset was converted into an image dataset. Then, we first
eliminated the blurred and non-goose-containing images. To enrich the training dataset as
much as possible, we performed data augmentation on the dataset before training by using
various data enhancement methods, such as CutMix data enhancement, mosaic, four-way
flip, and random rotation.

2.2.1. CutMix Data Enhancement [21]

The use of regional dropout strategies enhances the performance of target detectors
and dynamic masks, and such strategies can direct a model to focus on the less discrimi-
native parts of a dataset, thus allowing the network to generalize better and have better
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localization capabilities. On the other hand, current regional dropout strategies remove
informative pixels from training images by covering them with black pixels or patches of
random noise. Such removal is undesirable, as it leads to information loss and inefficiency
in the training process. Therefore, this paper used the CutMix enhancement strategy:
cutting and pasting blocks in the training image, which made the live labels also mixed pro-
portionally with the area of the blocks. Better data enhancement was achieved by efficiently
utilizing the training pixels and preserving the regularization effect of region loss.

x ∈ RW×H×C and y represent the training images and labels, respectively. The goal
of CutMix is to generate a new training sample (x̃, ỹ) by combining two training samples:
(xA, yA) and (xB, yB). The generated training samples (x̃, ỹ) are used to train the model
with its original loss function. The merge operation is defined as the following equation:

x̃ = M� xA + (1−M)� xB (1)

ỹ = λyA + (1− λ)yB (2)

M ∈ {0, 1}W×H denotes the binary mask indicating the location of deletion and
padding from the two images, and � is multiplied element-by-element. As in Mixup [22],
the combined ratio λ between two data points is sampled from the beta distribution Beta
(α, α). To sample the binary mask M, we first sampled the bounding box coordinates
B =

(
rx, ry, rw, rh

)
that represented the cropping regions on xA and xB. Area B in xA was

removed and filled with patches cropped from B of xB.
In our experiments, we sampled a rectangular mask M with an aspect ratio pro-

portional to the original image. The frame coordinates were sampled uniformly in the
following manner:

rx ∼ Unif(0, W), rw = W
√

1− λ (3)

ry ∼ Unif(0, H), rh = H
√

1− λ (4)

such that the cropped area ratio rwrh
WH = 1− λ. For the cropping region, the binary mask

M ∈ {0, 1}W×H is determined by filling the bounding box B with 0; otherwise it is 1.

2.2.2. Mosaic

First, the goose dataset was grouped, 4 images were randomly taken out of each group,
and operations such as random inversion and random distribution were performed to stitch
the 4 images together into a new image. By repeating this operation, the corresponding
mosaic data enhancement images were obtained, enriching the detection and segmentation
datasets and, thus, improving the robustness of the model.

2.2.3. Flip

The flipping transformation is a common method of data enhancement and includes
horizontal flipping, vertical flipping, and diagonal flipping (horizontal and vertical flipping
are used simultaneously). A horizontal flip is a 180-degree flip from left to right or right to
left, and a vertical flip is a 180-degree flip from top to bottom or bottom to top. Horizontal
and vertical flips are more commonly used, but diagonal flips can also be used depending
on the actual target.

2.2.4. Random Color (Color Jitter)

Color jitter is random transformation to change the brightness, contrast, exposure,
saturation, and hue of an image within a certain range to simulate changes in the image
under different lighting conditions in a real shot, making the model learn from different
lighting conditions and improving its generalization ability. This data enhancement method
was used in the target detection of YOLOv2 [23] and YOLOv3 [24]. Online data enhance-
ment (including color dithering) is performed on the training data in each batch during
the training process, firstly transforming the image into HSV color space; then randomly
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changing the exposure, saturation, and hue of the image in the HSV color space; and then
transferring the transformed image to the RGB color space.

