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Abstract: As wireless sensor network (WSN) is often deployed in a hostile environment, nodes
in the networks are prone to large-scale failures, resulting in the network not working normally.
In this case, an effective restoration scheme is needed to restore the faulty network timely. Most of
existing restoration schemes consider more about the number of deployed nodes or fault tolerance
alone, but fail to take into account the fact that network coverage and topology quality are also
important to a network. To address this issue, we present two algorithms named Full 2-Connectivity
Restoration Algorithm (F2CRA) and Partial 3-Connectivity Restoration Algorithm (P3CRA), which
restore a faulty WSN in different aspects. F2CRA constructs the fan-shaped topology structure to
reduce the number of deployed nodes, while P3CRA constructs the dual-ring topology structure to
improve the fault tolerance of the network. F2CRA is suitable when the restoration cost is given the
priority, and P3CRA is suitable when the network quality is considered first. Compared with other
algorithms, these two algorithms ensure that the network has stronger fault-tolerant function, larger
coverage area and better balanced load after the restoration.
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1. Introduction

Wireless sensor networks (WSNs) are known for their wide use in industry, military, and
environmental monitoring applications [1]. They are usually deployed in harsh environments, where
nodes are subjected to failures and the networks are easy to be partitioned into disjoint segments.
Therefore, fault tolerance becomes a critical issue for WSNs and numerous restoration algorithms
are proposed [2–6] to address this issue. In order to achieve fault tolerance when restoring a faulty
WSN, one approach is to deploy additional relay nodes to provide k (k > 1) vertex-disjoint paths
(hereinafter referred to as k-connectivity) between every pair of network nodes (segments and relay
nodes). In this way, the restored network can survive the failure of fewer than k nodes, which is
more practical for WSNs. In this paper, we adopt this approach to repair the faulty network which is
divided into many segments.

However, deploying additional relay nodes for network restoration brings us two conflicting
requirements: On the one hand, it needs to spend some money to purchase the equipment. In order
to save the cost, it is required to place as few nodes as possible to repair the faulty network. On the
other hand, as a wireless sensor network is easy to fail, the network after the restoration is required to
be with fault-tolerant function so that it can resist the attack and damage in the future. The network,
which is constructed by using as few nodes as possible, may not be fault-tolerant, but the network
with fault-tolerant function needs to deploy more relay nodes and costs more money. Hence, these
two requirements are contradictory. In addition, as for a network, network coverage and topology
quality are also important to a network. Therefore, when designing the restoration scheme, we should
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consider not only the cost and network fault tolerance, but also the other aspects. Only in this way
can the network after the restoration be more practical.

1.1. Our Contributions

In this paper, we comprehensively consider the restoration cost, fault tolerance, network
coverage and topology quality. We seek to use fewer nodes to establish a network with fault-tolerant
function under the premise of multiple segments that are unable to communicate with each other.
Meanwhile, except for the restoration cost and fault tolerance, we also consider the network coverage,
the quality of topology and others in this paper, so as to ensure that the network can not only has
better fault tolerance, but also has stronger robustness and higher coverage after the restoration.
Certainly, these performances are not considered fully in the existing literature. The algorithms we
propose in this paper are summarized as follows:

(1) Full 2-Connectivity Restoration Algorithm (F2CRA) provides two vertex-disjoint paths between
every pair of network nodes. This algorithm is suitable when the cost is considered first.

(2) Partial 3-Connectivity Restoration Algorithm (P3CRA) provides three vertex-disjoint paths
between every pair of segments and at least two vertex-disjoint paths between every pair of
relay nodes. This algorithm is suitable when the fault tolerance, network coverage and topology
quality are considered first.

1.2. Paper Organization

The remainder of this paper is organized as follows. Section 2 reviews some related works.
Section 3 proposes the system model and preliminaries. Our algorithms are introduced in Section 4.
Sections 5 and 6 conduct the theory and simulation analysis for our algorithms, respectively. Finally,
we conclude this paper in Section 7.

2. Related Work

WSNs are prone to failures due to the hostile environments where they are deployed. How to
recover a faulty WSN is an important issue that has attracted numerous researches. We summarize
some existing restoration algorithms in Table 1. In the connected relay node placement problem, the
aim is to ensure the network is connected (k = 1) [7–13], while in the survivable relay node placement
problem, the aim is to ensure k-connectivity (k > 1) [2–6,14–18]. k-connectivity can be either full or
partial [19]. Full k-connectivity implies that k node-disjoint paths exist between every pair of nodes,
while partial fault-tolerance requires k-connectivity between original nodes (segments) only.

