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Abstract: In the past, several animal disease models were developed to study the molecular mecha-
nism of neurological diseases and discover new therapies, but the lack of equivalent animal models
has minimized the success rate. A number of critical issues remain unresolved, such as high costs for
developing animal models, ethical issues, and lack of resemblance with human disease. Due to poor
initial screening and assessment of the molecules, more than 90% of drugs fail during the final step of
the human clinical trial. To overcome these limitations, a new approach has been developed based
on induced pluripotent stem cells (iPSCs). The discovery of iPSCs has provided a new roadmap for
clinical translation research and regeneration therapy. In this article, we discuss the potential role of
patient-derived iPSCs in neurological diseases and their contribution to scientific and clinical research
for developing disease models and for developing a roadmap for future medicine. The contribution
of humaniPSCs in the most common neurodegenerative diseases (e.g., Parkinson’s disease and
Alzheimer’s disease, diabetic neuropathy, stroke, and spinal cord injury) were examined and ranked
as per their published literature on PUBMED. We have observed that Parkinson’s disease scored
highest, followed by Alzheimer’s disease. Furthermore, we also explored recent advancements in the
field of personalized medicine, such as the patient-on-a-chip concept, where iPSCs can be grown on
3D matrices inside microfluidic devices to create an in vitro disease model for personalized medicine.

Keywords: induced pluripotent stem cells (iPSCs); Alzheimer’s disease; Parkinson’s disease; diabetic
neuropathy; spinal cord injury; personalized medicine

1. Introduction

The discovery of induced pluripotent stem cells (iPSCs) technology in 2007 revolu-
tionized pre-clinical research and allowed the development of in vitro disease models for a
wide range of disorders, such as neurodegenerative disease, diabetes mellitus, and heart,
liver, lung, and kidney disease [1]. To bridge the gap between pre-clinical research and
human clinical trial, it is essential to create a more appropriate drug discovery system. The
reprogramming of differentiated cell types such as patients’ fibroblast or peripheral blood
mononuclear cells (PBMCs) into pluripotent stem cells has been developed and used for
drug screening, which has dramatically improved the disease model system for in vitro
drug analysis. The application of this technology is used to study neurological diseases
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such as Alzheimer’s disease (AD), Parkinson’s disease (PD), spinal cord injury (SCI), amy-
otrophic lateral sclerosis (ALS), multiple sclerosis, and ataxia. It also allows scientists to
perform research and understand the effect of newly discovered drugs on complex tissues
of human origin, such as brain and cardiac tissues, which are difficult to obtain. In this
model, patient-specific iPSCs cell lines are obtained from biopsies or blood cells and main-
tained. These iPSCs are reprogrammed into specific cell types of interest, thus reiterating
the disease condition in vitro in a Petri dish. The proliferation and differentiation ability
of human-iPSCs provides an opportunity to use this disease model for understanding the
physiology of affected cell types in tissue culture plates. Additionally, this model can be
used to screen and identify disease-specific drugs in vitro in a Petri dish. These pre-clinical
studies on Petri dishes have provided the first proof of concept and a feasible option for
understanding the molecular mechanism of diseases and screening potential molecules
for drug development and cytotoxicity studies. The platform for large-scale in vitro drug
screening of chemical libraries was called the “disease to Petri dish model” [2,3].

Interestingly, the drug candidates entering into human clinical trials are only those
drugs that were screened and pre-tested in pre-clinical research. Ideally, these candidates
must work in human clinical trials due to their strict assessment criteria in pre-clinical
research. However, a vast inconsistency has been observed during human clinical trials
versus pre-clinical research. For example, despite high funding opportunities for clinical
trials, up to USD 42.5 billion, the outcomes have been negative, with a 95% failure rate in
AD. Moreover, only six drugs indicated for AD were approved by the US Food and Drug
Administration (FDA) between 1995 and 2021 [4].

In this review, we discuss the contribution of human iPSCs in scientific and clinical
research. To understand the role of human iPSCs in scientific research, we have examined
and ranked the most common neurodegenerative diseases, such as PD and AD, diabetic
neuropathy, stroke, and spinal cord injury; the results are based on published literature
on PUBMED.

We also explore recent iPSCs-related advances in the field of clinical research and
discuss the role of iPSCs in cellular therapy, personalized medicine, and ongoing clinical
trials on PD and AD.

2. Brief History of iPSCs

The existence of stem cells came into the picture in 1961 when Till et al. described the
ability of mouse bone marrow to grow and differentiate into a variety of cell types, later
termed pluripotent stem cells [5]. Sir John Gurdon, in 1962, demonstrated for the first time
the cellular reprogramming of enucleated unfertilized frog egg cells that were transplanted
with the nucleus from epithelial somatic cells of tadpole’s intestine. This reprogramming
method was termed somatic cell nuclear transfer (SCNT) [6] and led to the birth of cloning,
followed by the somatic cloning of Dolly the sheep in 1997 at the Roslin Institute of the
University of Edinburgh in Scotland [7]. This was a breakthrough in the history of stem cell
research. This scientific progress in the field of cloning proved that a whole organism could
be generated by differentiated somatic cells through egg cells that contain all the necessary
factors for reprogramming. In 1998, James et al. isolated human embryonic stem cells for
the first time from human blastocysts [8].

