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We present the Zurich Cognitive Language Processing Corpus (ZuCo), a dataset combining
electroencephalography (EEG) and eye-tracking recordings from subjects reading natural sentences. ZuCo
includes high-density EEG and eye-tracking data of 12 healthy adult native English speakers, each reading
natural English text for 4–6 hours. The recordings span two normal reading tasks and one task-specific
reading task, resulting in a dataset that encompasses EEG and eye-tracking data of 21,629 words in 1107
sentences and 154,173 fixations. We believe that this dataset represents a valuable resource for natural
language processing (NLP). The EEG and eye-tracking signals lend themselves to train improved machine-
learning models for various tasks, in particular for information extraction tasks such as entity and relation
extraction and sentiment analysis. Moreover, this dataset is useful for advancing research into the human
reading and language understanding process at the level of brain activity and eye-movement.
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time series design • process-based data analysis objective • natural language
processing objective

Measurement Type(s) brain activity measurement • eye movement

Technology Type(s) electroencephalography • eye tracking device
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Sample Characteristic(s) Homo sapiens • brain • eye
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Background & Summary
Natural language processing (NLP), a fundamental aspect of artificial intelligence, aims at teaching
computers to process features of natural language data, such as the sentiment of a sentence or relational
information between text entities. Due to the advances in AI in the recent years, NLP applications have
greatly improved their performance in automatically analyzing and extracting knowledge from text and
speech.

However, in order to train NLP applications, large labeled datasets are often required. For instance, to
train a sentiment analysis system, which predicts the sentiment of a sentence (i.e. positive/negative/
neutral), thousands of annotated sentences are needed. Typically, human annotators must read these
training sentences and assign a sentiment to each one. Clearly, this reflects a significant investment. Our
long-term goal is to replace this labor-intensive and expensive task with physiological activity data
recorded from humans while reading sentences. That is to say, we aim to find and extract relevant aspects
of text understanding and annotation directly from the source, i.e. eye-tracking and brain activity signals
during reading. By way of illustration, opinions and sentiments are elicited from a person reading text,
which is reflected in their brain activity. Hence, it should be possible to decode this information from the
recorded brain activity data with machine learning techniques and bypass - or at least complement -
manual human annotation.

Whether it is possible to decode such information from brain activity is an empirical question and has
not been answered so far. Yet, previous studies have demonstrated that eye movement information
improves NLP tasks such as part-of-speech tagging1, sentiment analysis2 and word embedding
evaluation3. In addition, there are some available resources of subjects’ eye-movement recordings while
reading text (e.g. the Dundee corpus4 and the GECO corpus5). However, while there are studies that
combine EEG and eye-tracking from a psycholinguistic motivation (e.g. response to syntactically
incorrect sentences6), up to now there is no dataset available that combines eye-tracking and brain
activity that is tailored for training machine learning algorithms to perform NLP tasks.

In this article we present a dataset of simultaneous electroencephalography (EEG) and eye-tracking
data of 12 subjects reading natural sentences. We therefore provide a dataset that will enable researchers
to advance the training of NLP applications using rich physiological data. Preliminary experiments with
positive results7,8 show the potential capability of applying this data successfully in NLP.

The study design includes three tasks: two normal reading paradigms, which differ in the text
materials, and one task-specific paradigm, where subjects had to actively engage in a language
comprehension exercise. In all tasks, the text understanding was tested by specific questions. Table 1
shows a detailed schematic overview of the tasks. The reading materials recorded for the Zurich Cognitive
Language Processing Corpus (ZuCo) contain sentences from movie reviews from the Stanford Sentiment
Treebank9 and biographical sentences about notable people from the Wikipedia relation extraction
corpus10. In addition, all subjects completed a standardized test to assess their vocabulary and language
proficiency (Lexical Test for Advanced Learners of English)11.

A prominent feature of this dataset is the personal reading speed. The sentences were presented to the
subjects in a naturalistic reading scenario, where the complete sentence is presented on the screen and the
subjects read each sentence at their own speed, i.e. the reader determines him/herself for how long each
word is fixated and which word to fixate next.