Table 1. Relay placement algorithms.

Algorithms k Deployment Locations Fault-Tolerance Network Types

Lloyd [9] k = 1 Unconstrained No Homogeneous
Li [10] k = 1 Unconstrained No Heterogeneous

Bhattacharya [13] k = 1 Constrained No Homogeneous
Yang [11] k = 1, 2 Constrained Full Hierarchical
Hao [2] k > 1 Unconstrained Partial Hierarchical

Zhang [3] k = 2 Unconstrained Full Hierarchical
Han [4] k > 1 Unconstrained Full, Partial Heterogeneous
Senel [5] k = 2 Unconstrained Full Homogeneous

Our algorithms k = 2, 3 Unconstrained Full, Partial Homogeneous

In connectivity problems, most algorithms restore a faulty network by finding the minimum
spanning tree or Steiner tree. Lin and Xue [7] show that the STP-MSP problem is NP-hard.
They also show that the approximation obtained from the minimum spanning tree has a worst-case
performance ratio at most 5, while Chen et al. [8] point out that this approximation has a performance
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ratio exactly 4. Chen et al. also present a new polynomial-time approximation with a performance
ratio at most 3. Yang et al. [11] study two-tiered constrained relay node placement problems and
propose polynomial time approximation algorithms with O(1)-approximation ratios. Lloyd et al. [9]
study two versions of relay node placement problems, but the same objective of these two versions
is to deploy the minimum number of relay nodes. Li et al. [10] also has the same objective as [9],
but they study the placement problem in a heterogeneous WSN. Although easy to implement, these
algorithms are usually not efficient when a failure occurs in the network.

In survivable problems, most algorithms aim to construct a fault-tolerant network topology in a
WSN. Hao and Tang et al. [2,14] study a fault-tolerant relay node placement problem in a two-tiered
network, while Zhang et al. [3] study the problem in both single and two tiered networks. Smith et al. [2]
is further extended to cover k-connectivity in heterogeneous wireless sensor networks in [4] where
sensor nodes possess different transmission radii. The same as [4], Misra et al. [15] study the
placement problem in heterogeneous wireless sensor networks, but [15] studies a constrained
version in which relay nodes can only be placed at a set of candidate locations. As many algorithms
do in connectivity problem, many restoration algorithms in survivable problem also try to place
fewest number of relay nodes in a WSN like [6,16,17].

In a word, most of the aforementioned algorithms try to place minimum relay nodes in a
WSN. However, none of them take network quality into account which is also crucial in terms of
application-level performance. Therefore, Senel and Lee et al. [5,18] opt to reestablish connectivity
using the least number of relays while ensuring a certain quality in the formed topology. However,
their algorithms produce many overlapped areas and cannot be practical in multiple node failures
caused by aftermath. To address these issues, we jointly consider establishing fault-tolerant
connectivity and providing large coverage area which has not been studied.

3. System Model and Preliminaries

3.1. System Model

WSN is often deployed in the hostile environment, and sometimes it may suffer from the
large-scale damage, resulting in the entire network being divided into multiple segments which
cannot communicate with each other. In this paper, the problem we consider is how to repair the
faulty WSN composed of multiple segments. As mentioned above, our scheme is to deploy relay
nodes between each segment, but this scheme brings us two contradictory requirements: One is to
minimize the number of nodes, and the other is to construct a fault-tolerant network. If the segments
are regarded as a node, the set of these nodes is defined as S and the set of the deployed relay nodes
is defined as P, then our problem can be transformed into the following.

Given a set of nodes (segments) S on a plane with a random distribution, the nodes in the set
S cannot communicate with each other. After the set of relay nodes P being added on the plane for
the restoration, all the nodes SY P can communicate with each other. It requires that (1) the number
of relay nodes is minimized; and (2) the network is fault-tolerance after the restoration.

3.2. Preliminaries

Definition 1. Minimum Convex Hull: Given a set of nodes S on a plane with a random distribution, the
minimal convex polygon which contains all the points is called minimum convex hull (Figure 1a). In this paper,
we need to construct two convex hulls. To describe them conveniently, we call this minimum convex hull as
outer convex hull here. The outer convex hull is composed of the isolated segments in the network.