The two major discoveries (i.e., the generation of mouse embryonic stem cells (ESCs)
cell lines in 1981 and the generation of human ESCs in 1998) have thrown light on ESC
capabilities to develop the pluripotent state in any somatic cells of the body [8,9]. In
2001, Tada et al. demonstrated that reprogramming could also be achieved by cell fusion
of somatic cells with embryonic stem cells. The fused cell was capable of expressing a
pluripotent state [10]. The ESC cell line can be developed from pre-implanted embryos.
The above-mentioned research on ESC has provided enormous information for selecting
ideal culture conditions and transcription factors for the maintenance of the pluripotent
state of the cells.



J. Pers. Med. 2022, 12, 1485 3 of 18

Developing the pluripotent state in a patient’s specific cells requires reprogramming so-
matic cells. The three most common different approaches to reprogramming are (1) somatic
cell nuclear transfer (SCNT), (2) cell fusion, and (3) direct reprogramming by transcrip-
tion factors.

SCNT involves the transfer of the nucleus of a somatic cell into an oocyte or early
embryo from which the chromosomes have been removed. The somatic nucleus is in-
jected into cloned embryos from mice and humans. This fusion of embryos with somatic
cells develops iPSC, where unknown factors of the recipient oocyte are responsible for
reprogramming somatic cells into a pluripotent state.

A paradigm shift has occurred in the last decade after the discovery of human iPSCs re-
programming technology. In 2006, Takahashi and Yamanaka demonstrated for the first time
in mice the reprogramming of fibroblast cells into iPSCs by retrovirus-mediated transfec-
tion. They further investigated the phenomena and selected 24 pluripotency transcription
factors for the study.

They observed that over-expression of only four reprogramming factors, such as
Oct4, Sox2, Klf4, and c-Myc had a vital role and were sufficient to create iPSCs in mouse
fibroblasts [11] and human fibroblast to iPSCs [12]. These transcription factors were later
called the OSKM factor or Yamanaka factor. Soon after this remarkable discovery, human
iPSCs were developed successfully from human fibroblasts in late 2007 by Yamanaka’s and
Thomson’s groups using a similar approach and with different types of reprogramming
factors such as (OCT4, SOX2, NANOG, and LIN28) [12,13]. In 2008, Nakagawa et al.
observed that iPSCs can be generated from fibroblasts using only three reprogramming
factors, such as Oct4/Klf4/Sox2 without c-Myc [14].

Human iPSCs can also be developed from patients’ somatic cells and applied for
biomedical research for developing disease-specific in vitro models for drug discovery and
development [2]. Additionally, human iPSCs can also be used to develop personalized and
precision medicine [15,16].

Since the discovery by Dr. Shinya Yamanaka in 2007, several new methods have been
optimized to improve the induction efficiency of iPSCs and advanced reprogramming
methods. The use of chemical compounds and growth factors has improved the induction
efficiency of iPSCs. In 2008, Shi et al. demonstrated that mouse embryonic fibroblasts could
be induced into iPSCs using small molecules through reprogramming of Oct4/Klf4 and
can compensate for Sox2 [17]. In 2008, Huangfu et al. observed that small molecules, such
as 5-azacytidine, valproic acid, histone deacetylase inhibitor, and DNA methyltransferase
inhibitor, can improve the reprogramming by 100-fold. Moreover, primary human fibrob-
lasts can also be reprogrammed using valproic acid through efficient programming of Oct4
and Sox2 only [18,19]. This ground-breaking discovery facilitated the use of stem cell tech-
nology and found a way to overcome the long-lasting ethical controversies associated with
hESCs or nt-hESCs research. Moreover, the simple and easy process of viral transduction
to generate human iPSCs made the platform ideal for iPSCs generation.

To date, different types of stem cells have been used in stem cell research, such as
ESCs, very small embryonic-like stem cells (VSELs), nuclear transfer stem cells (NTSCs),
reprogrammed stem cells (RSCs), and adult stem cells (ASCs). Interestingly, ESCs, iPSCs,
and ASCs are used to generate tissues and organs in vitro for developing treatments.
However, only NTSCs have shown potential to develop cloned animals such as sheep [7],
mice [20], cattle [21], pigs [22], cats [23], rats [24], and dogs [25]. In total, 23 cloned
mammalian species have been developed [26].

3. iPSCs in Scientific Research

To understand the role of iPSCs in scientific research, we thoroughly investigated the
published literature in the PUBMED MEDLINE database using specific keywords. How-
ever, data acquired from PUBMED are based on an algorithm and solely depend on the map-
ping of specific keywords within the published literature, such as articles/reviews/clinical
trials. Still, we can observe the trend and significance of iPSC-related research and its
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contribution to science. A similar analysis was published by the author to select the most
popular diabetic animal models in 2019 [27] and to understand the contribution of peptides
in diagnostics in 2021 [28]. The database was searched using the primary keyword “iPSC”
with two additional filters, “Human” and “Animal”. The output of the result shows that
there has been a constant increase in the number of publications related to iPSCs research
since 2007. As per the published literature in PUBMED, we also observed that human-
related iPSCs research has been growing considerably compared to animal-related iPSCs
research since 2011. In 2018, human-related iPSCs publications reached 2033, which was
2 times higher than animal-related iPSCs publications (Figure 1). This clearly shows the
significant role of iPSCs in human-related biomedical research.
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Figure 1. Understanding the role of induced pluripotent stem cells (iPSCs) in scientific research.
Published data with the keyword iPSCs were compared in PUBMED for human versus animal. It
was observed that there was an increase in human-related iPSCs research from 2011.

