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SUMMARY

An efficient strategy to explore the environment for
available resources involves the execution of random
walks where straight line locomotion alternates
with changes of direction. This strategy is highly
conserved in the animal kingdom, from zooplankton
to human hunter-gatherers [1–8]. Drosophila larvae
execute a routine of this kind, performing straight
line crawling interrupted at intervals by pause turns
that halt crawling and redirect the trajectory of move-
ment [9–11]. The execution of this routine depends
solely on the activity of networks located in the
thoracic and abdominal segments of the nervous
system, while descending input from the brain serves
to modify it in a context-dependent fashion [9]. I used
a genetic method to investigate the location and
function of the circuitry required for the different ele-
ments of exploratory crawling. By using the Slit-Robo
axon guidance pathway to target neuronal midline
crossing defects selectively to particular regions of
the thoracic and abdominal networks, it has been
possible to define at least three functions required
for the performance of the exploratory routine: (1)
symmetrical outputs in thoracic and abdominal seg-
ments that generate the crawls; (2) asymmetrical
output that is uniquely initiated in the thoracic seg-
ments and generates the turns; and (3) an intermittent
interruption to crawling that determines the time-
dependent transition between crawls and turns.

RESULTS

Mutations in the gene roundabout (robo), coding for the receptor

for the midline repellent Slit, cause axons and dendrites that will

normally project on their own side of the CNS to cross the

midline. This aberrant connectivity both of excitatory and inhibi-

tory neurons leads to lethality at embryonic or larval stages

(Figures 1A and S1; [10–12]). Interestingly, however, a high per-

centage of embryos with complete loss of function in the robo

gene (robo1/robo2 and robo2/robo8) hatch, and these animals

can be used for behavioral analysis (Figure 1 and [10–12]).
Curre
In wild-type larvae, exploratory behavior consists of straight

crawls, called runs, interrupted by pause turns [9, 13, 14]. The

alternation between the two patterns of movements can be

seen in the characteristic tracks left by wild-type newly hatched

first instar larvae (Figures 2A and 2G; Movie S1). robo1/+,

robo2/+, and robo8/+ heterozygote controls execute the same

routine and produce the same pattern of tracks (Figures 2D–

2F). On the other hand, robomutants have abnormal exploratory

behavior. Their tracks show that they are fully capable of per-

forming extended forward crawls but that these runs follow a cir-

cular path without sharp redirections generated by pause turns,

and as a consequence, robo mutant larvae remain within a

limited region of the available substrate (Figures 2B, 2C, and

2H; Movie S2).

I quantified the crawling abilities of wild-type and heterozy-

gous robo larvae and compared them with the crawling of

larvae with mutant allelic combinations of robo (robo1/robo2

and robo2/robo8) by evaluating the denticle band movements

(Figures 2I and S2). Wild-type and robo heterozygous larvae

make equivalent numbers of forward waves of peristaltic

contraction, but the robo mutants perform significantly less.

In contrast, robomutant larvae generate more backward waves

(Figure 2I), although the total number of waves (forward and

backward) is still significantly lower than controls. Notably,

many robo mutant larvae have a postural deficit that causes

them to lie on their sides rather than on their ventral surface

with the consequence that the body is thrown into a curve

generating circular paths instead of straight or slightly curved

ones as observed during crawls in control larvae (Figures S2B

and S2C). The duration of 96% of forward peristaltic waves in

robo1/robo2 and 95% in robo2/robo8 mutant was the same as

in wild-type animals (Figure 2K), although the distribution of

the average duration per animal was only significantly different

for robo1/robo2 null larvae (Figure 2J). Thus, even though the

growth of axons and dendrites across the midline is highly

abnormal in robo mutants, they are capable of generating

waves of coordinated peristaltic crawling, and the execution

of these forward waves is largely indistinguishable from those

seen in controls.