2.2.5. Contrast Enhancement

For some images, the overall darkness or brightness of the image is due to a small
range of gray values, i.e., low contrast. Contrast enhancement is widening the gray-scale
range of an image, e.g., an image with a gray-scale distribution between [50, 150] raises
its range to between [0, 255]. A gray-scale histogram is used to describe the number of
pixels or the occupancy of each gray scale value in the image matrix. The horizontal
coordinate is the range of gray-scale values, and the vertical coordinate is the number of
times each gray-scale value appears in the image. In practice, by plotting the histogram of
an image, it is possible to clearly determine the distribution of gray values and to distinguish
between high and low contrast. For images with low contrast, algorithms can be used to
enhance their contrast. Commonly used methods include linear transformation, gamma
transformation, histogram regularization, global histogram equalization, local adaptive
histogram equalization (adaptive histogram equalization with restricted contrast), etc.

Linear Transformation: This algorithm changes the contrast and brightness of an
image by linear transformation. Let the input image be I and the output image be O, with
width W and height H. I(r,c) represents the gray value of the rth row and cth column of I,
and O(r,c) represents the gray value of the rth row and cth column of O. The calculation
formula is as follows:

O(r, c) = a× I(r, c) + b, 0 ≤ r < H, 0 ≤ c < W (5)

where a affects the contrast of the output image, and b affects the brightness of the output
image. The contrast is amplified when a > 1 and reduced when 0 < a < 1; the brightness
is enhanced when b > 0 and reduced when b < 0; O is a copy of I when a = 1 and b = 0.
Similarly, the segmented linear transform can make different gray value adjustments in
different gray value ranges to better suit the needs of image enhancement.

Histogram regularization: The parameters of the linear transformation need to be
chosen reasonably according to different applications, as well as the information of the
graph itself, and may need to be tested several times. Histogram regularization can
automatically select a and b based on the current image situation. Let the input image be I,
the output image be O, while the width is W, and the height is H. I(r,c) represents the gray
value of the rth row and cth column of I. The minimum gray value of I is recorded as Imin,
and the maximum gray value is recorded as Imax, and O(r,c) represents the gray value of
the rth row and cth column of O. The minimum gray value of O is recorded as Omin, and
the maximum gray value is recorded as Omax. To make the gray value range of O [Omin,
Omax], the following mapping is performed:

a =
Omax−Omin
Imax− Imin

, b = Omin− Omax−Omin
Imax− Imin

× Imin (6)

O(r, c) =
Omax−Omin
Imax− Imin

(I(r, c)− Imin) + Omin (7)

0 ≤ r < H, 0 ≤ c < W (8)

Gamma transform: The gamma transform is a nonlinear transform. Let the input
image be I and the output image be O, with width W and height H. I(r,c) represents the
gray value of the rth row and cth column of I, and O(r,c) represents the gray value of the
rth row and cth column of O. The gray-scale values are first normalized to the range of
[0, 1], and then calculated by the following equation:

O(r, c) = I(r, c)γ (9)

0 ≤ r < H, 0 ≤ c < W (10)
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where the image is constant at γ = 1, the contrast increases at 0 < γ < 1, and the contrast
decreases at γ > 1.

Global histogram equalization: Gamma transform has a better effect in improving
contrast, but the gamma value needs to be adjusted manually. Global histogram equaliza-
tion uses the histogram of an image to automatically adjust the image contrast. Let the
input image be I and the output image be O, with width W and height H. I(r,c) represents
the gray value of the rth row and cth column of I, and O(r,c) represents the gray value of
the rth row and cth column of O. histI represents the gray-scale histogram of I, histI(K)
represents the number of pixels whose gray-scale value of I is equal to k, histo represents the
gray-scale histogram of O, and histo(K) represents the number of pixels whose gray-scale
value of O is equal to k, k ∈ [0, 255]. Global histogram equalization is a change to I such
that the histo of O is equal to each gray value pixel point, i.e.:

histo(K) ≈ H×W
256

(11)

Then, for any gray value p (0 ≤ p < 255), it is always possible to find a gray value
q (0 ≤ q < 255), such that:

p

∑
k=0

histI(k) =
q

∑
k=0

histO(k) (12)

∑
p
k=0 histI(k) and ∑

q
k=0 histO(k) are called the cumulative histograms of I and O,

respectively. Since histo(K) ≈ H∗W
256 , the following can be obtained:

p

∑
k=0

histI(k) = (q + 1)
H×W

256
(13)