Furthermore, the contribution of iPSCs-related research in most common diseases was
also evaluated and categorized as per their publication in the last decade (w.e.f. 1 January
2012 to 31 December 2021) in the PUBMED MEDLINE database. The database was searched
by using primary keywords “iPSC”, and an additional nine filters for different diseases were
used to discriminate the data (i.e., “Cancer”, “Heart disease”, “Neurodegenerative disease”,
“Diabetes”, “Liver disease”, “Autoimmune disease”, “Cartilage regeneration”, “Zika virus”,
“SARS-CoV-2”). In our customized search, we observed that most of the published literature
in the last decade was on cancer, which was 3155, followed by heart disease, 2251, and
neurodegenerative disease, 1609. In conclusion, cancer-related iPSCs research ranked first,
and heart-related iPSCs research ranked second, followed by neurodegenerative-related
iPSCs research which ranked third in the last decade (Figure 2).

To understand the role of iPSCs research in neurodegenerative diseases, we further ex-
amined the published literature on neurodegenerative diseases in PUBMED. The database
was searched using the primary keyword “iPSC” along with eight additional filters for com-
mon neurodegenerative diseases such as “Spinocerebellar Atrophy”, “Multiple Sclerosis”,
“Ataxia”, “Spinal Cord Injury”, “Huntington’s Disease”, “Amyotrophic Lateral Sclerosis”,
“Alzheimer”, and “Parkinson”.

In our analysis, we observed that the contribution of iPSC-related research for Parkin-
son’s was highest, with 932 published literature, followed by Alzheimer’s with 761 pub-
lished literature on PUBMED (Figure 3).
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Figure 2. Published data for iPSCs research in the last decade. Comparison of different diseases such
as cancer, heart disease, neurodegenerative disease, diabetes, liver disease, autoimmune disease,
cartilage regeneration, Zika virus, and SARS-CoV-2 based on scientific research published in PUBMED
in the last decade (w.e.f. 1 January 2012 to 31 December 2021).
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Figure 3. Published data for iPSCs research in the last decade. Comparison of different neurodegen-
erative diseases such as spinocerebellar atrophy, multiple sclerosis, ataxia, spinal cord injury (SPI),
Huntington’s disease, amyotrophic lateral sclerosis (ALS), Alzheimer’s disease (AD), and Parkinson’s
disease (PD), based on scientific research published in PUBMED in the last decade (w.e.f. 1 January
2012 to 31 December 2021).

4. Role of iPSCs in Neurodegenerative Diseases

There is an unmet need for clinicians to find new therapies for neurodegenerative
diseases. Despite good clinical research, it has been acknowledged that discovered drug
therapies are not up to the mark. To accelerate the drug discovery pipeline for neuro-
logical diseases, several animal disease models have been developed in the past [29–31].
Unfortunately, the lack of equivalent animal models has minimized the success rate of
new therapies and caused poor initial screening and assessment of the molecules used in
pre-clinical research. More than 90% of pre-clinically successful drugs fail during the final
step of the human clinical trial. This suggests that animal models are often poor predictors
of human biology [32]. Creating a disease model of degenerative diseases is a difficult
task. Research scientists have either dysregulated the gene expression of a specific gene to
develop a cell culture model or created a knockout animal model. However, these models
could not be considered an ideal disease model which resembles human pathology. Due
to ethical issues, it is also very difficult to obtain human brains postmortem to conduct
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scientific research. Even if a human brain is provided, brain tissues are highly degradable
and immunologically mature for research.

In the last two decades, it has become possible to establish pluripotent stem cells
from the somatic cells of any individual without knowing his race and genetic background.
Therefore, human iPSC-derived cell cultures became a unique platform to study ex vivo
phenomena, particularly for nervous system disorders.

4.1. iPSCs in PD

PD is associated with mutations in different genes such as SNCA, LRRK2, VPS35,
Parkin, PINK1, and DJ-1 [33]. The CHCHD2 mutation is also associated with PD [34].
Human iPSCs line from PD patients were successfully developed. Wang et al., 2018
developed iPSCs from dermal fibroblasts of 52-year-old PD patients by transfecting the
cells with episomal plasmids expressing OCT3/4, SOX2, KLF4, LIN28, and L-MYC. The
developed iPSCs line (ZZUi007-A) harbors a CHCHD2 mutation [35]. Takahashi et al., 2007
developed an iPSCs line (201B7) from the dermal fibroblasts of a healthy donor. Fibroblasts
were reprogrammed using retroviral transduction expressing OCT4, SOX2, KLF4, and
MYC at Kyoto University [12]. They serve as a “normal” control [36]. Imaizumi et al., 2012
generated human iPSCs from two familial forms of PD patients with mutations in the parkin
gene. Enhanced activity of the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway,
along with increased oxidative stress, was observed in human iPSC-derived neurons with
PARK2 mutations [37]. Suda et al., 2018 generated a human iPSCs line (B7PA21) from PD
patients with PARK2 mutations. It was observed that the expression of ghrelin receptors in
PD-iPSC-derived dopaminergic neurons was down-regulated compared to healthy controls.
Moreover, generating the PARK2-KIKO line from 201B7 through CRISPR Cas9 technology
also mimicked the loss of function of the PARK2 gene [38]. Shiba-Fukushima et al., 2017
demonstrated that phospho–ubiquitin signaling was affected in human dopaminergic
neurons containing Parkin or PINK1 mutations. It was also observed that regulation of
axonal mitochondrial transport and phospho–ubiquitin signaling was compromised in
human dopaminergic neurons containing Parkin or PINK1 mutations [39]. The importance
of voltage-gated calcium channel in neurodegenerative diseases, especially in PD, has been
confirmed. Few studies related to human iPSCs have described a potential link between
Ca2+ oscillations and the susceptibility of the dopaminergic neurons to neurodegeneration.
Cav2.3 knockout mouse showed upregulation of NCS-1, a Ca2+-binding protein involved
in neuroprotection. The data were supported by human iPSCs line from PD. Similarly,
the NCS-1 knockout mouse exacerbated nigral neurodegeneration and downregulated
Cav2.3. [40]. Grigor’eva et al., 2021 demonstrated that the iPSCs line (ICGi034-A) could be
obtained from PBMCs of PD patients with heterozygous c.1226A > G (p.N370S) mutation
by reprogramming to study the pathogenesis of GBA-associated PD [41]. Schweitzer et al.,
2020 showed the implantation of iPSCs dopaminergic progenitor cells to the midbrain of
PD patients via autologous transplantation. Clinical grade iPSCs were generated in vitro
and were first tested on a humanized mouse model to check the immunogenicity and then
implanted into the putamen of PD patients without any immunosuppression. Positron
emission tomography with the use of fluorine-18-L-dihydroxyphenylalanine suggested
graft survival [42].