Next, I evaluated the performance of pause turns. In robo1/

robo2 and robo2/robo8, the number of pause turns is severely

decreased, with a median value of zero indicating profound

impairment (Figure 2L). This almost complete absence of pause

turns (73% of the larvae analyzed for both genotypes never

turned) is accompanied by a significant increase in the frequency
nt Biology 25, 1319–1326, May 18, 2015 ª2015 The Authors 1319

mailto:jb672@cam.ac.uk
http://dx.doi.org/10.1016/j.cub.2015.03.023
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cub.2015.03.023&domain=pdf


A B C

Figure 1. Survival of Drosophila robo Mutants

(A) Staining showing the Fasciclin II (FASII) positive axon tracts in first instar larval nerve cords for the different allelic combinations used in the study. The increase

in the number of axons that cross the midline produces the characteristic circular appearance around the commissures. The penetrance of this phenotype is

complete (robo1/robo2 82/82; robo2/robo8 42/42 and [10]). See Figure S1 for evaluation of excitatory and inhibitory midline connectivity.

(B) Average percentage of fertilized eggs hatching (±SEM).

(C) Average percentage of hatched larvae that survived until emergence of the adult (±SEM).

A Kruskal-Wallis test with Dunn’s multiple comparison comparing OrR with all genotypes and each allelic combination with their heterozygote alleles was

performed. Asterisk (*) indicates p < 0.05 when compared to OrR. ++p < 0.05 when compared to robo1/+.
of a movement similar to the previously described ‘‘rearing’’

behavior (Figures 2M and S2E; [9]).

The sequence of movement in rearing is very similar to a pause

turn (Movie S3) with the significant difference that there is no uni-

lateral contraction of muscles in the anterior segments produc-

ing a left- or right-hand turn (Figure S2E). Instead, during rearing,

the larva pauses at the end of a forward wave of contraction and

raises the anterior segments of the body as a consequence of a

sequential and bilaterally symmetrical contraction of the thoracic

segments. Then, as abdominal segment 1 (A1) contracts, the

thoracic segments relax, and the anterior end of the animal is

propelled downward to hit the substrate (Figure S2E; Movie

S4). Larvae resume crawling after one or a series of such

contraction and rearing movement cycles. The characteristic

bilateral symmetry of the rearing phenotype suggests that the

unilateral control of muscle contractions required to execute

turns fails in robo mutants.

Interestingly, the intermittent interruption to crawling (the

pause) occurs in all larvae irrespective of whether they are

turning or rearing, and this indicates that the mechanism that

underlies this periodic switch between patterns of movement is

unaffected in robomutants. To test this idea, I calculated the pro-

portion of transitions defined as the number of turns plus rearings

per number of waves (Figure 2N). There were no significant dif-

ferences between controls and robo mutants. Thus, the proba-

bility of triggering a transition is not affected by the aberrations

in midline crossing found in robo mutant larvae.

To show whether behavioral phenotypes of robo mutants

arise from a defective output of the central pattern generators

(CPGs) for exploration, independent of sensory input, I per-

formed calcium imaging experiments on the isolated nervous

system. The compact organization of the nervous system of

the larva, where neuromeres are fused, lends itself to the simul-

taneous evaluation of spontaneous activity in all thoracic and

abdominal segments. I used the OK371-Gal4 driver line for

glutamatergic neurons [15] to target the genetically encoded

calcium indicator UAS-Gcamp3 [16] to all motor neurons and

quantified changes in signal intensity in a defined region of the
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neuropile at the level of the intersegmental nerve [17] on both

sides of the nerve cord (Figures 3A–3C).

Forward and backward waves of calcium influx can readily

be detected propagating along the abdominal and thoracic

segments in nervous systems isolated from control animals

(OK371-GAL4, +/+, UAS-GCamp3) (Figures 3D and 3H). These

waves of activity are synchronous on both sides of the nervous

system, and in a semi-intact preparation, they have been

shown to coincide with the wave of muscular contraction

[18], strongly suggesting that they are indeed equivalent to

the output from the CPG for peristaltic waves. In the isolated

nervous system, the intersegmental phases are the same as

in crawling animals (Figure S3), while the speed of wave prop-

agation is slower, as reported in semi-intact preparations

[18, 19] and when sensory input was acutely removed in freely

moving larvae [20], supporting the idea that the preparation is

as healthy as possible.