Definition 2. Inner Convex Hull: In this paper, when the minimum convex hull is found, in order to
ensure the network has fault tolerance after the restoration, the other convex hull is built inside the minimum
convex hull. This convex hull is called inner convex hull (Figure 1b).
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Figure 1. (a) Minimum convex hull; and (b) Inner convex hull.

Definition 3. Corner Point of Convex Hull: The points to make up convex hull are called corner points.
In outer convex hull, corner points are the isolated segments, while in inner convex hull, corner points are
relay nodes.

The notations used in this paper are as follows (Table 2).

Table 2. Notations.

Notation Description

OCH Outer Convex Hull
ICH Inner convex hull
CP Corner point
O Center of OCH
R Radius of relay node
P Set of relay nodes

S
Set of n segments, S “ ts1, s2, . . . , snu. The corresponding

coordinate set of these n segments is
tpx1, y1q, px2, y2q, . . . , pxn, ynqu.

4. Algorithms

This section illustrates two proposed algorithms in detail.

4.1. Full 2-Connectivity Restoration Algorithm

Many schemes place too many relay nodes for improving network fault tolerance performance,
but other performances like network coverage and topology quality have not been optimized.
To address this issue, we propose a new restoration algorithm named Full 2-Connectivity Restoration
Algorithm (F2CRA). This algorithm aims to deploy the minimum number of relay nodes to form a
full 2-vertex connected network. Meanwhile, the restored network has a larger coverage area and a
more balanced load than other schemes. The flow chart of F2CRA is shown in Figure 2.

The steps of F2CRA are as follows (Algorithms 1):
Given the scattered segments set S on the plane, in Step 1 the minimum convex hull composed

of these segments is found by the method of Graham scan algorithm. The time complexity of Graham
scan algorithm is O pnlognq. By calculating the length from CPs to the center of OCH, in Step 2, we
obtain the number of nodes and the accurate deployment position between each CP and O. Step 2
enables the nodes on ICH to form 3-connectivity, and Steps 3 and 4 enable the remaining segments on
the plane to form 2-connectivity. Steps 2–4 make the network topology have the fan-shaped structure
after the restoration. Compared with other algorithms, the network topology with such structure has
better fault tolerance, larger coverage and more balanced load. The time complexity from Step 2 to
Step 4 is O pnq; therefore, the time complexity of F2CRA algorithm is O pnlognq.
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Algorithms 1 F2CRA
INPUT: R, S “ ts1, s2, . . . , snu and tpx1, y1q, px2, y2q, . . . , pxn , ynqu. P is null.

OUTPUT: A set of relay nodes P.
Step 1. Find OCH.

(1) Adopt the Graham scan algorithm to find OCH in S.
Suppose that CPs set of OCH is ts1, s2, . . . , smu Ă S and their corresponding coordinate is
tpx1, y1q, px2, y2q, . . . , pxm , ymqu. The remaining segments set inside OCH is tsm`1, sm`2, . . . , snu.

(2) Calculate the coordinate px0, y0q of O.

x0 “
1
m

m
ř

i“1
xi

y0 “
1
m

m
ř

i“1
yi

(3) Calculate each side length of OCH.
for i “ 1 to m do

j “ i` 1
if i “ m then
j “ 1
end if

sidei “

b

`

xi ´ xj
˘2
`

`

yi ´ yj
˘2

end for
Then the set of the side lengths of OCH is tside1, side2, . . . , sidemu.

Step 2. Find ICH.
(1) Line each CP with O, respectively, and calculate the length of each line:

for i “ 1 to m do

li “

b

pxi ´ x0q
2
`pyi ´ y0q

2

Then the set of these lines is tl1, l2, . . . , lmu

(2) Calculate the angle between two adjacent lines:
for i “ 1 to m do

j “ i` 1
if i “ m then
j “ 1
end if

θi “ arccos

˜

l2
i ` l2

i`1 ´ side2
i

2ˆ li ˆ li`1

¸

Calculate the number of relay nodes to be deployed in each line:

x1i “ x0 ˘
Rˆ |x0 ´ xi|

2ˆ li ˆ sin
θi

2

,

y1i “ y0 ˘
Rˆ |y0 ´ yi|

2ˆ li ˆ sin
θi

2

n1i “

—

—

—

–

b

`

xi ´ x1i
˘2
`

`

yi ´ y1i
˘2

R

ffi

ffi

ffi

fl

Start with a CP of OCH si , and deploy relay nodes towards O with one relay node every
distance R, then get the corresponding deployment position of n1i nodes. Add these nodes
into the set of P and set the last node pi , the coordinate px2i , y2i q.

end for
Then the CPs set of ICH is tp1, p2, . . . , pmu.