Chen et al., 2021 demonstrated that an iPSCs line could be developed from PBMCs of a
32-year-old PD patient with homozygous mutation of c.189dupA in PARK7 (FJMUUHi001)
by reprogramming five factors, OCT3/4, SOX2, c-MYC, KLF4, and BCL-XL. The induced
iPSCs could be differentiated into three germ layers and were able to express the mark-
ers of pluripotency [43]. Moreover, all the cell lines developed for PD can be seen in
Supplementary Table S1.

4.2. iPSCs in AD

Michael Peitz et al., 2018, demonstrated that peripheral blood cells of a male AD
patient could be developed into a human iPSCs line by employing Sendai virus vectors
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which encode for OCT4, SOX2, KLF4, and c-MYC transcription factors [44]. The charac-
terized iPSCs line expresses differentiation into all three germ layers and also maintains
APOEε4/ε4 allele, a prominent risk factor for sporadic late-onset AD [45,46]. Zhang et al.,
2021 demonstrated the reprogramming of PBMC by using a non-integrating episomal
vector system. The reprogramming was achieved by retroviral transduction OCT3/4, KLF4,
SOX2, and c-MYC using the Sendai virus. A human iPSCs line SIAISi004-A from PBMCs
of a 74-year-old AD female was developed [47]. Liu et al., 2020 developed the iPSCs from
sporadic Alzheimer’s disease (sAD) patients. The reprogramming was done on PBMCs
using the Sendai virus expressing Oct3/4, Sox2, c-Myc, and Klf4 transcription factors [48].
Cusulin et al., 2019 used human iPSCs derived from sporadic AD patients. Developed iPSC
neural cell lines were used for the characterization of secretase modulators compounds
that reduce the production of Aβ42 [49]. Takayuki et al., 2017 used AD-derived human
iPSCs for screening of anti-Aβ cocktail mixture from the pharmaceutical compound library
of 1258 compounds. A mix of topiramate, cromolyn, and bromocriptine was identified,
which was able to reduce Aβ deposition and plaque formation [50]. Chang et al., 2019
developed iPSCs from familial AD patients with heterozygous D678H mutation in the
APP gene. AD-derived human iPSCs have been used to screen the compound having the
ability to reduce Aβ aggregation and improve neuronal viability and neurite outgrowth.
The identified compound was indole compound NC009-1 (3-((1H-Indole-3-yl) methyl)-
4-(2-nitrophenyl) but-3-en-2-one) [51]. Wang et al., 2021 demonstrated that iPSCs could
be derived from peripheral blood mononuclear cells of a 70-year-old male donor with
APOE-ε4/ε4 alleles. The induced iPSCs were able to express pluripotency markers and
showed normal karyotypes with differentiation potential [52]. Zhang et al., 2021 generated
iPSCs from peripheral blood mononuclear cells of an 87-year-old female donor with APOE3
(ε3/ε3) alleles. More than 97% iPSCs were able to express pluripotency markers such as
NANOG, OCT4, and SSEA4 along with normal karyotype. The developed iPSCs line could
be considered one of the valuable resources for studying sAD pathogenesis in vitro [53].
Moreover, all the cell lines developed for AD can be seen in Supplementary Table S2.