In addition, bilaterally asymmetric patternsof calcium influxcan

be detected in the anterior segments of control larvae, and these

appear to be equivalent to asymmetric activity associated with

turns in intact animals (Figures 3D and S3). To quantify the asym-

metricactivity, I calculated thenormal valueof thedifference in the

signal intensity between the left and right sides for each segment

(Figure 3F). A comparison of the values obtainedduring periodsof

asymmetric and symmetric activity in control CNSs shows that

there is a significant difference in the thoracic T2 and T3 and

abdominal A1 and A2 segments (Figure 3I), all of which are seg-

ments that contract unilaterally when a larva is turning.

Forward and backward waves of bilaterally symmetric calcium

influx are also seen in nervous systems isolated from larvae

mutant for robo at frequencies that are not significantly different

from control nervous systems (Figures 3E and 3H).

In contrast to control nervous systems, however, the asym-

metric periods are severely reduced in robo mutants, with only

one nervous system showing an asymmetric period in the ante-

rior segments (Figures 3E and 3G). At the same time, the number

of symmetric periods initiated in the thoracic segments and prop-

agating posteriorly as far as A5 is increased (Figure 3E).
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Figure 2. Locomotor Behavior of robo Mutant Larvae

(A–F) Characteristic tracks of first instar larvae. OrR (A) and heterozygous robo mutant alleles (D–F) explore by alternating straight movements with turns. robo

mutant larvae perform circular crawls (B and C).

(G and H) Representative crawling patterns depicted by perimeter stacks. OrR larvae perform pause turns (G) (asterisk) by bending the anterior part of the body.

robo mutants crawl in circles without performing turns (H). See also Movies S1, S2, S3, and S4 and Figure S2 for a detailed description of the behaviors.

(I) Number of forward and backward waves per minute.

(J) Duration of forward and backward waves in seconds.

(K) Distribution of duration of forward peristalsis for all waves analyzed. The gray box highlights the duration of waves in OrR larvae. Binning is 200 ms; OrR

n = 375; robo1/robo2 n = 471; robo2/robo8 n = 319.

(L) Number of pause turns per minute.

(M) Number of rearing events per minute.

(N) Proportion of transitions. The number of pauses turns + rearingmovements divided by the number of forward waves + backward waves was calculated. There

are no significant differences between any genotype.

A Kruskal-Wallis test with Dunn’s multiple comparison was used in (I), (J), (L), (M), and (N). Forward and backward waves were compared independently.

Asterisk (*) indicates comparison with robo2/+; + indicates comparison with the other heterozygote control; and # indicates comparison with OrR. *p < 0.05;

**p < 0.01; ***p < 0.001; +++p < 0.001. 32–41 larvae were evaluated per group. Boundaries of boxplots represent first and third quartiles; the middle line indicates

the median. Whiskers indicate the highest and lowest value of each experimental group.
To quantify the symmetry of activity, I performed a compar-

ison among segments of the difference in the signal intensity

between the left and right sides in robo mutant nervous sys-

tems, confirming the lack of asymmetry in the output of the
Curre
CPG for exploration (Figure 3J). A further comparison of the

average of activity between robo mutants and control animals

(calculated for the entire recording) highlighted the thoracic

T2 and T3 segments as the region generating the major
nt Biology 25, 1319–1326, May 18, 2015 ª2015 The Authors 1321
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Figure 3. Output Activity of the CPG for Exploration

(A) Schematic denoting the location in themotor neuropile of the anatomically distinct nodes of fluorescence at the level of the intersegmental nerve that has been

analyzed: ROI, region of interest; PC, posterior commissure; AC, anterior commissure.

(B) Equivalent region as in right panel of (A) in a CNS stained against GFP.

(C) Snapshot of GCaMP3 fluorescence in glutamatergic neurons in an isolated nerve cord. Right: the ROIs on both sides of the nerve cord are shown.

(D and E) Relative fluorescence change in isolated nervous systems. Left (blue) and right (green) sides of thoracic and abdominal segments were analyzed.

Characteristic traces in control nervous system (D). Forward waves (‘‘F’’) of activity propagating along segments can be observed as well as asymmetric periods

(‘‘A’’) in anterior segments. In robo2/robo1 mutants, forward and backward waves (‘‘B’’) are present (E). The asymmetric periods are absent, but symmetrical

periods in the half anterior segments (‘‘H’’) can be observed.