O(r, c) =
∑

I(r,c)
k=0 histI(k)

H×W
× 256− 1 (14)

Local Adaptive Histogram Equalization: While global histogram equalization is ef-
fective in improving contrast, it may also allow noise to be amplified. To solve this problem,
local adaptive histogram equalization has been proposed. Local adaptive histogram equal-
ization first divides an image into non-overlapping blocks of regions and then performs
histogram equalization on each block separately. Obviously, without the influence of noise,
the gray-scale histogram of each small region is limited to a small range of gray-scale
values, but if there is noise influence, the noise is amplified after performing histogram
equalization for each segmented block of regions. In general, each histogram can usually
be represented by a column vector, and each value inside the column vector is a bin; for
example, if a column vector has 50 elements, then it means there are 50 bins. Noise can be
avoided by limiting the contrast, i.e., if a bin in the histogram exceeds the limit contrast set
in advance, the excess is cropped and distributed evenly to other bins.

2.2.6. Rotate

Rotate means to rotate the original image at different angles and has two cases: a
random-angle rotation and a fixed-angle rotation. When the rotation angle is a multiple of
90 degrees, the size of the image does not change. Otherwise, the image is the size of an
inner rectangle, and black borders appear.

2.2.7. Center Clipping and Random Clipping

In image recognition tasks, clipping is a common method of data enhancement that
allows areas of an image to be clipped while preserving the scale of the original image.
Cropping can be achieved by intercepting an array of images using NumPy. There are three
main types of cropping: center cropping, corner cropping, and random cropping. In this
paper, center cropping and random cropping were used.
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The various effects after each of the data enhancement operations are shown in
Figure 2.
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Figure 3. Convergence effect of data enhancement. For ease of understanding, the above image
shows the visualization of our data after the enhancement operation.

2.3. Method

Our research focused on the identification and accurate segmentation of individual
goose instances from complex backgrounds, enabling the fine extraction of contour features
and facilitating group counting. This is a typical instance segmentation task and exten-
sion. In this paper, we attempted to use a query-based network model for goose instance
segmentation, which was performed by combining the two subtasks of target detection
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(individual goose classification and localization) and semantic segmentation (identification
of goose pixels) in one.

2.3.1. QueryInst Network

QueryInst (Instances as Queries) is a query-based end-to-end instance segmentation
method consisting of a query-based target detector and six dynamic masks driven by paral-
lel supervision. The algorithm primarily exploits the one-to-one correspondence inherent
in target queries across different stages, as well as the one-to-one correspondence between
masked RoI features and target queries in the same stage. This correspondence exists
in all query-based frameworks, independent of the specific instantiation and application.
The R-CNN head of QueryInst contains 6 stages in parallel. The mask head is trained
by minimizing dice loss [25]. The QueryInst model trained with ResNet-50 [26,27] as the
backbone. The dynamic head architecture of QueryInst is shown in Figure 4.
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Query-based Object Detector
QueryInst can be built on any multistage query-based object detector but is instantiated

with Sparse R-CNN [28] as default, which has six query stages. The target detection
implementation formula for geese is as follows:

xbox
t ← Pbox(xFPN, bt−1

)
q∗t−1 ← MSAt

(
qt−1

)
xbox∗

t , qt ← DynConvbox
t
(
xbox

t , q∗t−1
)

bt ← Bt
(
xbox∗

t
) (15)

where q ∈ RN×d represents an object query. N and d represent the length (number) and
dimension of query q, respectively. In the t stage, the pooling operator Pbox extracts
the current stage bounding box features xbox

t from the FPN features, guided by the xFPN

bounding box predictions of the previous stage bt−1. A multihead self-attention module
MSAt is applied to the input query qt−1 to obtain the transformed query q∗t−1. Then, a
box dynamic convolution module DynConvbox

t takes the xbox
t sum q∗t−1 as input and q∗t−1

augments it by reading xbox
t while generating for the next stage qt. Finally, the augmented

bounding box features xbox∗
t are fed into the box prediction branch Bt for current bounding

box prediction bt.
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Dynamic Mask Head
A query-based instance segmentation framework was implemented with a parallel

supervision-driven dynamic mask head. The dynamic mask head at stage t consisted of a
dynamic mask convolution module DynConvmask, followed by a vanilla mask head. The
mask generation pipeline was reformulated as follows:

xmask
t ← Pmask(xFPN, bt

)
xmask∗

t ← DynConvmask
t

(
xmask

t , q∗t−1
)

mt ← Mt
(
xmask∗

t
) (16)