4.3. iPSCs in Diabetic Neuropathy

Diabetic neuropathy (DN) is the most common and earliest complication of diabetes
mellitus (DM), which is often diagnosed in the progressive state [54]. It affects 50% of
patients with DM and about 10–25% of prediabetic patients [55]. The pathogenesis of DN
is complex, including, primarily, hyperglycemia, which is associated with biochemical
processes leading to the overproduction of reactive oxygen species, increased expression of
pro-inflammatory cytokines, and abnormal levels of gas transmitters [56]. These processes
affect the function of different cell types, including neurons and Schwann cells but also en-
dothelial cells, leading to the reduction of nerve blood flow and degeneration of nerve fibers
with consequent dysfunction of peripheral nerves [57]. Different pathological changes,
including axonal loss and/or degeneration, as well as demyelination, have been observed
in diabetic organisms. Schwann cells play a pivotal role in the appropriate functioning of
peripheral axons, while they cover and support myelinated as well as non-myelinated fibers
of the peripheral nervous system. This support includes not only physical but also chemical
mechanisms, while Schwann cells release several neurotrophic substances [58]. Based on
this information, the effect of Schwann cell application in animal models of peripheral
neuropathy was tested by different research groups. Himeno et al. demonstrated that some
mesenchymal stem cells, (MSC)-like cells derived from iPSCs, if transplanted to diabetic
mice thigh, engraft to the peripheral nerve and express S100β, a Schwann cell marker. This
observation indicates the ability of grafted cells to directly construct peripheral nervous tis-
sue. Additionally, transplantation of MSC-like cells exerted a beneficial effect on blood flow
and capillary number in the soleus muscle of diabetic mice. From a functional point of view,
treatment with MCS-like cells ameliorated physiological impairments caused by diabetes,
demonstrating the beneficial effect of such treatment on diabetic peripheral neuropathy [59].
The positive therapeutic effect of Schwann cell transplantation was demonstrated in injury-
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induced peripheral neuropathy 30 years ago in rats [60] and later on also in humans [61,62].
The source of Schwann cells for transplantation was both the sural nerve and damaged
sciatic nerve stump in these cases. Another source of autologous Schwann cells may be the
patient’s skin. The Schwann cells thus obtained exhibit the same properties as Schwann
cells obtained from the nerve [63]. Unfortunately, a similar comparison between human
skin-derived Schwann cells and iPSCs is not yet available.

In the past, a number of studies have been conducted that have focused on the use
of stem cells, especially MSCs and bone marrow mesenchymal stem cells (BMMSCs), in
the treatment of diabetic peripheral neuropathy. The results of many of them indicated
a positive effect of such treatment based on in vitro or animal experiments. A diabetic
environment causes damage to endogenous stem cells, which leads to severe diabetic
complications [56]. Replacing these damaged cells with exogenous cells could be the right
way to go. Unfortunately, a clinical study demonstrating the safety and efficacy of such
therapy is not yet available [56].

To our knowledge, to date, no clinical trial involving using iPSCs as a therapeutic tool
in patients with diabetic neuropathy has occurred. However, there is a very interesting
study where iPSCs obtained from a patient with idiopathic small fiber neuropathy were
used to determine the optimal treatment for that patient [64]. This case points to the
significant possibilities of using iPSCs in the development and testing of drugs in general
and their use in personalized medicine in the search for optimal treatment of diabetic
neuropathy or other diseases.

4.4. iPSCs in Stroke

Stroke is the second leading cause of death globally [65]. In the majority of stroke cases,
cerebral blood supply is decreased due to thrombotic and/or embolic processes leading
to ischemia of nervous tissue with subsequent cell apoptosis and necrosis. The extent of a
patient’s neurological impairment depends on the location and size of the ischemic lesion.
Currently, therapeutic approaches are based primarily on the effort to reopen a closed
vessel using thrombolytic agents or mechanical removal of the thrombus. The final effect of
the performed therapy depends very much on the time lapse between the first symptoms
and the implementation of the therapy. If the recommended therapy is used later, i.e.,
outside the therapy window, the patient’s condition may worsen due to the leaching of
accumulated ROS and subsequent neuroinflammation [65]. From the above, it is clear how
important it is to find new, more effective therapeutic approaches. Due to the fact that
necrosis of nerve tissue cells occurs during the ischemic process, it is proposed to solve this
situation by transplanting the cells into the damaged area. Researchers have been studying
this possibility for decades using various stem cells, such as ESCs, NSCs, or MSCs, but in
recent years also iPSCs.

Up to now, a variety of animal experiments have been conducted in order to evaluate
the effect of iPSCs application after stroke. They demonstrated that iPSCs could cause a
reduction in lesion volume, improvement of sensorimotor functions, and promotion of
neurogenetic and angiogenetic processes [66]. In addition, they exert immunomodulatory
and anti-inflammatory effects [67]. Results of iPSCs transplantation experiments up to 2020
are summarized in a nice review written by Duan and coauthors [66].

A recently published study demonstrated that transplantation of iPSCs into rat brains
affected by stroke causes a positive effect on glucose metabolism restoration in the ischemic
area and attenuation of neurofunctional deficits. These effects were more prominent than
those obtained by transplantation of NSCs [68]. Transplanted iPSCs are able to differentiate
into nerve cells and angiogenic cells and cause changes in the microenvironment, including
different expressions of multiple proteins related to oxidative stress, mitochondrial function,
axonal remodeling, and neuronal survival [68].

Nerve cells and pericytes, cells involved in forming the blood–brain barrier (BBB),
are both involved in the pathophysiology of stroke [69]. Pericytes generated from human
iPSCs were transplanted to a mouse model of stroke, where they helped to reconstruct
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the BBB and promote functional recovery [70]. Unfortunately, the effect of pericytes in
stroke recovery processes could also be adverse; they could contribute to scar formation
and inhibit axonal regeneration [69].

Recently, researchers have been focusing on the paracrine concept of cell therapy,
where conditioned culture medium could serve as a therapeutic tool because it contains
biologically active molecules. Salikhova and coworkers tested the effect of the application
of human iPSCs-derived glial and neuronal progenitor cells-conditioned medium to a
rat model of stroke. Intra-arterial administration of these media caused diverse effects.
Application of glial progenitor cells-conditioned medium led to a decrease in neurological
deficit, affected the expression of pro- and anti-inflammatory cytokine genes, and improved
re-vascularization of the damaged area, while such effects were not observed after applica-
tion of neuronal progenitor cell-conditioned medium [71]. This is most likely caused by
the different compositions of these media and suggests the importance of glia in the whole
regenerative process after a stroke. Applying the culture medium instead of transplanting
the cells may be a way to eliminate the various risks associated with transplanting iPSCs in
the patient.

