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Triple-negative breast cancer (TNBC) is the most challenging breast cancer subtype for
its high rates of relapse, great metastatic potential, and short overall survival. How can-
cer cells acquire metastatic potency through the conversion of noncancer stem-like cells
into cancer cells with stem-cell properties is poorly understood. Here, we identified the
long noncoding RNA (lncRNA) TGFB2-AS1 as an important regulator of the revers-
ibility and plasticity of noncancer stem cell populations in TNBC. We revealed that
TGFB2-AS1 impairs the breast cancer stem-like cell (BCSC) traits of TNBC cells
in vitro and dramatically decreases tumorigenic frequency and lung metastasis in vivo.
Mechanistically, TGFB2-AS1 interacts with SMARCA4, a core subunit of the SWI/SNF
chromatin remodeling complex, and results in transcriptional repression of its target
genes including TGFB2 and SOX2 in an in cis or in trans way, leading to inhibition of
transforming growth factor β (TGFβ) signaling and BCSC characteristics. In line with
this, TGFB2-AS1 overexpression in an orthotopic TNBC mouse model remarkably abro-
gates the enhancement of tumor growth and lung metastasis endowed by TGFβ2.
Furthermore, combined prognosis analysis of TGFB2-AS1 and TGFβ2 in TNBC
patients shows that high TGFB2-AS1 and low TGFβ2 levels are correlated with
better outcome. These findings demonstrate a key role of TGFB2-AS1 in inhibiting
disease progression of TNBC based on switching the cancer cell fate of TNBC and
also shed light on the treatment of TNBC patients.
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Metastasis is the main cause of death of cancer patients, accounting for more than 90%
of tumor mortality (1). This event is a long and hard process requiring tumor cells to
leave the primary tumor, migrate to a distant site, and colonize the new site to initiate
their growth. Increasing lines of evidence suggest that metastasis is initiated by special-
ized tumor cells that present cancer stem cell (CSC) properties (2, 3). Single-cell line-
age tracing and high-resolution sequencing of tumor samples provide the view that
metastasis relies on epigenetic amplification of cell survival and self-renewal mecha-
nisms (4, 5). Triple-negative breast cancer (TNBC) remains the most aggressive cluster
of all breast cancers due to its rapid progression, high probabilities of early recurrence,
distant metastasis, and resistance to standard treatment (6). However, the precise mech-
anisms of recurrence and metastasis remain unclear.
Long noncoding RNAs (lncRNAs) shape biological activity in various aspects and

are involved in embryonic development, homeostasis maintenance, and promoting or
inhibiting the development of many pathogeneses, including cancers (7). In the cyto-
plasm, lncRNAs act as sponges of microRNAs (8) and guide the translation repressor,
RNA-binding proteins involving in mRNA decay, and active polysomes on the
mRNAs to regulate gene expression after transcription (9–11). Signal transduction
pathways can also be modulated by lncRNAs such as lnc-DC and NKILA, which mask
the sites bound by posttranslational modification (PTM) enzymes or PTM sites
(12, 13). In the nuclei, besides some “architectural RNAs” that function as the scaffold
of nuclear bodies (14), a significant fraction of lncRNAs are associated with chromatin
organization, transcription, and RNA processing (15). They can regulate transcription
by influencing transcriptional factor activity (16), assembling Pol II machineries (17),
and interacting with chromatin modulating proteins such as subunits of SWI/SNF or
polycomb repressive complexes (PRC) (18–20).
Chromatin remodeling is one of the mechanisms essential in dynamic regulation of

gene expression, which is performed by a number of different proteins/protein com-
plexes, among which are multisubunit ATPase-dependent SWI/SNF (switch/sucrose
nonfermentable) complexes. SWI/SNF complex recruits to DNA regions by transcription
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regulators and other proteins, upon which the complex moves
the nucleosomes along the DNA and modifies its accessibility,
allowing gene expression regulation through binding of the tran-
scriptional regulators to exposed DNA (21). Therefore, SWI/SNF
plays a critical role in coordinating chromatin architecture and is a
fundamental epigenetic regulator of gene transcription gene
expression (22, 23). The mammalian SWI/SNF complex exists
in multiple forms characterized by different subunit compo-
sitions. These complexes usually include either SMARCA4
(SWI/SNF-related matrix-associated actin-dependent regulator
of chromatin A4)/BRG1 or SMARCA2/BRM and a set of 6 to
11 other proteins called Brg1/BRM-associated factors (BAFs)
that are essential for binding to DNA or proteins. In humans,
three of these subunits, SNF5 (INI1 for Integrase interactor 1 or
SMARCB1), BAF170/SMARCC2, and BAF155/SMARCC1,
are highly conserved “core” subunits because they are essential
for the ATP-dependent chromatin remodeling activity of the
SWI/SNF complexes together with SMARCA4 (22, 23). It is an
essential event that chromatin status is shaped by the SWI/SNF
complex during somatic cell reprogramming toward induced
pluripotent stem cells by the traditional defined factors (Oct4,
SOX2, myc, and klf4) (24, 25). Therefore, malignant transfor-
mation of tumor cells is always accompanied by acquisition of
cancer stemness properties, in which the SWI/SNF complex
plays an important role (18, 24, 26).
Both transforming growth factor β (TGFβ) and SOX2 play

key roles in the turning point of cell fate (3, 24, 27–30). TGFβ
induces epithelial mesenchymal transition (EMT), enhances the
CSC potential in breast cancer cells (31), presents in invasive
fronts and metastatic niches to support invasion and survival of
tumor cells, and even induces the mesenchymal epithelial tran-
sition that facilitates distant metastatic colonization in breast
cancer (31, 32). SOX2 is a key reprogramming factor (24),
switching non-CSCs to CSCs to facilitate tumor initiatiation
and self-renewal (33).
Herein, we report that lncRNA TGFB2-antisense RNA1