The communication and coordination of object detection and instance segmentation
were realized with dynamic mask headers.

2.3.2. Model Architecture—QueryPNet

Neck Design
To enhance the propagation of information flow in the instance segmentation frame-

work, we chose to use path aggregation networks in our model. High-level feature maps
with rich segmentation information were used as one particular input for better performance.

Each building block obtained a higher-resolution feature map Ni and a coarser map
Pi+1 through lateral connections and generated a new feature map Ni+1. Each feature map
Ni was first passed through a 3 × 3 convolutional layer with a stride of 2 to reduce the
spatial size. The feature map Pi+1 and each element of the down-sampling map were then
summed through lateral connections. The fused feature maps were then processed by
another 3×3 convolutional layer to generate Ni+1 for subsequent subnetworks. This was
an iterative process. In these building blocks, we always used channel 256 of the feature
map. All convolutional layers were followed by a ReLU. Then, the feature grids for each
level were pooled from the new feature maps (i.e., {N1, N2, N3, N4}).

The implementation of the neck module in this paper was as follows, as shown in
Figure 5:

1. The information path was shortened, and the feature pyramid was enhanced with
the precise localization signals present in the lower layers. The resulting high-level
feature maps were then additionally processed using a bottom-up path enhancement
method.

2. Through the adaptive feature pool, all the features of each level were aggregated, and
the features of the highest level were distributed to the same N5 levels obtained by
the bottom-up path enhancement.

3. To capture different views of each task, our model used tiny, fully connected layers to
enhance the predictions. For the mask part, this layer had complementary properties
to the FCN originally used by Mask R-CNN, and by fusing predictions from these two
views, the information diversity increased and a better-quality mask was generated,
while for the target in the detection part, a better-quality box could be generated.

Proposed region generation and RoIAlign operation
The obtained feature maps were sent to RPN [29], where the tens of thousands of can-

didate predictors in the region proposal network were no longer used. This paper chose to
use 100 sparse proposals. This portion of sparse proposals was used as proposals to extract
the regional features of the geese through RoIAlign. These proposal boxes were statistics
of potential goose body locations in the images, which were only rough representations
of goose targets, lacking many informative details, such as pose, shape, contour integrity,
etc. Therefore, we set 256 high-dimensional proposal features (proposal_feature) to encode
rich instance features. After that, a series of bounding boxes could be obtained, and for a
case where multiple bounding boxes overlapped each other, non-maximum suppression
(NMS) [30] was reasonably used to obtain bounding boxes with higher foreground scores,
which were passed to the next stage.
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In the backpropagation of the RoIAlign layer, i∗(r, j) was the coordinate position of a
floating-point number (the sample point calculated during forward propagation). In the
feature map before pooling, the abscissa and ordinate of each point were i∗(r, j) and less
than 1, the corresponding point should be accepted.

The gradient of the RoIAlign layer was as follows:

{ ∂L
∂xi

= ∑
r

∑
j
[d(i, i∗(r, j)) < 1](1−4h)(1−4w)

∂L
∂yr,j

(17)

where d(·) represents the distance between two points, and 4h and 4w represent the
difference between xi and xi∗(r, j). Through the RoIAlign process, the extracted features
were correctly aligned with the input image, which avoided losing the information of the
original feature map in the process. The intermediate process was not quantized to ensure
maximum information integrity, and it solved the problem of defining the corresponding
region between the region proposal and the feature map. The problem of subpixel mis-
alignment when defining the corresponding region between the region proposal and the
feature map was solved, resulting in more accurate pixel segmentation. Especially for small
feature maps, more accurate and complete information could be obtained.