(F and G) Normalized intensity difference between the left and right side for the recording shown in (D) and (E), respectively.

(legend continued on next page)
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difference of asymmetry (see Figures 3J and S2C for a correla-

tion analysis).

These experiments confirm that there is no asymmetry to the

output from the CPG of robo loss-of-function mutants and high-

light the differential requirement for appropriate connectivity

across the midline for the generation of turns as opposed to

straight line peristaltic crawling. They also point to the thoracic

segments as a region of the nervous system that may be essen-

tial for the generation of a turn.

In order to define more precisely the region of the nervous

system where appropriate midline crossing is indispensable for

the generation of asymmetric outputs, I dissected the robo

behavioral phenotype by analyzing the performance of larvae

with progressively more normal patterns of connectivity along

the antero-posterior axis of the nervous system. I took advan-

tage of the existence of a regulator of Robo, commissureless,

that sequesters the receptor before it reaches the membrane

and thereby generates a cell-autonomous robo mutant pheno-

type in the targeted cells [21, 22].

Larvae that are UAS-comm; +/+; tsh-Gal4 (from now on

tsh>comm) have normal patterns of connectivity in the brain

lobes and subesophageal ganglion but have midline crossing

defects in more posterior parts of the nerve cord, including all

thoracic and abdominal segments (Figures 4A and 4B). The

behavior of these larvae resembles that of robo mutant larvae

(Figure 4). In particular, they crawl steadily and in a coordinated

manner (Figures 4C and 4D), but the number of pause turns they

make is significantly reduced, whereas rearing is increased

compared to heterozygous controls (UAS-comm/+ and tsh-

Gal4/+; Figures 4E–4G). The phenotype of tsh>comm animals

is semi-penetrant; on average, they have the same defective per-

formance of turns as both robo allelic combinations (non-signif-

icant differences between tsh>comm, robo2/robo1, and robo2/

robo8 for rearings; Kruskal-Wallis and a Dunn’s multiple compar-

ison, and pause turns, ANOVA with post hoc analysis with Bon-

ferroni correction).

A striking difference appears in the behavior of larvae in which

normal connectivity extends from the brain lobes through the

subesophageal and thorax segments with a midline phenotype

that begins in and extends caudally from the posterior compart-

ment of abdominal segment A1 to A7 (UAS-comm;; +/+;; AbdA-

Gal4, also AbdA>comm; Figures 4A and 4B). These animals are

now completely normal in their performance of pause turns (Fig-

ures 4H); their number is not significantly different from the two

heterozygous controls (UAS-comm/+ and AbdA-Gal4/+) (Fig-

ure 4E). These animals also make very few rearing movements,

and the number and duration of their forward and backward

crawling waves are indistinguishable from those of the heterozy-

gous controls (Figures 4C, 4D, and 4F).
(H) Number of events per minute. n = 9 per group. A t test was performed comp

legend of Figure 2.

(I and J) Average normalized intensity per second (±SEM). The periods of symme

differences in activity occurmainly in anterior segments (I). An ANOVA (F21,375 = 18

genotypes for each segment was performed. **p < 0.001. n = 16 symmetrical pe

periods in control and robomutants are compared (H). Anterior segments show a d

multiple comparison test comparing between genotypes for each segment was

segments, indicating that the output of the CPG is symmetrical (Bonferroni’s mu

See also Figure S3 for a comparison between neuronal activity recorded with ca

Curre
In conclusion, these experiments define regional differences

in a neuronal network for exploration. Posteriorly, bilaterally

symmetric outputs required for a forward wave are initiated in

the abdominal segments and pass forward to the thorax. More

anteriorly, the asymmetric output required for unilateral contrac-

tion leading to a turn is initiated in the thorax and propagates to

adjacent segments of the abdomen. While the propagation of

bilaterally symmetric waves of contraction can proceed normally

even if midline connectivity is disturbed, there is an absolute

requirement for normal midline crossing for the asymmetric

output of a turn, and it is this requirement that allows us to iden-

tify the thoracic segments of the network as the site of turn

initiation.