(TGFB2-AS1), which is down-regulated in the TNBC samples
from the patients more prone to have distant metastasis, inter-
acts with SMARCA4 and blocks the complex to approach its
target promoters both in cis and in trans, thus inhibiting the
expression of the target genes, TGFB2 and SOX2, eventually
leading to the inhibition of breast cancer progression.

Results

TGFB2-AS1 Correlates with Prognosis in TNBC. To identify
lncRNAs that play a role in the progression of TNBC, RNA
profiles were performed between human TNBC cell lines
MDA-MB-231 cells (named MDA-231 cells for short) and
MDA-MB-231-LM2 cells (named LM2 cells for short), the lat-
ter presenting significantly enhanced lung metastatic activity
compared to the parental MDA-231 cells (34) (SI Appendix,
Fig. S1). According to the primary data analysis, 5,913
lncRNAs were aberrantly expressed, including 2,855 down-
regulated in the LM2 cells (SI Appendix, Table S1). According
to the criteria as following, the ≥1 of RPKM (expected number
of reads per kilobase of transcript sequence per million base
pairs sequenced) of lncRNAs in at least one of two cell lines
and twofold or greater of the expression level change in LM2
cells compared to MDA-231 cells, in total 16 lncRNAs were
identified to be decreased (Fig. 1A and SI Appendix, Table S2).
With the RNA-sequencing data from The Cancer Genome
Atlas (TCGA) database, we investigated the correlation of
expression levels of these down-regulated lncRNAs with clinical

stages in all breast cancer tissues as well as in basal-like breast
cancer, which lacks or shows low levels of ER, PR, and Her2
proteins. Among all 13 lncRNAs with available expression data
in TCGA, expression of only TGFB2-AS1(NR_046268) but
not the other 12 lncRNAs was negatively correlated to clinical
stages in basal-like breast cancer tissues (Fig. 1B and SI
Appendix, Fig. S2). On the other hand, the analysis from the
GTEx database showed that TGFB2-AS1 was widely expressed
in various normal tissues including normal breast and mam-
mary tissue (SI Appendix, Fig. S3). Therefore, we focused on
the potential roles of TGFB2-AS1 in breast cancers in the fol-
lowing work.

Although a negative correlation between TGFB2-AS1 expres-
sion and clinical stages could be seen in all types of breast cancer
(Fig. 1C), it could not be seen in other subtypes of breast can-
cers (SI Appendix, Fig. S4). Similarly, the expression levels of
TGFB2-AS1 were strongly negatively correlated to the progno-
sis in all breast cancers, especially in basal-like breast cancer
patients, and patients with low levels of TGFB2-AS1 expres-
sion showed poorer prognosis (Fig. 1 D and E). To further vali-
date the clinical relevance of TGFB2-AS1 expression, we detected
the expression level of TGFB2-AS1 by in situ hybridization by
LNA RNA probe in a TNBC tissue microarray including TNBC
tumor cohort 1 with 120 samples and cohort 2 with 161 samples
from Ruijin Hospital. The results showed that stage III tumors
had less positive staining compared to stage I/II samples (Fig. 1
F–H). More importantly, Kaplan–Meier analysis demonstrated
that lower TGFB2-AS1 expression was associated with worse
disease-free survival (DFS) as well as overall survival (OS) in these
two cohorts (Fig. 1 I–L). Taken together, these data implied that
TGFB2-AS1 might play an inhibitory role in TNBC progression.

TGFB2-AS1 Suppresses TNBC Progression in an Orthotopical
Mouse Model. To evaluate the potential roles of TGFB2-AS1
in TNBC, we measured its expression level by real-time PCR
and showed that TGFB2-AS1 was significantly reduced in the
LM2 cells compared to MDA-231(SI Appendix, Fig. S5A).
Then, we generated TGFB2-AS1 stably overexpressed LM2
cells (LM2-AS1) and control cells (LM2-EV) (SI Appendix, Fig.
S5B) and injected them orthotopically into the mammary fat
pad of female NOD-SCID mice. The primary tumor volumes
and weights in LM2-AS1 cells were strikingly depressed com-
pared to LM2-EV cells (Fig. 2 A–C). Furthermore, mice were
given intraperitoneal injection of d-luciferin when alive and
lungs were dissected quickly after death and monitored by bio-
luminescence imaging (BLI) with an IVIS system. The BLI
quantitative data showed that the lung metastasis of LM2-AS1
cells was significantly reduced compared to LM2-EV cells
(Fig. 2 D and E). The hematoxylin–eosin staining in the lung
metastatic foci also demonstrated decreased lung metastasis by
ectopic TGFB2-AS1 expression (SI Appendix, Fig. S5C). Recipro-
cally, MDA-231 cells with TGFB2-AS1 knockdown by two pairs
of different TGFB2-AS1–targeting small interfering RNAs
(siRNAs) (siAS1#1, siAS1#2) grew more quickly in female
mammary fat pad of NOD-SCID mice and more actively dis-
seminated to lung tissue (Fig. 2 F–J and SI Appendix, Fig. S5
D and E). Collectively, these data indicated that TGFB2-AS1
antagonizes TNBC progression in vivo.