Goose target detection and instance segmentation
This paper used 5 target detection heads and 5 dynamic mask heads, which could

reduce the number of training parameters and optimize performance to a certain extent.
The features obtained by RoIAlign used bbox_head to implement goose bounding box
regression and mask_head to predict goose segmentation masks (goose body regions).
For network training, the loss function represented the difference between the predicted
value and the true value. It played an important role in the training of the goose segmen-
tation model. For the loss function design of the two subtasks, we used CIoU loss [31]
for bbox_head, which was also an adjustment to the original model, and dice loss for
mask_head loss.

For CIoU loss, the implementation was as follows:

RCIoU =
ρ2(b, bgt)

c2 + αv, (18)

where α is a positive trade-off parameter, and v measures the consistency of following
aspect ratio:

v =
4
π2

(
arctan

wgt

hgt − arctan
w
h

)2

(19)
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Then, the loss function can be defined as:

LCIoU = 1− IoU +
ρ2(b, bgt)

c2 + αv (20)

and the trade-off parameter α is defined as:

α =
v

(1− IoU) + v
(21)

Overlapping region factors were given higher priority in regression, especially for
non-overlapping cases.

Finally, the optimization of CIoU loss was the same as that of DIoU loss, but the
relative gradients were different.

∂v
∂w

=
8
π2

(
arctan

wgt

hgt − arctan
w
h

)
× h

w2 + h2 (22)

∂v
∂h

= − 8
π2

(
arctan

wgt

hgt − arctan
w
h

)
× w

w2 + h2 (23)

For cases w2 +h2 in the range of [0, 1], the domination w2 +h2 is usually a small value,
which is likely to produce exploding gradients. Therefore, in specific implementation, in
order to stabilize the convergence, the dominator is simply removed w2 + h2, the step size

1
w2+h2 is replaced by 1, and the gradient direction remains unchanged.

The dice loss is a loss function proposed based on the dice coefficient, which is
calculated by the following formula:

D =
2 ∑N

i pigi

∑N
i p2

i + ∑N
i g2

i

(24)

where the sums run over the N voxels of the predicted binary segmentation volume pi∈ P
and the ground truth binary volume gi∈ G. This formulation of dice can be differentiated,
yielding a gradient computed with respect to the j− th voxel of the prediction.

∂D
∂pj

= 2

gj

(
∑N

i p2
i + ∑N

i g2
i

)
− 2pj

(
∑N

i pigi

)
(

∑N
i p2

i + ∑N
i g2

i

)2

 (25)

The imbalance between foreground and background pixels was dealt with in the
above way.

Figure 6 shows the main architecture of our model. After the data enhancement
operation, the data were sent to the ResNet backbone to extract the features richly. To better
utilize the features extracted by the backbone, the innovated PANet was used. Additionally,
we utilized a parallel detection method, allowing the target detection head and the dynamic
mask head to detect and segment data at the same time. Moreover, this part adopted a
multihead attention mechanism to extend the ability of both detection and segmentation.
Five pairs of parallel detection heads were used in this paper.
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Figure 6. The QueryPNet model for the flock of geese. The red lines represent the mask branches. The
model has a total of 5 cross-parallel headers. The design for the neck module is shown in Section 2.3.2.

3. Results

To improve the training effect, a round of data augmentation was performed on the
dataset first. The following data augmentation methods were applied to the dataset, as
shown in Table 1.
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Table 1. Data enhancement parameter settings.

Method Setting

CutMix Random

Mosaic
img_scale = (640, 640)

prob = 1.0

RandomFlip flip_ratio = [0.4, 0.4]
direction = [‘horizontal’, ‘vertical’]

RandomColor
level = (0.255)

prob = 0.8

Contrast enhancement
level = (0.90)

prob = 0.8
Rotate level = (0.90)

CenterCrop and RandomCrop crop_size = (512, 256)
prob = 0.8

Multi-scale training height = 1333,
weight = [480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800]

3.1. Experimental Setup

A total of 639 high-quality datasets with pixels of 1920× 1080 were selected, and the
datasets were randomly scrambled and divided into an 8:1:1 ratio of training set, test set,
and validation set, respectively.