(3) Deploy the nodes along with the edge of ICH.
for i “ 1 to m do

if i “ m then
j “ 1

end if
Deploy relay nodes between pi and pi`1, and add these nodes into the set of P.

end for
Step 3. Establish 2-connectivity for the segments on OCH.

if m%2 “ 0 then

Select
m
2

non-adjacent sides of shortest total length from the side set tside1, side2, . . . , sidemu,

deploy relay nodes along with these sides, and add these nodes into the set of P.
else
There will be a vertex u P S not forming 2-connectivity. At this time, find a node v on ICH that is
else
closest to u but not collinear with u, deploy the nodes uniformly between v and u , and add these nodes into the set of P.

end if
Step 4. Establish 2-connectivity for the isolated segments on the plane

for k “ m` 1 to n do
Find the nearest two nodes u1 and v1 for sk , u1, v1 P P. Deploy relay nodes uniformly in sk and u1, sk and v1,
and add these nodes into set P.

end for
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Figure 2. Flow chart of Full 2-Connectivity Restoration Algorithm.

4.2. Partial 3-Connectivity Restoration Algorithm

F2CRA uses fewer nodes to establish a network topology with fault tolerance. Therefore,
F2CRA is suitable for the case when the number of available relay nodes is small. When the
number of available nodes is sufficient, we can extend F2CRA, so that the network topology can
have the stronger fault tolerance after the restoration. Here, we propose an improved algorithm
Partial 3-Connectivity Restoration Algorithm (P3CRA). P3CRA is similar to F2CRA, but the network
restored by P3CRA will have partial 3-connectivity structure. Partial 3-connectivity means that after
the restoration, all the segments have 3-connectivity at least, and the deployed relay nodes have
2-connectivity at least. The network restored by P3CRA has larger coverage and better fault tolerance
than that by F2CRA. However, P3CRA needs to deploy more nodes; therefore, P3CRA is suitable
when the network quality is taken into consideration first, and F2CRA is suitable when the cost is in
consideration. P3CRA flow chart is shown in Figure 3.

Figure 3. Flow chart of Partial 3-Connectivity Restoration Algorithm.
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The steps of P3CRA are as follows (Algorithms 2):

Algorithms 2 P3CRA
INPUT: R, S “ ts1, s2, . . . , snu and tpx1, y1q, px2, y2q, . . . , pxn, ynqu. P is null.
OUTPUT: A set of relay nodes P.
Step 1 and Step 2 are the same with F2CRA’s.
Step 3. Establish 3-connectivity for the segments on OCH.

for i “ 1 to m do
Deploy relay nodes between si and si`1. (if i “ m, then i` 1 “ 1)

end for
Step 4. Establish 3-connectivity for the isolated segments on the plane.

for k “ m` 1 to n do
Find the nearest three nodes u1, v1 and w1for sk. (u1, v1, w1are not on the same line)
Deploy nodes uniformly in sk and u1, sk and v1, sk and w1.

end for

The first two steps are consistent in F2CRA algorithm and P3CRA algorithm, but in Step 3,
P3CRA algorithm directly deploys nodes along the edge of OCH. At that time, all CPs (segments) on
OCH form 3-connectivity. In Step 4, all segments on the plane eventually form 3-connectivity. Like
F2CRA algorithm, the time complexity of P3CRA algorithm is also O pnlognq.

To summarize, the network topology repaired by F2CRA algorithm has 2-connectivity. As it
needs fewer nodes, this algorithm is suitable when the cost is considered first. Compared with F2CRA
algorithm, P3CRA algorithm needs to deploy more nodes. Due to the stronger fault tolerance, larger
coverage and more balanced load, P3CRA algorithm is applicable when the performance of network
is considered first.