DISCUSSION

In a previous paper, we showed that the exploratory crawling

routine of the Drosophila larva is an intrinsic motor program,

inherent to the thoracic and abdominal segments of the nervous

system [9]. Using a genetic method, we were able to show that

runs and pause turns continue normally if the brain and subeso-

phageal ganglia are acutely silenced during exploratory crawl-

ing. The role of these more anterior segments of the nervous

system is to modify the performance of the thoracic and abdom-

inal routine in the presence of stimuli, for example, by altering the

frequency and direction of turns when a food odor is detected

[9, 26]. Here, I report the use of genetically targeted aberrations

in axonal crossing at themidline to localize the regions of the ner-

vous system that are essential for the facultative asymmetry in

motor output that characterizes the turn as opposed to the sym-

metrical output of the straight crawl.

The first finding is that larvae that are null mutants for robo are

capable of hatching and crawling over a substrate. Their crawl-

ing paths are unusually circular rather than straight, but this ap-

pears to be the effect of a postural deficit that causes the larvae

to lie on their sides rather than on their ventral surfaces, with the

consequence that the body is thrown into a curve, presumably

by the differential strength of contraction in ventral as opposed

to dorsal longitudinal muscles whose innervation is unaffected

in robo mutants (Figure S4 and [27]). Despite this, the propaga-

tion of well-organized waves of muscle contraction from

segment to segment proceeds normally during forward and

backward crawls. Thus, the operation of the CPG for a straight

crawl is unaffected by serious disruption to axonal crossing

across the midline. The two sides of the animal are well coordi-

nated, and this suggests that adequate and appropriate con-

nections are maintained across the midline despite abnormal

patterns of axonal growth. This is in stark contrast to the opera-

tion of the network required for turns. The performance of turns is
aring the number of waves between genotypes. Boxplots are described in the

trical and asymmetrical activity are compared in control animals showing that

.36; p < 0.0001) with Bonferroni’s multiple comparison test comparing between

riods and n = 20 asymmetrical periods. The difference of intensity for all active

ifference in symmetry. An ANOVA (F21,161 = 2.967; p < 0.0001) with Bonferroni’s

performed. *p < 0.05. In robo mutant, there is no significant difference among

ltiple comparison test comparing between segments). n = 8 per group.

lcium imaging and behavior.
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Figure 4. The Thoracic Segments Generate the Output for a Turn

(A) Pattern of expression of the Gal4 lines used. The driver lines were crossed to the fluorescent reporter UAS-nuclear red fluorescent protein (nRFP). Anti-HRP

staining was used to show the neuropile. tsh-Gal4 is expressed in the thoracic and abdominal segments [11]. In AbdA-Gal4, the gal4 is inserted in the largest

intron of the abd-A transcription unit and reproduces the expression profile of Abd-A [23, 24] from the posterior half of A1 until the posterior half of A7 [25].

(B) Midline crossing defect as depicted by staining against Fas II. tsh>comm havemidline crossing defects in thoracic and abdominal neuromeres, while aberrant

crossing is only present in the abdominal segments of AbdA>comm larval nervous systems starting in segment A1, coinciding with the anterior boundary of AbdA

expression (right panels). Magenta arrows indicate the anterior boundary of midline crossing defects.

(C) Number of forward and backward waves per minute.

(D) Duration of forward and backward waves in seconds.

(E) Number of pause turns per minute.

(F) Number of rearing events per minute.

(G and H) Representative tracks of male tsh>comm and AbdA>comm larvae.

A Kruskal-Wallis test with Dunn’s multiple comparison was used. Asterisk (*) indicates comparison with the same heterozygous driver line. *p < 0.05;