The Pytorch framework was chosen to build, optimize, and evaluate the model de-
signed for goose instance segmentation. Table 2 below is the basic equipment information
of the software and hardware used in this paper.

Table 2. Software and hardware requirements.

Software Type/Version Hardware Type/Version

Operating
system Ubuntu20.04 CPU

Intel(R) Xeon(R)
Silver 4208 CPU @ 2.10 GHz

IDE Pycharm GPU NVIDIA Corporation GV100
[TITAN V] (rev a1)

Python version Python3.8 RAM DDR4
Python library Pytorch1.7.0 Hard disk 2 Terabytes

Training Setup
We set the initial learning rate of the model to 0.00025 and used the AdamW optimizer

with a weight decay rate of 0.0001. Meanwhile, due to AdamW’s rapid convergence, we set
epochs to 120 to ensure effective convergence of the validation set.

Inference
Given an input image, the model directly output the top 100 bounding box predictions,

along and their scores and corresponding instance masks, without further postprocessing.
For inference, we used the final stage mask as prediction and ignored all parallel dynamic
tasks in the intermediate stages. The reported inference speed was measured using a single
TITAN V GPU with input resized to be 800 on the short side and less than or equal to 1333
on the long side.

3.2. Performance Evaluation Metrics

To fully verify the accuracy of the model, we conducted a comprehensive and objective
evaluation of our model from the following metrics.

IoU
This was the ratio of the intersection and union of the target predicted and ground-

truth boxes. The ratio was true positives (TPs) divided by TP, the sum of false positives
(FPs) and false negatives (FN). FN meant the prediction was negative, but the flagged result
was positive; FP was a negative situation, while for TP, the prediction was positive. In
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fact, this was also a positive example that the prediction was correct, where pij represented
the number of real values and was predicted to be j, and k + 1 was the number of classes
(including background). pii was the number of values correctly predicted, and p_ij and p_ji
represented FP and FN, respectively. The formula for calculating IoU was as follows:

IoU =
1

k + 1

k

∑
i=0

pii

∑k
j=0 pij + ∑k

j=0 pji − pii

(26)

When IoU was a different threshold, considering the difference in the size of the goose
body in the image, the evaluation indicators in Table 3 were as follows.

Table 3. Description of the evaluation indicators.

Mean Average Precision

IoU = 0.50:0.95 mAP
IoU = 0.50 mAP@0.5
IoU = 0.75 mAP@0.75

mAP Across Scales
mAP for small objects: area < 322 mAP_s

mAP for medium objects: 322 < area < 962 mAP_m
mAP for large objects: area > 322 mAP_l

3.3. Comparison with State-of-the-Art Methods and Results

This paper mainly explored high-precision performance networks that could achieve
goose body detection and segmentation. Therefore, referring to various instance segmenta-
tion networks, we chose the mainstream networks in recent years (Mask R-CNN, YOLACT,
PointRend, SOLO, SOLOv2, BlendMask, QueryInst, and SparseInst) for performance com-
parison with our QueryPNet. For different task networks, the AP values under different
thresholds for the validation set are shown in Tables 4 and 5, and the diagram is shown in
Figure 7.

Table 4. Results for target detection of geese with different networks.

Model mAP mAP@0.5 mAP@0.75 mAP_s mAP_m mAP_l

Mask
0.772 0.934 0.876 0.182 0.739 0.829R-CNN

YOLACT 0.602 0.845 0.700 0.393 0.584 0.661
PointRend 0.786 0.931 0.878 0.259 0.769 0.829
BlendMask 0.761 0.899 0.825 0.420 0.725 0.809
QueryInst 0.790 0.951 0.870 0.132 0.757 0.842

QueryPNet 0.811 0.963 0.893 0.209 0.797 0.857
The best results are in bold for each configuration.

Table 5. Results for segmentation of individual goose instances with different networks.