5. Algorithm Analysis

It is known that the coordinates of CPs and the center coordinate of OCH are
tpx1, y1q, px2, y2q, . . . , pxn, ynqu and px0, y0q, respectively, and the value of communication radius of
relay nodes is R. Assume that nodes are deployed every distance R. When the CP coordinate of ICH

is (x0˘
Rˆ |x0 ´ xi|

2ˆ li ˆ sin
θi
2

,y0˘
Rˆ |y0 ´ yi|

2ˆ li ˆ sin
θi
2

), the restoration algorithm will use the minimum number of

relay nodes.
Proof. As shown in Figure 4, we assume the coordinates of point A, B, and O are px1, y1q, px2, y2q,

and px0, y0q, respectively. Here point A and point B represent the different CPs of OCH, and point
O represents the center of OCH. Our algorithm deploys relay nodes from the CPs (A and B) to the
central point (O). As the values of AB, AO, BO and R are fixed, to minimize the nodes, it requires the
total length of AD and BE to be the shortest, that is, the total length of OD and OE is the longest.
Consequently, the problem is transformed into: Seeking the coordinate values of point D and E when
the total length of OD and OE is the longest.

Figure 4. Diagram of triangle.
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Set =AOB “ θ, the lengths of DE, OD and are R, a and b, respectively. =ODE “ α, =OED “ β,
a, b, α, β are unknown. When a is equal to b, a` b reaches the maximum value, which means the
total length of OD and OE is the longest. The detailed argument is relegated to the Appendix.

When a “ b, by trigonometric function, we have:

a “ b “

R
2

sin
θ

2

“
R

2sin
θ

2

(1)

Assume the coordinate of point D is px11, y11q, then:

b

`

x11 ´ x0
˘2
`
`

y11 ´ y0
˘2
“

R

2sin
θ

2

(2)

As D is on line AO, then we have:

y0 ´ y1

x0 ´ x1
“

y0 ´ y11
x0 ´ x11

(3)

By Equations (2) and (3), we have:

x11 “ x0 ˘
Rˆ |x0 ´ x1|

2ˆ l1 ˆ sin
θ

2

(4)

y11 “ y0 ˘
Rˆ |y0 ´ y1|

2ˆ l1 ˆ sin
θ

2

(5)

If x1 ă x0, then:

x11 “ x0 ´
Rˆ |x0 ´ x1|

2ˆ l1 ˆ sin
θ

2

(6)

Otherwise:

x11 “ x0 `
Rˆ |x0 ´ x1|

2ˆ l1 ˆ sin
θ

2

(7)

y11 is similar to x11, and the method to get the coordinate of E is similar to that of D. That is,

when the coordinates of D and E are, respectively, px0 ˘
Rˆ |x0 ´ x1|

2ˆ l1 ˆ sin
θ

2

, y0 ˘
Rˆ |y0 ´ y1|

2ˆ l1 ˆ sin
θ

2

q and px0 ˘

Rˆ |x0 ´ x2|

2ˆ l2 ˆ sin
θ

2

, y0˘
Rˆ |y0 ´ y2|

2ˆ l2 ˆ sin
θ

2

q, the total length of OD and OE is the longest, the total length of AD

and BE is the shortest, and the number of nodes is the least.
To summarize, the number of the nodes can be the least when the CP coordinate of ICH is

px0 ˘
Rˆ |x0 ´ xi|

2ˆ li ˆ sin
θi
2

, y0 ˘
Rˆ |y0 ´ yi|

2ˆ li ˆ sin
θi
2

q

.
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6. Algorithm Comparison and Simulation Analysis

6.1. Algorithm Comparison

Figure 5a is the distribution of segments before the restoration, where there is no mutual
communication between the isolated segments. Figure 5b is the diagram of network topology
structure which is restored by 2C-SpiderWeb algorithm. From Figure 5b, we can see that this network
topology has a large overlapping coverage. Because of this, the network has high average degree after
the restoration. However, in this case, high average degree do not represent the network has better
fault tolerance. If the localized fault occurs near the CP of OCH, such as the fire, the network restored
by 2C-SpiderWeb may be divided into several segments again with high probability. Therefore,
although the network has 2-connectivity after the restoration by 2C-SpiderWeb, it does not have good
fault tolerance.

Figure 5. (a) The distribution of segments before the restoration; (b) 2C-SpiderWeb; (c) F2CRA; and
(d) P3CRA.

Figure 5c,d are, respectively, the graphs of network topology structure of F2CRA and P3CRA
after the restoration. From Figure 5c, we can see that all the network nodes after the restoration have
at least 2-connevtivity. With such topology structure, the network can continue to run stably when
one node fails. From Figure 4d, we can see that the network topology structure formed by P3CRA has
larger coverage and better fault tolerance than others’. When the localized fault occurs, both F2CRA
and P3CRA can maintain the stability of the network, and the network is not easy to be divided into
many segments again.