Brain-electric correlates of reading have traditionally been studied with word-by-word presentation, a
condition that eliminates important aspects of the normal reading process and precludes direct
comparisons between neural activity and oculomotor behavior12. Thus, it is important to emphasize the
value of the simultaneous EEG and eye-tracking recordings of this study. Eye-tracking permits us to
define exact word boundaries in the timeline of a subject reading a sentence, allowing to extract EEG
signals for each word.

We want to highlight the re-use potential of this data. It allows to conduct experiments for different
NLP tasks. Possible NLP applications are information extraction for text mining, including entity and
relation discovery, and semantic tasks, such as sentiment analysis. To train machine learning system the
number of samples (i.e. words and sentences) is crucial. Hence, in this work we focused more on the
number of sentences recorded than the number of subjects. While this dataset has been created with
machine learning and natural language processing as its primary application, this data can also be used to
analyze the human reading process from a neuroscience perspective. It can be used for linguistic and
(neuro-)psychological studies to generate new hypotheses (exploratory analyses), but these hypotheses
should then be tested on a higher number of subjects to account for the variability of reading strategies
across subjects. The technical validation of this dataset, described further below, is proof of the quality of
the recordings.

Methods
Participants
Data were recorded from 12 healthy adults, all native English speakers (originating from Canada, USA,
UK or Australia). The study included 5 female and 7 male subjects, all right-handed, of ages between 22
and 54 years. Details about the participants’ age and gender can be found in Table 2. All participants gave

www.nature.com/sdata/

SCIENTIFIC DATA | 5:180291 | DOI: 10.1038/sdata.2018.291 2



written consent for their participation and the re-use of the data prior to the start of the experiments. The
study was approved by the Ethics Commission of the University of Zurich.

Linguistic assessment
Vocabulary and language proficiency of the participants was tested with the LexTALE test (Lexical Test
for Advanced Learners of English11), an unspeeded lexical decision task, which is for intermediate to
highly proficient language users. The average score of all subjects on the LexTALE test was 94.69%.
Additionally, Table 2 shows the detailed scores per subject. These scores are the percentages of correctly
answered control questions in the respective task.

Task overview
In the next section we present first the materials read by the subjects during the recording sessions,
followed by a detailed description of each task and the experimental procedure.

Materials
The dataset we present is composed of sentences from the Stanford Sentiment Treebank9 and the
Wikipedia relation extraction corpus10.

The Stanford Sentiment Treebank contains single sentences extracted from movie reviews with
manually annotated sentiment labels. We randomly selected 400 very positive, very negative or neutral
sentences (4% of the full treebank). The 400 selected sentences are comprised of 123 neutral, 137 negative
and 140 positive sentences.

The Wikipedia relation extraction dataset contains paragraphs about famous people, which were
labeled with relation types. For the normal reading we randomly selected 650 sentences that contain a
relation (14% of the full dataset). For the task-specific relation extraction reading we selected
approximately 40 sentences of each of the following relation types: award, education, employer, founder,
job_title, nationality, political_affiliation, visited and wife. Of these sentences, 300 were used in the normal

Task 1 Normal reading (Sentiment) Task 2 Normal reading (Wikipedia) Task 3 Task-specific reading (Wikipedia)

Material Positive, negative or neutral sentences
from movie reviews

Wikipedia sentences containing specific
relations

Wikipedia sentences containing specific
relations

Example “The film often achieves a mesmerizing
poetry.” (positive)

“Talia Shire (born April 25, 1946) is an
American actress of Italian descent.”
(relations: nationality, job title)

“Lincoln was the first Republican president.”
(relation: political affiliation)

Task Read the sentences, rating the quality of
the movie based on the sentence read

Read the sentences, answer control
questions

Mark whether a specific relation occurs in
the given sentence or not

Control question “Based on the previous sentence, how
would you rate this movie from 1 (very
bad) to 5 (very good)?”

“Talia Shire was a …1) singer 2) actress
3) director”

“Does this sentence contain the political
affiliation relation? 1) Yes 2) No”

Table 1. Schematic overview of the three tasks in the study design.