TGFB2-AS1 Attenuates CSC Self-Renewal Activity and Inhibits
the Malignant Character of TNBC Cells. To investigate the effect
of TGFB2-AS1 on cell fate transition in TNBC cells, LM2-EV
and LM2-AS1 cells were diluted limitedly (3 × 104∼2) and inoc-
ulated subcutaneously into female BALB/c nude mice respectively
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Fig. 1. Identification of lncRNA TGFB-AS1, which is associated with good prognosis in TNBC patients. (A) Heat-map representation of lncRNAs that are
differentially expressed in MDA-231 cells and LM2 cells. The red arrow points to TGFB2-AS1. (B and C) TGFB2-AS1 expression of stage I/II compared with
stage III/IV in basal (B) and all subtypes of breast cancers (C) analyzed using the TCGA database. (D and E) Kaplan–Meier analyses of the correlation
between TGFB2-AS1 levels and the overall survival in patients with all subtypes (D) and basal-like (E) breast cancer using the TCGA database (log rank test).
(F) Representative images of ISH staining of TGFB2-AS1 in stage I/II and stage III in TNBC tissues from cohort 1. (Scale bar, 200 μm.) (G and H) TGFB2-AS1 ISH
score quantitative data of stage I/II compared with stage III/IV in TNBC tissues from cohort 1 (G) and cohort 2 (H). (I–L) Kaplan–Meier analyses of the
correlation between TGFB2-AS1 levels and the DFS (I and J) and OS (K and L) in two TNBC cohorts (log rank test). Error bars represent mean ± SEM,
*P < 0.05. Statistical significance was assessed using two-tailed Student’s t test. Determination of the optimal cutoff value for predicting survival was
performed using X-tile bioinformatics software version 3.6.1.
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to determine the tumor-initiating cell frequency. The results
showed that TGFB2-AS1 cells presented dramatically decreased
tumorigenic frequency with 1/5,775 to 1,321 and 1/54,503 to
12,647, respectively, for LM2-EV and LM2-AS1 cells, together
with decreased tumor volumes and weights (Fig. 3 A and B and
SI Appendix, Fig. S6 A and B). As is well known, CSC may con-
tribute to tumor initiation, metastasis, and recurrence (35).
Hence, we surveyed the CSC self-renewal activity between
LM2-EV and LM2-AS1 cells and revealed that LM2-AS1 cells
showed significantly weaker ability of soft agar colony formation
(Fig. 3C), mammosphere formation (Fig. 3D), and plate colony
formation (SI Appendix, Fig. S6C). In agreement, the messenger
RNA (mRNA) and/or protein expression levels of CSC markers
SOX2, NANOG, Oct4, and ALDH1A1 were decreased in the
LM2-AS1 cells (Fig. 3E and SI Appendix, Fig. S6 D and E). On
the other hand, MDA-231 cells with TGFB2-AS1 knockdown as
aforementioned presented significantly enhanced ability of soft
agar colony formation, mammosphere formation, and plate col-
ony formation as well as increased expression levels of CSC
markers SOX2, NANOG, Oct4, and ALDH1A1(Fig. 3 F–I and
SI Appendix, Fig. S6 F and G). Collectively, TGFB2-AS1 attenu-
ates CSC self-renewal activity of TNBC cells.
We continued to survey other malignant characters of cancer

cells. Toward this end, the LM2-EV and LM2-AS1 cells were
cultured on Matrigel, which mimics a three-dimensional tumor
microenvironment (36), and the results revealed that the num-
bers and invasion distance of pseudopods in LM2-AS1 cells
were reduced than in LM2-EV cells (Fig. 3J). Also, the ability

to pass through the transwell chambers with or without Matri-
gel were repressed in LM2-AS1 cells (SI Appendix, Fig. S6 H
and I). Likewise, ectopic TGFB2-AS1 expression inhibited the
growth of LM2 cells (Fig. 3K). Conversely, MDA-231 cells
with TGFB2-AS1 knockdown showed increased numbers and
invasion distance of pseudopods (Fig. 3L) and more easily
passed through the chambers (SI Appendix, Fig. S6 J and K)
and more increased proliferation (Fig. 3M). Additionally, we
also detected two other TNBC cell lines, SUM159PT and
BT-549, as well as one luminal cell line, BT474, and showed
that the TGFB2-AS1 knockdown remarkably promoted colony
formation, mammosphere formation, migration, and cell prolif-
eration of both SUM159PT and BT-549 cells but not BT474
cells (SI Appendix, Fig. S7). Unexpectedly, TGFB2-AS1 knock-
down also remarkably promoted colony formation, cell prolifera-
tion, and sphere formation of MCF-10A cells (SI Appendix, Fig.
S8), an immortal, nontransformed cell line which has many fea-
tures of basal progenitor cells and may represent a multipotent
lineage (37). All these results suggested that TGFB2-AS1 impairs
the malignant character of TNBC cells.