6.2. Simulation Analysis

In this part, we will make a comparison among Hamilton Path algorithm, 2C-SpiderWeb
algorithm, F2CRA and P3CRA from the four aspects: the number of nodes (Figure 6), total coverage
of nodes (Figure 7), average coverage of each node (Figure 8) and average degree (Figure 9), so as to
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verify the feasibility and superiority of the proposed algorithm. In this simulation, the segments are
distributed on the 2D plane of 1000 ˆ 1000 m2 randomly. Besides, the node communication range in
Figures 6a, 7a, 8a and 9a is fixed with the value of 50 m, and the number of segments in Figures 6b,
7b, 8b and 9b is fixed at 8.

6.2.1. The Number of Relay Nodes

From Figure 6a, we can see that when the communication radius of nodes is fixed, the number
of nodes used in these four algorithms will increase with the growth of the number of segments. The
more segments and the longer the total path length of the segments are, the more nodes that need
to be deployed; therefore, more nodes will be used totally. It can be seen from the figure that no
matter how many segments the network being divided, the nodes used in F2CRA is fewer than those
in 2C-SpiderWeb algorithm, but more than those in Hamilton Path algorithm. This is determined by
different topology structure of various algorithms. As P3CRA has partial 3-connectivity, the number
of nodes used in this algorithm is higher than that in the other three algorithms.

From Figure 6b, we can see that the number of segments being fixed, the relay nodes used in
these four algorithms are reduced with the increase of the communication radius. This is because the
number of nodes is determined by the communication range of nodes when the position of segments
and the distance between the segments are fixed. When the node radius is enlarged, the number of
nodes between the segments is less and then the total number of nodes will be less. From Figure 6b,
we can see that no matter how the radius of nodes changes, the number of nodes in P3CRA is larger
than that of the other three algorithms. In addition, with the increase of the node radius, the number
of nodes used in F2CRA will be more close to that in 2C-SpiderWeb algorithm. This is because the
network topology formed by 2C-SpiderWeb algorithm is more similar to the one formed by F2CRA
when the node radius is enlarged. As a result, the number of nodes used in these two algorithms
is close.

Figure 6. (a) Relay Nodes vs. Segments; and (b) Relay Nodes vs. Communication Radius.

6.2.2. Total Coverage

From Figure 7, we can see that with the increase of the number of segments and the
communication radius of nodes, the total coverage of these four algorithms increases. The coverage
area of F2CRA is larger than that of 2C-SpiderWeb algorithm and Hamilton Path algorithm, while
the coverage area of P3CRA is much larger than other three algorithms’. Although 2C-SpiderWeb
algorithm has more nodes than F2CRA, the coverage area of F2CRA is always larger than that
of 2C-SpiderWeb algorithm, no matter how the number of segments or the communication radius
of nodes changes. From Figure 5, we can know that compared with 2C-SpiderWeb algorithm,
F2CRA has a smaller overlapping area. Therefore, no matter how the number of segments or
the communication radius of nodes changes, F2CRA has larger coverage area than 2C-SpiderWeb
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algorithm. Similarly, P3CRA uses more nodes and has smaller coverage area than F2CRA. Hence,
no matter how the number of segments or the communication radius of nodes changes, P3CRA has
larger coverage area than other algorithms.

Figure 7. (a) Coverage Area vs. Segments; and (b) Coverage Area vs. Communication Radius.

6.2.3. Average Coverage

From Figure 8a, we can see that the average coverage of F2CRA is basically the same with that of
P3CRA, less than that of each node by Hamilton Path algorithm, but more than that of 2C-SpiderWeb
algorithm. From Figure 5, we can visually know that 2C-SpiderWeb algorithm has a large overlapping
area. Because of the

large overlapping area, the actual coverage area of network topology formed by 2C-SpiderWeb
algorithm becomes small. As a result, the average coverage area of each node becomes small.
Compared with other three algorithms, the network topology formed by Hamilton Path algorithm
has the smallest network coverage area. Consequently, the average coverage area of each node of
Hamilton Path algorithm is the largest.

Figure 8. (a) The Average Coverage of Each Node vs. Segments; and (b) The Average Coverage of
Each Node vs. Communication Radius.