4.5. iPSCs in SCI

Within the central nervous system (CNS), trauma could affect the brain, that is, trau-
matic brain injury (TBI) or spinal cord causing SCI. Damage to the nervous tissue of the
CNS finally leads to progressive and massive neuronal cell loss and axonal degeneration.
Cell death occurs in the acute phase as a result of traumatic force and subsequently in the
subacute phase through acute inflammatory processes and/or ischemia. The subacute
phase lasts from the 2nd to 14th day after the trauma, and during this period, there is
more excessive degeneration of tissue than in the acute phase [72]. This fact is used in
determining the strategy of therapy and also indicates the potential effect of therapy based
on cell transplantation, where transplanted cells could replace lost cells and also release
growth factors improving the inner environment of damaged nervous tissue, protecting
host cells as well as its own cells [72]. Over the past thirty years, this topic has been studied
by many scientists who focused on the effect of different types of stem cells, including
mesenchymal stem cells, neural stem cells, neural progenitor cells, embryonic stem cells,
and iPSCs [73].

Neural progenitor cells (NPCs) derived from iPSCs exert characteristics different from
those of NPCs derived from fetal cells, e.g., in gene expression patterns and epigenetic
status. Nowadays, techniques allowing the preparation of region-specific NPCs from iPSCs
are available [74]. They are based on using different gradients of morphogens during neural
induction of iPSCs [75,76]. So far, these possibilities have been used mainly for modeling
various CNS diseases and searching for optimal drug therapies [77]. Neurodegenerative
diseases are very complex conditions; their pathophysiology involves not only neurons
but also supporting nerve cells, the most abundant of which are astrocytes. Astrocytes
produced from iPSCs are also used in disease modeling and drug screening. However,
the results of a recent study suggest that astrocytes may be a source of immunoglobulins
in trauma-damaged neural tissue [78]. What role this fact plays in the process of nerve
tissue regeneration after trauma will have to be determined in further experiments, where
astrocytes obtained from iPSCs could also be used.

Up to now, a big effort has been made to study the effect of iPSCs-derived NPCs
application on the regeneration of nervous tissue after SCI. These cells are able to survive
and differentiate at the site of injury. Additionally, they reduce the level of pro-inflammatory
cytokines after SCI, thus reducing the formation of glial and fibrotic scars [79]. Many studies
have demonstrated functional recovery of injury after their transplantation [80], suggesting
their potential in SCI treatment.
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5. Role of iPSCs in Personalized Medicine

A significant role of iPSCs in cellular therapy has been observed, which may lead
to human clinical trials and provide a future roadmap for therapy. Additionally, patient-
derived iPSCs can act as a unique model for understanding disease development. It can
also help in drug screening and provide new insights for developing ‘new future medicine’.
Regeneration therapy has emerged as a newly developed field of personalized medicine
based on cellular therapy. Personalized medicine is developing a specific medication
for an individual based on the individual’s pharmacogenetics and pharmacogenomic
information [81].

It is important to study personalized medicine or personalized pharmacology because
every person has individual heterogeneity to different types of diseases. It could be due
to multiple causative factors such as genetics, epigenetics, environment, or demographic,
including age, sex, and ethnicity. These factors together can drive the progression of any
disease. However, some authors have claimed that genetic factors are the strongest risk fac-
tors in complex diseases, including neurological disorders. Furthermore, crosstalk between
genetic, environmental, demographic, and lifestyle factors plays a crucial role in disease
development. On the contrary, there are few examples where individual heterogeneity
does not follow the standard Mendelian patterns of inheritance.

The discovery of iPSCs technology in 2007 [12] revolutionized the field of personalized
medicine by providing additional ways of drug screening and can also be considered
an appropriate candidate for personalized cell therapies [81,82]. The main objective of
regeneration medicine is to repair cells or tissues of any organs which are damaged due to
aging, chronic diseases, neurological diseases, congenital, or any other abnormalities, etc.
The different types of stem cells are used in regenerative medicine, which is pluripotent in
nature. Among all types of stem cells, iPSCs are considered to be the most appropriate cells
for therapies. Isolated stem cells are edited via gene editing and used for cellular therapy.
For transferring desirable genes, two commonly used methods are in vivo and ex vivo. In
in vivo therapy, new genes are directly introduced via a plasmid or viral vectors or clustered
regularly interspaced short palindromic repeats (CRISPR) strategy [83,84]. The limitations
of in vivo gene therapy are associated with gene silencing, mutations, non-specific gene
expression, and immune reaction against the vector [85]. In ex vivo gene therapy, cells
are first modified in vitro and characterized before the transplant so that patients are not
directly exposed to vectors and provide safe, stable, and transient grafts [86].

The recent development in the field of stem cell research has advanced the cutting-edge
of ex vivo gene therapy by generating human iPSCs from the patient’s blood or skin [87,88].
For example, patient-specific iPSCs allow us to research a wide range of incurable disorders,
such as neurodegenerative diseases of the CNS, heart infarction, diabetes mellitus, and
liver, lung, and kidney disease.