TGFB2-AS1 Interacts with Chromatin Remodeling Complex
SWI/SNF. Considering that lncRNAs often exert their functions
through RNA-interacting proteins (38), we employed RNA-
pulldown assays between MDA-231 cells transfected with
pCDNA3.1-TGFB2-AS1-4×S1m (4×S1m-AS1) and pCDNA3.1-
4×S1m (4×S1m) (39) to explore possible TGFB-AS1–binding
proteins. One overtly differential band around 200 kDa appeared
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Fig. 2. TGFB2-AS1 suppresses breast cancer
tumorigenesis and lung metastases in vivo. (A–E)
LM2-AS1 cells and the LM2-EV cells were trans-
planted orthotopically into mammary fat pad
of female NOD/SCID mice, and tumor growth
(A), tumor weight (B), tumor morphology (C), BLI
images of lung metastasis (D), and its quantitative
data (E) at 68 d after orthotopic injection are
shown. n = 8 or 10 per group. (F–J) MDA-231
cells with TGFB2-AS1 knockdown by shAS1#1 or
shAS1#2 and their control cells (shNC) were trans-
planted orthotopically into mammary fat pad of
female NOD/SCID mice, and tumor growth (F),
tumor weight (G), tumor morphology (H), and BLI
image of lung metastasis (I) and its quantitative
data (J) at 52 d after orthotopic injection are
shown (n = 6 per group). Data are presented as
means ± SEM (n = 6 to 10). Statistical significance
was assessed using two-tailed Student’s t test.
*P < 0.05. **P < 0.01.
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by Coomassie bright blue staining, and mass spectrometry assay
identified the band as SMARCA4 (Fig. 4A), a core subunit of
chromatin remodeling complex SWI/SNF (7). Western blot analy-
sis proved SMARCA4 as well as the other core subunits of SWI/
SNF complex BAF170 and SNF5 in the TGFB2-AS1-pulled
down complex (Fig. 4B). Consistently, the TGFB2-AS1–protein
complex was further validated by anti-SMARCA4, BAF170, and
SNF5 antibody-based RNA immunoprecipitation (RIP) fol-
lowed by qPCR analysis (Fig. 4C–E). Subcellular fractionation
showed that TGFB2-AS1 transcript distributes in both nucleus
and cytoplasm of MDA-231 cells (SI Appendix, Fig. S9A) and
fluorescence in situ hybridization (FISH) of TGFB2-AS1 com-
bined with immunofluorescence of SMARCA4 indicated that
TGFB2-AS1 and SMARCA4 could colocalize in the nucleus of
MDA-231 cells (SI Appendix, Fig. S9B). Furthermore, to inves-
tigate if TGFB2-AS1 impacts the integrity of the SWI/SNF
complex, we performed coimmunoprecipitation experiments of
the three core subunits of the SWI/SNF complex in the
TGFB2-AS1 knockdown MDA-231 cells. The result showed
that TGFB2-AS1 knockdown had no obvious effect on the
interaction between SMARCA4, BAF170, and SNF5, which

indicated that TGFB2-AS1 may not impact the integrity of the
SWI/SNF complex (SI Appendix, Fig. S9C). Collectively, these
data suggested that TGFB2-AS1 interacts with the SWI/SNF
chromatin remodeling complex.

TGFB2-AS1 Interacts with the N Terminus of SMARCA4
through its Exon 3. To clearly decipher the binding region of
SMARCA4 with TGFB2-AS1, MDA-231 cells were transfected
respectively with full-length Flag-SMARCA4 or its five trunca-
tions fused to Flag tag, followed by the RIP assay. The results
demonstrated that N-terminal fragment of SMARCA4 was essen-
tial for its interaction with TGFB2-AS1 (Fig. 4 F–H). We also
mapped the TGFB2-AS1 functional motifs corresponding to
SMARCA4 binding using a series of truncated TGFB2-AS1 frag-
ments according to its secondary structure of TGFB2-AS1, which
was predicted based on minimum free energy (Fig. 4 I and J and
SI Appendix, Fig. S9D). In vitro RNA pull-down assay revealed
that exon 3 of TGFB2-AS1 (TGFB2-AS1 290 to 557 nucleoti-
des) was sufficient to interact with SMARCA4 protein (Fig. 4J).
Collectively, TGFB2-AS1 interacts with the N-terminal region of
SMARCA4 through its exon 3.