Model mAP mAP@0.5 mAP@0.75 mAP_s mAP_m mAP_l

Mask
0.651 0.916 0.775 0.050 0.543 0.749R-CNN

YOLACT 0.475 0.799 0.553 0.128 0.317 0.612
PointRend 0.695 0.934 0.836 0.081 0.586 0.791

SOLO 0.599 0.922 0.744 0.218 0.476 0.729
SOLOv2 0.631 0.890 0.786 0.191 0.516 0.768

BlendMask 0.682 0.903 0.799 0.308 0.544 0.810
QueryInst 0.689 0.945 0.823 0.041 0.591 0.785
SparseInst 0.583 0.881 0.690 0.254 0.422 0.700
QueryPNet 0.699 0.963 0.841 0.046 0.598 0.780

The best results are in bold for each configuration.
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Figure 7. (a) Schematic diagram of the results for the detection of goose targets with different
networks. (b) Schematic diagram of the results for the segmentation of individual goose instances
with different networks.

The main purpose of this paper was to study a high-precision target detection and
segmentation network for geese that captured individual geese and achieved accurate
outline extraction of goose instances to facilitate the later study of goose behavior, body
size, count, etc.

After the experiments and analyses of the above results table, we chose to perform
performance enhancement improvements on the query-based QueryInst network and,
ultimately, obtained QueryPNet. Comparing the results of different task networks, the
highest accuracy was achieved in both the detection of geese and the segmentation of goose
instances, which met our research purposes.

The effect images of other models and of the QueryPNet model are shown in Figures 8 and 9.
In the frame selection detection of the target, Mask R -CNN, PointRend, SOLOv2, QueryInst,
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SparseInst, etc. had omissions, false detections, etc. Among these, the YOLACT model
detected and segmented mAP results on our dataset that were significantly lower, and the
segmentation effect was less than ideal, failing to achieve the effect of practical applications.
The QueryInst model could segment a relatively complete goose body area, but the precise
extraction of goose body contours and edge features needed to be improved. From the
visual analysis results in Figures 8 and 9, it can be seen that, after using our QueryPNet
model, more real and accurate details could be generated, more instance information could
be carried, and the misjudged pixels were greatly reduced. The segmented goose body
area, especially the area near the edge of the goose body and the legs, was obviously more
in line with the real goose outline on the original image, while the feature areas segmented
by other models had results of failures, such as transgressions and lack of division.
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In order to analyze the comprehensive performance of QueryPNet, we compared it
with QueryInst. The results are shown in Table 6.

Table 6. Comparison of QueryInst and QueryPNet.

Model Size (Pixel) mAPbbox mAPsegm FLOPs (G) Params (M) FPS

QueryInst 224 0.791 0.694 31.32 176.06 4.8
QueryPNet 224 0.811 0.699 26.03 141.85 7.3

N +0.02 +0.005 −5.29 −34.21 +2.5
“segm” denotes the segmentation of individual goose instances, and “bbox” denotes the target detection of the
flock. FLOPs stands for floating-point operations per second and was used to measure the complexity of the
model; the unit is G, which represents the number of floating-point operations per second in billions. Params is the
total number of parameters to be trained in the network model; the unit is M, which means megabit. N indicates
change. The best results are in bold for each configuration. The FPS data were measured on a single TITAN V
GPU with a batch size of 1.

According to the analysis in Table 6, QueryPNet achieved subtasks with 2% and
0.5% higher mAP values for detection and segmentation, respectively, than the original
model, and the performance in other aspects was also significantly improved. The complex-
ity of the improved model and the cost of training parameters were significantly reduced,
which were 16.89% and 19.43% lower than the original, respectively, and it received a
52.09% improvement in running speed.

4. Discussion

Accurate detection of individual geese and the segmentation of geese is a requirement
for the development of precision animal husbandry and a feasible way to achieve a smart
goose-breeding industry. Automated detection methods based on instance segmentation
techniques can meet multiple needs of the livestock industry, while datasets from fully
stocked models are more complex and informative. In this paper, the following topics
were discussed.