To explore the therapeutic role of iPSCs in neurodegenerative diseases, we carefully
examined the database of the International Clinical Trials Registry Platform (ICTRP),
WHO. The registered clinical trials for neurological disorders were analyzed on https:
//clinicaltrials.gov/. The data was accessed on 18 February 2022 by using keywords for
the disease condition “Neurologic Disorder” along with one additional filter for “iPSC”.
We found that 30 clinical trials were registered. Out of 30 trials, 2 trials were terminated,
1 trial was suspended, 1 was withdrawn, and 3 trials showed their status as unknown,
meaning they had passed their completion date with no updates for more than 2 years.
Only seven clinical trials were completed. Out of these seven trials, we observed that only
four clinical trials “NCT02980302”, “NCT03883750”, “NCT03867526”, and “NCT01639391”,
were designed with the main objective of generating patient-derived iPSCs (Supplementary
Table S3). However, the other three clinical trials were designed with a different aim and
had the secondary objective of retaining biospecimen for iPSCs line generation and bio-
repository. Moreover, we did not find any completed clinical trials on iPSCs for “Alzheimer”
or “Parkinson”; most of the trials were designed for ALS. To confirm our results, two
separate searches were performed using keywords for the disease conditions “Alzheimer”

https://clinicaltrials.gov/
https://clinicaltrials.gov/
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and “Parkinson”. We found that only one clinical trial was registered for “Alzheimer”, i.e.,
NCT00874783, and two for “Parkinson”, i.e., NCT00874783, NCT01143454.

Interestingly, we observed that most of the trials for disease conditions “AD” and
“PD” were designed for “Stem Cell Therapy” and “Gene Therapy”. To understand the
current scenario of clinical trials for PD and AD, we analyzed the database for the last
decade (w.e.f. 1 January 2012 to 31 December 2021). A total of four separate searches were
made for “Stem Cell Therapy” with disease conditions such as “Neurologic Disorder”,
“Neurodegenerative Disorder”, “Alzheimer”, and “Parkinson”. We observed that the total
number of clinical trials registered for neurologic disorders was 381, out of which 97 trials
were for neurodegenerative disorders and 44 trials were for AD and PD.

As mentioned above, we used a similar strategy to obtain the clinical trial data for
“Gene Therapy”. We have observed that the total number of clinical trials registered for
neurologic disorders was 398, out of which 100 trials were for neurodegenerative disorders,
and 25 trials were for AD and PD. Data showed that 25% of clinical trials registered for
neurodegenerative disorders belong to AD and PD.

In conclusion, we found that clinical trials for “Stem Cell Therapy” have been growing
very rapidly, and 45.3% of clinical trials registered for neurodegenerative disorders belong
to AD and PD in the last decade. However, only 25% of registered clinical trials for “Gene
Therapy” for neurodegenerative disorders belong to AD and PD (Figure 4).
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Figure 4. Registered Clinical trial for PD and AD in last decade (w.e.f. 1 January 2012 to 31 December
2021). Analysis of clinical trial data obtained from https://clinicaltrials.gov/ was conducted. Data
was accessed on 18 February 2022 (A) Total number of clinical trials registered for neurologic disorders
for stem cell therapy was 381, out of which 97 trials were for neurodegenerative disorders, including
44 clinical trials for AD and PD. (B) Total number of clinical trials registered for neurologic disorders
for gene therapy was 398, out of which 100 trials were for neurodegenerative disorders, including
25 clinical trials for AD and PD.

5.1. Are Clinical-Grade Allogeneic iPSCs Important?

The first successful autologous transplantation of iPSC-derived retinal pigment epithe-
lial cells (RPEs) into a human was accomplished in 2014 by Masayo Takahashi’s team at the
RIKEN Center for Developmental Biology, Japan. Before surgery, iPSCs were developed
from two patients’ skin fibroblasts. One patient was a 77-year-old woman and the other was
a 68-year-old man; both were diagnosed with polypoidal choroidal vasculopathy. Therapy
was provided after testing the tumorigenic potential of Patient1-28-RPE cells in immun-
odeficient mice (nonobese diabetic/Shi-scid/IL2rγnull [NOG] mice) in only one patient
(77-year-old woman). In the follow-up study, no serious adverse event was noticed [89]. The
above-mentioned study on iPSCs showed the potential of iPSCs to be used for autologous
transplantation. Furthermore, many clinical trials have been registered and initiated. Most

https://clinicaltrials.gov/
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of them are in Phase I/IIa stages; details are given in Supplementary Table S3. Data suggest
that only three patients worldwide have received iPSC-derived autologous transplantation
therapy, and none have suffered from serious adverse events [90].

iPSC-based therapies can be developed for a wide range of disorders and become a
universal therapy but two important factors, such as cost and time, are high. Presently, the
total cost for developing autologous iPSC-based therapy is approximately USD 1 million
and takes approximately 6 months. It includes a number of steps and quality checks before
the final transplantation of iPSCs to patients.

To minimize the cost and time of developing iPSC-based therapies, it has been advised
to use allogeneic iPSCs from “super donors”. Super donors are healthy people who
are homozygous at the major HLA loci. In 2013, the Center for iPS Cell Research and
Application (CiRA), Kyoto University, started to develop clinical-grade allogeneic iPSCs
from super donors. This facility is also used for the distribution of iPSCs to other centers for
regenerative therapy in Japan. The three most common major HLA haplotypes are HLA-A,
HLA-B, and HLA-DRB1. The use of these three allogeneic iPSCs from super donors has
increased the probability of donor–recipient matching and serves approximately 30% of the
Japanese population. However, the target is to cover at least 50% of the Japanese population
in the future [91].