A

C D E

F

I

J K M

L

G H

B

Fig. 3. TGFB2-AS1 impairs breast cancer cell
stemness. (A) LM2-AS1 and LM2-EV cells were
diluted as indicated and subcutaneously
implanted into BALB/c nude mice. Tumor-
initiating cell frequency and P value for limiting
dilution xenograft analysis was calculated on the
website https://bioinf.wehi.edu.au/software/elda/.
n = 9 or 10 for each group. (B) Representative
image showing 3 × 104 group of limiting dilution
xenograft analysis. (C and D) Soft agar colony for-
mation assay (C) and mammosphere assay (D)
between LM2-EV and LM2-AS1 cells with images
(Left; scale bar, 200 μm) and values (Right). (E) The
expressions of stemness-related genes were
detected in LM2-AS1 cells using qPCR. (F–I) Repre-
sentative images (Left; scale bar, 200 μm) and val-
ues (Right) of soft agar colony formation assay (F).
Representative images (Left; scale bar, 200 μm)
and values (Right) of mammosphere assay (G), the
expression of stemness-related genes detected
using qPCR (H), and the representative images of
immunofluorescence staining for SOX2 and
Nanog (I) in TGFB2-AS1–silenced MDA-231 cells
and their control cells (MDA-231-siNC). (J) Repre-
sentative images (Left; scale bar, 50 μm) and val-
ues (Right) of the stellate pseudopod of LM2-EV
and LM2-AS1 cells cultured on Matrigel on day 6.
(K) Cell proliferation curves in LM2-EV and LM2-
AS1 cells. (L) The images (Left; scale bar, 50 μm)
and values (Right) of stellate pseudopod in TGFB2-
AS1 silenced MDA-231 and their control cells cul-
tured on Matrigel on day 8. (M) Cell proliferation
curves in TGFB2-AS1–silenced MDA-231 cells.
Error bars represent mean ± SD (n = 3 to 6). Sta-
tistical significance was assessed using two-tailed
Student’s t test. *P < 0.05. **P < 0.01. ***P <
0.001. ns, not significant.
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TGFB2-AS1 Antagonizes the Transcription-Regulating Activity
of the SWI/SNF Complex. It is known that the SWI/SNF com-
plex regulates gene transcription by binding to promoter loci to
facilitate or hamper gene transcription (40). Hence, we performed
chromatin immunoprecipitation followed by high-throughput
sequencing (ChIP-seq) for SMARCA4 in MDA-231-siAS1 and
MDA-231-siNC cells. In contrast to the control group, TGFB2-
AS1 silence significantly enhanced the activity of SMARCA4
binding to promoters (Fig. 5 A and B). In total 2,988 genes were
occupied by SMARCA4 in TGFB2-AS1 knockdown cells accord-
ing to ChIP-seq data. In order to identify the genes that are regu-
lated together by TGFB2-AS1 and SMARCA4, we performed
transcriptome microarray analysis in MDA-231-siAS1 and MDA-
231-siNC cells (SI Appendix, Fig. S10 A) and found that 2,702
and 2,092 genes were respectively up-regulated and down-
regulated in the MDA-231-siAS1 cells relative to MDA-231-siNC
cells (fold change ≥1.5; P < 0.05) (Fig. 5C). Canonical signal
pathway analysis revealed that the deregulated genes were enriched

for TGFβ signaling, mouse embryonic stem cell pluripotency,
and other signaling pathways (Fig. 5D). Furthermore, the top
upstream regulators were predicted by Ingenuity Pathway Analysis
(IPA) using the data of microarray assay. Of interest, SMARCA4
was listed as second-highest upstream regulator and regulated 58
target genes (Fig. 5 E and F). By overlapping 2,988 genes which
were occupied by SMARCA4 in TGFB2-AS1 knockdown cells
from ChIP-seq assay and the 58 SMARCA4 targeting genes, 12
genes emerged including TGFB2 and SOX2 (Fig. 5G).

To address whether TGFB2-AS1 antagonizes SMARCA4
activity in regulating TGFB2 transcription, we revealed that
SMARCA4 overexpression up-regulated TGFB2 mRNA and
protein expression. Of great interest, the SMARCA4-induced
TGFB2 up-regulation could be significantly antigonized by
TGFB2-AS1 overexpression in MDA-231 cells (Fig. 5H). To
further testify the antagonizing effect of TGFB2-AS1 on
SMARCA4 in facilitating TGFB2 transcription, we cloned the
promoter of TGFB2 (�500 bp to +2,500 bp) into an episomal
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Fig. 4. TGFB2-AS1 interacts with SMARCA4. (A)
RNA-pulldown assay to identify TGFB2-AS1 bind-
ing proteins in MDA-231 cells. The arrow and red
bracket indicate the band representing the
TGFB2-AS1 specific binding protein identified by
mass spectrometry as SMARCA4. (B) Western blot
identifying SMARCA4, BAF170, and SNF5 present
in TGFB2-AS1 pull-down precipitates with Lamin
B1 and β-tubulin as negative controls. (C–E) The
interaction of TGFB2-AS1 with SMARCA4 (C, a
semiquantitative RT-PCR was inserted), BAF170
(D), and SNF5 (E) was verified by an RIP assay
together with U6 and GAPDH as negative con-
trols. (F) Schematic representation of Flag-tagged
full-length human SMARCA4 and its deletion
mutants. (G) The anti-Flag Western blot images
showing expressions of full-length or deleted
SMARCA4 in MDA-231 cells. (H) RIP and subse-
quent RT-PCR assays in MDA-231 for TGFB2-AS1
enrichment of human full-length SMARCA4 and
its deletion mutants. (I) Schematic representation
of full-length and various truncated TGFB2-AS1. (J)
Western blot showing SMARCA4, BAF170, and
SNF5 pulled down by full-length and various trun-
cated TGFB2-AS1. Error bars represent mean ±
SD (n = 3). Statistical significance was assessed
using two-tailed Student’s t test. ***P < 0.001.
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sent mean ± SD (n = 3). Statistical significance was assessed using two-tailed Student’s t test. ***P < 0.001.
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luciferase reporter, pREP4, which allows promoter chromatini-
zation (41). As expected, the SMARCA4 activity was reduced
by ectopic expressing TGFB2-AS1 (Fig. 5I).
The ChIP-seq revealed that TGFB2-AS1 knockdown signifi-

cantly increased SMARCA4 binding to TGFB2 promoter (Fig.
6A). The binding capacity of SMARCA4 to �430 to �352 bp
segment of TGFB2 promoter was enriched in TGFB2-AS1 knock-
down cells (Fig. 6B). Furthermore, H3K4Me3 and H3K27Ac
were enriched at the gene promoter that denotes the activation of
the TGFB2 gene (Fig. 6 C and D). Altogether, the above results
demonstrated that TGFB2-AS1 antagonizes the transcription-
regulating activity of the SWI/SNF complex.