***p < 0.001. + indicates comparison with UAS-comm/+. +p < 0.05; ++p < 0.01; +++p < 0.001. nUAS-comm/+ = 23; ntsh-Gal4/+ = 23; nAbdA-Gal4/+ = 14; ntsh>comm = 30;

nAbdA>comm = 19. Boxplots are described in the legend of Figure 2.
completely abolished in the mutants, and this shows that, unlike

the axial propagation of a wave, the generation of an asymmetric

output depends absolutely on a normal pattern of connectivity

across the midline. The simultaneous contraction of one side

and relaxation of the other during a normal turn is likely to depend

on the operation of reciprocal inhibitory connections across

the midline [28] and one possible explanation is that as a con-

sequence of the increased connectivity of both excitatory
1324 Current Biology 25, 1319–1326, May 18, 2015 ª2015 The Autho
and inhibitory neurons across the midline (Figure S1), the

strength of inhibition is decreased in comparison to excitatory

connections in robo mutants. This notion is reinforced by the

characteristic behavior that follows a pause in robo mutant

larvae; contralateral inhibition is apparently overridden by sym-

metrical excitation so that the two sides of the animal contract

together, causing the anterior segments to rear up, before

relaxation and the resumption of a crawl.
rs



The consequences of aberrant midline crossing for normally

asymmetric motor outputs in the larva are reminiscent of the ef-

fects of induced defects in midline crossing seen in mice. In

knockout mice for EphrinB3 or the EphA4 receptor tyrosine ki-

nase, defective midline crossing of commissural interneurons

[23, 29] causes synchronized activation of the normally recipro-

cating CPG for walking, with the result that the animals now

exhibit a rabbit-like hopping phenotype, which is not unlike the

rearing movement seen in robomutant larvae. I find that an addi-

tional behavior in Drosophila larvae, which is likely to depend on

reciprocal inhibition across themidline, namely self-righting from

an inverted position, where asymmetric muscle contraction ro-

tates the body, is also severely compromised in robo mutants

(self-righting time: robo2/robo1 = 163 ± 23 s compared with

robo2/+ = 22 ± 7 s, p < 0.001, and with robo1/+ = 36 ± 28 s,

p < 0.01, Kruskal-Wallis test with Dunn’s multiple comparisons).

These behavioral findings are reinforced by the observations of

spontaneous activity in the isolated nervous systemwhere fictive

crawling-like behavior is signaled by bilaterally symmetric waves

of calcium influx propagated forward and backward along the

thoracic and abdominal nervous system. These symmetric

waves are complemented by episodic, asymmetric, unilateral

activity, which is confined to the thorax and most anterior

abdominal segments and may represent the fictive equivalent

of a turn. In robo mutants, symmetric wave-like events continue

unabated in the isolated nervous system, but asymmetric activity

is completely abolished.

The observation that turns and putative ‘‘fictive’’ turns are

restricted to the anterior-most segments of the animal and the

isolated nervous system prompted me to try to identify the spe-

cific parts of the nervous system required to initiate this episodic,

asymmetric redirection of exploratory crawling. Since I had

found that the turn is uniquely sensitive to aberrant midline

crossing, I decided to use a genetic method to target these ab-

errations to specific segments of the nervous system. My results

show that when crossing is disrupted in the thorax and the

abdomen turns are abolished. However, when crossing is normal

in the thorax but disrupted in the abdomen, the larvae perform a

normal exploratory routine of runs and pause turns. Thus, I

conclude that, although anterior abdominal as well as thoracic

segments contract asymmetrically during a turn, the initiation

of this asymmetric event is thoracic and that this asymmetry is

propagated posteriorly through a descending pathway as the

movement progresses. Thus, the thoracic part of the thoracic

and abdominal network appears to have special characteristics

that enable the generation and propagation of an asymmetric

motor output. I find it interesting that, while the turn is blocked

in robomutants, the episodic interruption to crawling, the pause,

which precedes the redirection of movement in the wild-type, is

not. Although propagated, wave-like output is a property of

the entire thoracic and abdominal network and turns are a prop-

erty of the thorax, it is not clear which part of the system is

responsible for the pause, or whether it depends on a fluctuating

property of the whole network, such as the level of excitation.

Elucidating the neuronal substrate and mechanism responsible

for the time-dependent transition between crawls and turns will

be essential to understand the dispersion characteristics of the

larva both during spontaneous exploration and in response to

sensory stimuli [9, 26, 30–34].
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EXPERIMENTAL PROCEDURES

Materials and methods can be found in the Supplemental Experimental

Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

four figures, and four movies and can be found with this article online at

http://dx.doi.org/10.1016/j.cub.2015.03.023.
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