5.2. iPSCs in Personalized Pharmacology

A new avenue in scientific research has advanced in vitro models such as “organ-
on-a-chip” (OoC) technology. The concept of OoC technology is a revolutionary way of
screening drugs suitable for human clinical trials. Perestrelo et al., 2015 reviewed interesting
advancements in the field of microfluidic-based devices and their applications in biomedical
fields, such as the body-on-a-chip concept [92].

The OoC technology has great potential to mimic the natural physiological environ-
ment and functions of human organs. An interdisciplinary approach has been developed
to integrate 3D cell culture conditions on microfluidics devices for in vitro analysis of drug
screening. It has revolutionized the field of drug screening and toxicology studies. It has
also been observed that proliferation, migration, differentiation, drug toxicity resistance,
and gene expression could be impacted significantly under different culture conditions,
such as 2D versus 3D [93].

The reprogrammed iPSCs derived from patients with different genetic backgrounds
can also be used to analyze the efficacy and safety of drugs in personalized medicine with
precise genetics of the individuals wherein iPSCs can be grown on 3D matrices inside the
microfluidic devices using techniques such as micromachining, 3D printing, and hydrogels.
These conditions represent a unique approach closer to in vivo conditions.

The OoC technology is used to study the potential impact of any drug, such as ADME
(absorption, distribution, metabolism, and excretion) and other toxicities. These models
include gut-on-a-chip [94], liver-on-a-chip [95,96], kidney-on-a-chip [97] and heart-on-a-
chip [98–101], blood-brain-barrier-on-a-chip [102,103], and brain-on-a-chip [104].

To study the absorption of any drug, patients’ iPSC-derived intestinal organoids
micro-engineered chips were used, which mimic inflammatory bowel disease [94].

The most common cause of drug failure is drug-induced hepatotoxicity. Recently,
iPSCs-derived hepatocytes or iPSCs-derived liver organoids were used to study drug
metabolism, detoxification, and hepatotoxicity on a chip. For example, drugs such as Terfe-
nadine, Tolcapone, Trovafloxacin, Troglitazone, Rosiglitazone, Pioglitazone, Lipopolysac-
charide (LPS), and Caffeine were examined on a microfluidic platform with a four-cell liver
acinus microphysiology system including PHH or iPSC-HEPs and three different human
cell lines for NPCs. The assay was performed for nine days and exhibited upregulation of
mRNA level of the drug-metabolizing genes along with the increased activity of CYP450
under 3D cell culture compared to monolayered 2D static conditions [105].

Fanizza et al., 2022 reviewed and elaborated on the role of iPSCs in the screening of
drugs for personalized medicine, especially for neurodegenerative diseases. The transla-
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tional value of OoC was analyzed to create more realistic disease models. The value of
OoC has been tremendously enhanced by using patient-specific iPSCs for developing a
new generation device called “patient-on-a-chip” [106].

Furthermore, multi-OoC devices could also allow the crosstalk between varieties of
cells of different origins that mimic a natural physiological condition very close to in vivo
conditions and could be useful to study the pharmacodynamic and pharmacokinetics of
drugs in personalized medicine.

6. Limitations and Challenges

The recent development in iPSCs technology has opened a unique avenue for clinical
research. However, obstructions such as irreproducibility, epigenetic variations, genetic
instability, high cost, and time are a concern for clinicians and researchers (Figure 5). Subse-
quently, researchers have raised safety concerns about using iPSCs in patients because of
their vulnerability to genetic variations, tumorigenicity, which may cause loss of immuno-
genicity, and graft rejection in a few cases. Mutations can occur at any time during the
reprogramming process or during the maturation process when cells are cultured in vitro
many times. However, recent studies on iPSCs-based cell therapy have demonstrated that
autologous cell transplantation could be obtained without using immunosuppressants or
without rejection of the allograft.
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New pathways generate a new era of responsibilities. A unique opportunity for the
pharmaceutical industry and clinical research has arisen with the advancement in stem
cell research. New laws and standards must be approved for the use of iPSCs. However,
unnecessary barriers hindering iPSCs-related research must be curtailed. Due to private
information present in the form of DNA, donors’ information must be protected. Some
basic approval must be obtained to ensure the ethical integrity of iPSCs production and its
application. The donor must be informed about the project timelines and research topic so
that they are aware of the use of their cells with time duration. Informed consent must be
obtained for all the participants, including donors and recipients. To ensure quality and
consistency, iPSCs should be processed in a controlled environment according to quality
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standards. It would be best to carry out iPSC-related research under GMP conditions
enforced by the US FDA under the authority of the Federal Food, Drug, and Cosmetic Act.
It covers all the aspects of production, starting from somatic cell isolation to generating
an iPSCs line and its application. All procedures should be documented in the form of
standard operating procedures (SOPs), procedure descriptions, registries, records, training
documents, manuals, lists, and others to assure the good management, functionality, and
traceability of the cell bank should be used to minimize the variations which will also
provide a documented proof and consistency of the process at each step. Baghbaderani
et al., 2015 developed master cell banks (MCBs) under cGMPs [107]. In 2020, Rivera also
developed iPSCs using mRNA under cGMP conditions [108].

Despite the many ethical advantages of iPSCs over ESCs, new ethical–social issues
have arisen, such as the use of iPSCs for human cloning, human–animal chimeras, in-
terspecies chimeric animals, and illegal generation of human gametes. Other potential
illegitimate usages of iPSCs should also be considered very carefully and are the topics of
further discussion. It is also important to understand the ethical issues related to the use of
tetraploid complementation technology in humans [109–111]. These ethical–social issues
can become more complex if we also consider copyright and patent-related issues with
iPSCs generation.
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