TGFB2-AS1 Suppresses the TGFβ2 Signal Pathway in TNBC Cells.
To further investigate the whole landscape of the TGFB2-
AS1–regulated genes and their effects on TNBC progression, we
analyzed the two expression profiles of TGFB2-AS1 knockdown
MDA-231 cells and TGFB2-AS1 overexpressed LM2 cells. Gene
set enrichment analysis (GSEA) revealed that TGFB2-AS1
knockdown was closely associated with the activated TGFβ sig-
nal pathway (Fig. 6 E and F), while TGFB2-AS1 overexpression
was related to the inhibited TGFβ signal pathway (SI Appendix,

Fig. S10B). Of note, TGFβ2 rather other two TGFβ members,
TGFβ1 and TGFβ3, was up-regulated in MDA-231-siAS1 cells
and was down-regulated in LM2-AS1 cells (Fig. 6 G and H and
SI Appendix, Fig. S10C). In addition, Western blot showed that
the expression levels of pSmad2/3 and pSmad1/5 were signifi-
cantly up-regulated in MDA-231 cells by the conditional
medium (CM) from MDA-231-siAS1 cells compared to their
control CM (Fig. 6I). On the contrary, the levels of pSmad2/3
and pSmad1/5 were reduced by the CM from LM2-AS1 cells
compared to their control CM (Fig. 6J). Altogether, TGFB2-
AS1 suppresses the TGFβ2 signal pathway in TNBC cells.

TGFB2-AS1 Reverses CSC Signaling in TNBC Cells. Furthermore,
both IPA and GSEA indicated that TGFB2-AS1 knockdown
was closely associated with stem cell traits (Figs. 5D and 7A),
while the two iPS pioneer transcription factors SOX2 and
NANOG were up-regulated by 2.2-fold and 3.89-fold, respec-
tively, in the microarray profiles of MDA-231-siAS1/MDA-
231-siNC cells (Fig. 7B). ChIP-seq data also revealed that
SMARCA4 bound to the SOX2 gene promotor (Fig. 7C),
which could be validated by ChIP-qPCR (Fig. 7D). H3K4Me3
and H3K27Ac enrichment at the SOX2 gene promotor in
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Fig. 6. TGFB2-AS1 suppresses TGFβ2 signaling in
TNBC cells. (A) Schematic view of SMARCA4 occu-
pancy around TGFB2-AS1 and TGFB2 genomic locus
from ChIP-seq in MDA-231 cells with knockdown of
TGFB2-AS1. Blue indicates siNC group and pink indi-
cates siB2-AS1 group. H3K4Me3 and H3K27Ac his-
tone mark were displayed on four cell lines from
ENCODE, on the layered H3K4Me3 and the layered
H3K27Ac tracks respectively. Each color represents
one cell line. (B) ChIP-qPCR shows the binding effi-
ciency of SMARCA4 to the TGFB2 promoter region
using three primers in MDA-231 cells transfected
siAS1. (C and D) ChIP-qPCR shows the H3K4me3
and H3K27Ac levels of the TGFB2 promoter region
using three primers in MDA-231 cells transfected
siAS1. Error bars represent mean ± SD (n = 3).
(E) GSEA of microarray profiles from MDA-231 with
TGFB2-AS1 knockdown matching with TGFβ acti-
vated gene set. (F) Heat-map representation of
up-regulated genes relating TGFβ signaling pathway
in TGFB2-AS1 knockdown group comparing control
group from IPA. RT-PCR and Western blot assay
show TGFB2 mRNA and protein expression in MDA-
231 cells after transfected with two TGFB2-AS1 siR-
NAs (G) and LM2 cells overexpressed TGFB2-AS1
(H). Western blot analysis shows P-SMAD2/3 and
P-SMAD1/5 protein levels after treated with CM col-
lected from MDA-231 cells after TGFB2-AS1 knock-
down (I) or LM2 cells TGFB2-AS1 overexpression (J),
and SMAD1/5, SMAD2/3, and β-actin work as inter-
nal control. Error bars represent mean ± SD (n = 3).
Statistical significance was assessed using two-
tailed Student’s t test. ***P < 0.001.
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TGFB2-AS1 silenced cells which symbolized the active gene
(Fig. 7 E and F). Moreover, the mRNA and protein of both
SOX2 and NANOG were up-regulated in MDA-231-siAS1
cells and down-regulated in LM2-AS1 cells compared to their
control cells (Fig. 7 G and H). As expected, SOX2 and
NANOG were also up-regulated in the LM2 cells vs. their par-
ent MDA-231 cells (Fig. 7I). Given that the SOX2 gene is
located in chromosome 3 far from TGFB2-AS1, we suggest
that TGFB2-AS1 restrained SOX2 expression in an in trans
manner. Collectively, our results propose that TGFB2-AS1
inhibits both TGFβ2 and CSC signaling in TNBC cells.