4.1. Contribution and Effectiveness of the Proposed Method

Detection and segmentation were performed through computer vision and image-
based processing methods. At a later stage, individual geese could be analyzed for behavior,
body size, body condition, lameness, etc.; a flock could be counted and group activity
analyzed. This method could effectively increase the scale of goose breeding and reduce
production costs while effectively avoiding the spread of disease and improving the animal
welfare of geese, etc. We built an instance segmentation model based on a goose dataset
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from free-range farms, aiming to accomplish two subtasks to assist other tasks. The dataset
images had both single individual goose and dense geese activities and were disturbed by
natural factors, such as vegetation shading, non-goose animals, water bodies, and debris.
Compared to a captive breeding environment, the background environment was complex.
Therefore, we proposed a more suitable high-precision algorithm with more robustness.
The evaluation of the model showed that the query-based QueryPNet model could achieve
an average accuracy of 0.963 for mAP@0.5. The model allowed for better extraction of goose
body contour features. For example, despite the dense activity of the geese, it was also
possible to detect and well-separate geese with the same body color, effectively avoiding
miscalculation in later counts, etc.

This was a novel application of a query-based target detector and instance segmen-
tation method to the livestock-farming industry. As far as we know, this is the first one.
Therefore, the research in this paper fills this gap to a certain extent and provides a relevant
reference for future research by other authors in this area, which is of practical significance.

4.2. Limitations and Future Developments

It should not be overlooked that the present study still has limitations.
First, the instance segmentation model was large and had more parameters compared

to models for other tasks, e.g., pure target detection, semantic segmentation, classification,
etc., although more subtasks could be implemented. The practical application is more
difficult. The model proposed in this paper had an FPS of only about 7.3, which is suitable
for deployment on high-calculus platforms and is unrealistic for edge devices. This is one
of the directions of our future research: to reduce the model size and the number of training
parameters to reach a level where the breeding condition can be monitored anytime and
anywhere. By improving the model structure in the first stage and pruning, quantizing,
and distilling the training model in the later stage, the model size can be reduced and
unnecessary parameters eliminated while maintaining good performance.

Secondly, this collection of datasets only contained one species of goose. We should
pay attention to the mixed breeding patterns of free-range farms and work on a piece of
target detection to distinguish similar small geese classes under similar large geese classes.
There are many more meat goose breeds that should be studied in as many subdivisions as
conditions allow to avoid unnecessary misidentification. Therefore, we plan to continue to
expand our dataset in the future and use transfer learning for better results in this aspect of
livestock and poultry.

Finally, our model was based on the QueryInst model, which was proposed in 2021
and is an innovative model with novel research ideas. We improved the fusion of the neck
module on this basis, and although good results could be obtained, there are still other,
more superior methods. In future research, we plan to investigate instance segmentation
models in more detail, continue to try to introduce more effective network modules, keep
optimizing the structure of the QueryPNet model, and continue to improve the model
effectiveness, especially in terms of speed.

In summary, this paper explored different algorithms to construct a model suitable
for complex farming methods to achieve automated monitoring, for example, captive
breeding for single species, captive breeding for mixed species, free-range breeding for
mixed species, etc. We also aimed to deploy the model to embedded devices for large-scale
practical applications in the future.

5. Conclusions

A robust goose detection and segmentation algorithm is essential in precision livestock-
farming management. The implementation of an algorithm facilitates the detection of
individual goose behavior and body size, the counting of geese, the extraction of contour
lines, and the efficient and accurate analysis of goose breeding conditions. Therefore, to
achieve accurate information acquisition in a real and complex free-range farm environment,
we proposed a high-precision model. By reasonably designing the neck module of the
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model, more rich features were obtained for effective fusion. At the same time, the overall
performance of the model was optimized to make the new model surpass in complexity,
training cost, and speed based on ensuring high accuracy. Finally, experiments were
conducted on our goose dataset, and the mAP@0.5 for both detection and segmentation
reached 0.963.

For future research, we intend to explore in-depth in terms of accuracy and speed,
aiming to achieve high-precision, real-time instance segmentation.
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