From Figure 8b, we can see that the average coverage area of each node will increase with the
growth of the communication radius. When the position of segments is fixed, the nodes deployed
between the segments depend on the communication radius of nodes. The larger the communication
radius is, the smaller the number of nodes will be, but the larger the communication radius is, the
larger the coverage area will be, so is the average coverage of all the nodes.
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6.2.4. Average Degree

From Figure 9a, we can see that the average degrees of both F2CRA and P3CR are lower than
that of 2C-SpiderWeb algorithm because 2C-SpiderWeb algorithm has larger coverage overlap, and
the nodes in the overlapping part have larger degree. Therefore, the average degree of this algorithm
is greater than that of the other three algorithms. Moreover, the topology of Hamilton Path algorithm
can be regarded as a ring, where the degree of the node is nearly 2. As some nodes overlap between
them, the final average degree is slightly larger than 2. The average degrees of the two algorithms
we proposed are between 2C-SpiderWeb algorithm’s and Hamilton Path algorithm’s, the reason of
which can be seen clearly from the algorithm topology diagram. Compared with 2C-SpiderWeb
algorithm, the two algorithms we proposed have a smaller overlapping coverage; while compared
with Hamilton Path algorithm, they have a larger overlapping coverage. Hence, the final average
degrees of the two algorithms we proposed are between 2C-SpiderWeb algorithm’s and Hamilton
Path algorithm’s. Moreover, from Figure 9a, we can see that the average degree of P3CRA is slightly
lower than that of F2CRA. The reason is that compared with F2CRA, the network topology formed
by P3CRA has the smaller overlapping area; therefore, the average degree of P3CRA is slightly lower
than that of F2CRA.

The case in Figure 9b is similar with that in Figure 8a, but from Figure 9b, we can see that
the average degree increases with the increase of the communication radius. When the deployment
location of the node is determined, the larger the communication radius of the node is, the larger the
overlapping area between the nodes will be. As a result, the average degree will be larger.

Figure 9. (a) Average Degree vs. Segments; and (b) Average Degree vs. Communication Radius.

7. Conclusions

Due to the deployment environment, WSN is prone to large-scale failure; therefore, the effective
algorithm is needed for timely recovery so that the network can run normally and stably. In this
paper, we propose two fault restoration algorithms, respectively, solving the WSN fault restoration
problem from different points. F2CRA is suitable when cost is considered first; and P3CRA is suitable
when the performances of the network are considered first. Compared with other algorithms, these
two algorithms ensure that the network has the stronger fault-tolerant function, larger coverage area
and more balanced load after the restoration. In future work, we plan to consider other factors of
deployment environment in our algorithms, such as obstacles and rough terrain, so that the proposed
algorithms can be more in line with the actual situation.
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Appendix

Proof of “When a is equal to b, a` b reaches the maximum value, which means the total length
of OD and OE is the longest”.

As shown in Figure A1, we assume the coordinates of point A, B, and O are px1, y1q, px2, y2q,
and px0, y0q, respectively. Set =AOB “ θ, the lengths of DE, OD and OE are R, a and b, respectively.
=ODE “ α, =OED “ β, a, α, β are unknown.

Figure A1. Diagram of triangle.

From the known, we know AB, AO and BO are, respectively:

side1 “

b

px1 ´ x2q
2
` py1 ´ y2q

2 (A1)

l1 “
b

px1 ´ x0q
2
` py1 ´ y0q

2 (A2)

l2 “
b

px2 ´ x0q
2
` py2 ´ y0q

2 (A3)

From Equations (A1)–(A3) and the cosine law, we can obtain the value of θ:

θ “ arccos

˜

l2
1 ` l2

2 ´ side2
1

2ˆ l1 ˆ l2

¸

(A4)

By trigonometric function, we have:

R
sinθ

“
a

sinα
“

b
sinβ

“
a` b

sinα` sinβ
(A5)

So

a` b “
sinα` sinβ

sinθ
R

“

2sin
α`β

2
cos

α´β

2
sinθ

R

“

2sin
π´ θ

2
cos

α´β

2
sinθ

R

“

2cos
θ

2
cos

α´β

2
sinθ

R

“

cos
α´β

2

sin
θ

2

R

(A6)
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As θ and R are known, when α “ β, cos
α´β

2
has the maximum value, then a` b reaches the

maximum value. That is, when a “ b, a` b reaches the maximum value, which means the total length
of OD and OE is the longest.
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