TGFB2-AS1 Impairs the Malignant Character of TNBC through
TGFβ2 and SOX2. To test whether the inhibitory effects of
TGFB2-AS1 on TNBC are dependent on TGFB2 and/or
SOX2, we abrogated the up-regulation of TGFB2 by siRNA
targeting TGFB2 (siTGFB2) in MDA-231-siAS1 cells (SI
Appendix, Fig. S11 A and B). Consequently, TGFB2 knock-
down successfully abrogated the increased capability of migra-
tion, invasion, and colony formation induced by siAS1 (SI
Appendix, Fig. S11 C–E). In the same way, when SOX2 expres-
sion was knocked down with high efficiency in MDA-231-
siAS1 cells, the increased capability of invasion as well as
the capability of colony formation induced by siAS1 were suc-
cessfully abolished (SI Appendix, Fig. S12 A–C). Altogether,
TGFB2-AS1 reverses the malignant character of TNBC by
inhibiting both TGFβ2 signal pathway and CSC characteristics.

TGFB2-AS1 Reverses TGFβ2-Promoted TNBC Development.
Finally, TGFβ2- or/and TGFB2-AS1–overexpressed LM2
cells (LM2-TGFβ2, LM2-AS1, and LM2-AS1+TGFβ2) were
stably generated (SI Appendix, Fig. S13 A and B). Cells were
injected orthotopically into the mammary fat pad of female
NOD-SCID mice. TGFβ2 promoted orthotopic tumor
growth (Fig. 8 A–C) and tumor cell diffusion to the lung tis-
sues (Fig. 8 D and E). TGFB2-AS1 not only remarkably sup-
pressed the tumor growth and lung metastasis of LM2 as the
given results but also abrogated the enhancement of tumor
growth (Fig. 8 A–C) and lung metastasis (Fig. 8 D and E)
endowed by TGFβ2.

To investigate the clinical significance of TGFB2-AS1 inhib-
iting TGFβ2 signal, we performed in situ hybridization (ISH)
analysis to detect TGFB2-AS1 expression and immunohisto-
chemistry analysis to detect TGFβ2 expression in TNBC speci-
mens. The results revealed that TGFB2-AS1 was negatively
correlated with TGFβ2 (Fig. 8 F and G). As expected, patients
with high TGFβ2 expression tended to have poorer prognosis,
as demonstrated by log-rank tests of the Kaplan–Meier curves
(Fig. 8H). Combined prognosis analysis of TGFB2-AS1 and
TGFβ2 showed that patients with high TGFB2-AS1 and low
TGFβ2 levels correlated with better OS and better DFS than
the patients with low TGFB2-AS1 and high TGFβ2 levels
(Fig. 8 I and J). In total, our results proposed that TGFB2-AS1
downregulating TGFβ2 plays a key role in inhibiting disease
progression of TNBC.
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Discussion

The malignant progression of tumors is the result of the accu-
mulation of alterations of tumor-related genes, including activa-
tion of oncogenes or/and inactivation of tumor suppressor genes
(42, 43). Herein, the transcriptomes from two breast cancer cell
lines, LM2 and its parental cell MDA-231, were compared by
deep sequencing and we found that TGFB2-AS1 was signifi-
cantly down-regulated in LM2 cells which are strongly prone to
lung metastasis (34). Consistently, lower TGFB2-AS1 expression
levels are associated with advanced tumor stage and poor prog-
nosis. Moreover, the potential of CSCs and lung metastasis was
induced significantly when TGFB2-AS1 was knocked down by
siRNA, while they were dramatically suppressed under exoge-
nously TGFB2-AS1 overexpression in vitro and in vivo.
With the application of techniques such as next-generation

sequencing, large numbers of heterozygous or homozygous
SWI/SNF subunit mutations have been identified in a large
variety of human cancers, suggesting that one or more of the
multiple SWI/SNF functions protect against tumorigenesis, as
reviewed in refs. 21 and 44. For example, loss-of-function
mutations in genes encoding subunits of SWI/SNF complexes,
such as the AT-rich interaction domain 1A (ARID1A), are
prevalent in cancer, occurring in 20 to 25% of all human
malignancies, and these mutations frequently drive oncogenic
programs (45). SMARCA4 mutations, including class I
SMARCA4 alterations (truncating mutations, fusions, and
homozygous deletion) that cause loss of function and class II
alterations (missense mutations) that have a dominant negative
effect and/or loss of function have been identified in a variety
of adult-onset epithelial and mesenchymal neoplasms (46).
Therefore, drugs exploiting genetic and epigenetic mechanisms
of SMARCA4 antagonism hold promise for future targeted
therapies (47). Although these mutations in SWI/SNF subunits
including SMARCA4 were present at low frequency (less than
10%) in TNBC (48), we identified that SMARCA4 interacted
with TGFB2-AS1, which has been reported to associate with
EED, a PRC2 adaptor (49). Besides SMARCA4, the other core
subunits of the SWI/SNF complex including BAF170 and
SNF5 were also shown to interact with TGFB2-AS1. However,
whether these interactions are dependent on SMARCA4
remains to be further investigated. Especially, TGFB2-AS1
inhibits the transcription-regulating activity of SWI/SNF via
interaction with SMARCA4 and results in transcriptional
repression of its target genes including TGFB2 and SOX2. That
should be an alternative mechanism for the chromatin remodel-
ing besides the loss-of-function mutations of SWI/SNF subu-
nits. Meanwhile, we have proved that TGFB2-AS1 directly
interacted with the N-terminal region of SMARCA4 through its
exon 3 and the N-terminal region contains at least three
domains including the QLQ domain, HSA domain, and BRK
domain. The HSA domain is reported to mediate intracomplex
protein–protein interactions between SAMRCA4 and other sub-
units of the SWI/SNF complex and is required for SAMRCA4-
dependent transcriptional activation (50, 51). Thus, there was a
possibility that BAF170 and SNF5 interacted with TGFB2-AS1
through their interaction with SMARCA4, but further investiga-
tion needs to be conducted to decipher the detailed molecular
mechanism (24, 25, 52).
This story suggested a more complicated regulating network

TGFB2-AS1 might involve in the determination of TNBC cell
fate. GSEA also revealed that TGFB2-AS1 was closely associated
with EMT-related gene signature (SI Appendix, Fig. S14 A and
B). In addition, TGFB2-AS1 down-regulation is correlated with

WU_CELL_MIGRATION (migration) (53) and VANTV-
EER_BREAST_CANCER_POOR_PROGNOSIS as well (54)
(SI Appendix, Fig. S14 C and D), and these gene sets are all
closely related to tumor progression. Our results showed that
mesenchymal markers like slug, vimentin, and fibronection were
up-regulated and the epithelial marker β-catenin was down-
regulated, as expected. However, E-cadherin, a recognized epi-
thelial mark, was slightly up-regulated in MDA-231-siAS1 cells
versus control cells (SI Appendix, Fig. S14E). This point is con-
sistent with the need that cancer cells develop overt metastasis in
distant organs (27, 32, 55–57) and are also strongly associated
with success of cell reprogramming and self-renewal (24, 25).

The protein level of SMARCA4 in the MDA-231-siAS1 cells
versus control cells was also investigated and the result indi-
cated that knockdown TGFB2-AS1 had no influence on the
protein level of SMARCA4 (SI Appendix, Fig. S14F). However,
the protein level of SMARCA4 in LM2 cells was higher than
that in MDA-231cells (SI Appendix, Fig. S14G), which sug-
gested that the expressive regulation of SMARCA4 was compli-
cated and further investigation needs to be conducted.

TGFβ signaling plays key roles in cancer progression through
its effects on gene expression, release of immunosuppressive
cytokines, and epithelial plasticity and thus enhances cancer cell
invasion and dissemination, CSC properties, as well as thera-
peutic resistance (58). Drugs targeting TGFβ signaling have
received tremendous attention for late-stage cancer treatment
during the past decades. However, targeting TGFβ signaling
for cancer therapy is challenging because of its double-edged
sword effect in tumor initiation and progression. Different
approaches toward selective inhibition of TGFβ signaling
should be considered in order to enhance effectiveness and
reduce its toxicity. Our results revealed that lncRNA TGFB2-
AS1 remarkably abrogated the enhancement of tumor growth
and lung metastasis endowed by TGFβ2 in an orthotopically
injected TNBC mouse model, which could provide a new
potential therapy strategy in TNBC treatment.

In summary, our work reveals a mechanism that TGFB2-
AS1 switches cell fate depending on both TGFβ2 and CSC sig-
naling through antagonizing the SWI/SNF complex, thereby
suppressing TNBC metastasis (Fig. 8K). The importance of
cooperative activity of TGFβ2 and CSC signal pathways
emphasizes the regulatory mechanism of the lncRNA in cis and
in trans in the same cellular event. The identification of
TGFB2-AS1 determining cancer cell fate aids in advancing our
understanding of the basic biology of cancer and also sheds
light to the treatment of TNBC patients.

Materials and Methods

Clinical Samples. Human breast cancer samples with informed consent were
collected from the Comprehensive Breast Health Center, Shanghai Ruijin Hospi-
tal of Shanghai Jiao Tong University School of Medicine. Use of human tissues
was approved by the research ethnics committee of Shanghai Jiao Tong Univer-
sity School of Medicine. The data for the TCGA and GTEx cohort of breast cancer
was obtained from GEPIA (Gene Expression Profiling Interactive Analysis; http://
gepia.cancer-pku.cn/) or downloaded from https://xena.ucsc.edu/public/.

ChIP-Seq. ChIP-Seq was performed by Novogene. ChIP-Seq reads were mapped
to the human reference genome (UCSC hg19) using Bowtie 2 version 2.3.5 with
default parameters. Peaks were called with MACS2 version 2.1.2. Metagene pro-
file plots and heat maps were generated from the Galaxy platform using deep-
Tools2 version 3.3.0 (59).

Statistical Analyses. The statistical analyses were performed using GraphPad
Prism version 7 software. Significance was calculated using unpaired two-tailed
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Student’s t test. Data are represented as mean ± SEM or ± SD with at least
three independent experiments. The survival curve was evaluated using the
Kaplan–Meier method with a log-rank test. For all figures, statistical significance
was represented as *P < 0.05, **P < 0.01, and ***P < 0.001.

Data, Materials, and Software Availability. All study data are included in
the article and/or supporting information.
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