Subject ID Age Gender LexTale Reading speed Task 1 Reading speed Task 2 Reading speed Task 3 Score Task 1 Score Task 2 Score Task 3

ZKW 25 female 96.25% 6.94 (4.07) 11.73 (7.22) 6.14 (4.17) 69.57% 91.67% 94.84%

ZDN 32 male 97.50% 3.91 (1.49) 4.10 (1.62) 2.93 (1.61) 89.13% 86.11% 92.87%

ZPH 26 male 97.50% 4.78 (2.28) 7.55 (3.47) 2.71 (2.32) 89.13% 94.44% 97.05%

ZMG 51 male 100.00% 4.39 (2.47) 5.33 (3.25) 3.73 (2.77) 91.30% 88.89% 95.82%

ZAB 41 female 100.00% 4.88 (2.08) 5.14 (2.49) 3.32 (2.17) 76.09% 86.11% 90.42%

ZJN 51 female 97.50% 8.71 (4.63) 11.30 (6.55) 7.10 (5.05) 54.34% 83.33% 79.12%

ZKH 41 female 81.25% 5.42 (2.34) 6.43 (3.82) 5.57 (3.10) 76.09% 83.33% 93.12%

ZGW 49 male 91.25% 6.87 (3.58) 8.06 (4.31) 4.17 (3.01) 71.74% 86.11% 92.14%

ZJS 42 male 97.50% 4.34 (1.95) 4.18 (2.09) 2.88 (1.71) 91.30% 91.67% 93.86%

ZKB 26 female 100.00% 5.39 (2.96) 8.43 (4.74) 2.48 (1.63) 89.13% 86.11% 95.33%

ZDM 25 male 100.00% 4.41 (2.23) 5.13 (2.42) 3.32 (2.20) 76.09% 80.56% 96.81%

ZJM 41 male 77.50% 6.22 (3.17) 8.73 (5.07) 6.30 (3.72) 80.43% 97.22% 96.56%

average 38 - 94.69% 5.52 7.18 4.22 79.53% 87.96% 93.16%

Table 2. Details of all subjects in the study; reading speed is measured in seconds (with standard
deviation in brackets).
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reading tasks and 407 in the task-specific task (see Table 3). Note that 48 sentences are duplicates and
appear in both tasks. These duplicate sentences can be found in a separate file in the online repository
(Data Citation 1).

Table 3 presents the overall descriptive statistics of the materials split by task. Sentences from both
parts of the dataset were presented to the subjects in three different tasks of normal reading and task-
specific reading. All sentences can be also found in the MATLAB files and in separate text files (Data
Citation 1), which include the sentiment and relation labels.

Stimuli & Experimental Design
During all three tasks, the sentences were presented one at a time at the same position on the screen. Text
was presented in black with font size 20-point Arial on a light grey background resulting in a letter height
of 0.8 mm or 0.674°. The lines were triple-spaced, and the words double-spaced. A maximum of 80 letters
or 13 words were presented per line in all three tasks. Long sentences spanned multiple lines. A
maximum of 7 lines for Task 1, 5 lines for Task 2 and 7 lines for Task 3 were presented simultaneously on
the screen.

In all three tasks the subjects used a control pad to switch to the next sentence and to answer the
control questions, which allowed for natural reading. Compared to RSVP (Rapid Serial Visual
Representation), where each word is presented separately at an equal speed, the normal reading approach
is closer to a natural reading scenario6: The subjects read each sentence at their own speed, i.e. the reader
determines him/herself for how long each word is fixated and which word to fixate next. This allows for
varying reading speed between the subjects; each subject reads at his/her own personal pace. Table 2
shows the average reading speed, i.e. the average number of seconds a subject spends per sentence,
reported for each task. Note that a Wilcoxon test revealed significant difference in reading speeds between
Task 3 and Task 2 (Z= �3.0594; p ≤ 0.01; see Fig. 1 for the distribution of the reading speeds per task).
The individual reading speeds for every subject were considerably lower in Task 3 than in Task 2, since
the tasks itself were different. Although the reading material was of the same type, in Task 2 passive
reading was recorded, while in Task 3 the subjects had to search for a specific relation type. Thus, the
task-specific reading lead to shorter passes because the goal was merely to recognize a relation in the text,
but not necessarily to process the whole meaning of the sentences. The task instructions are described in
detail below.

Task 1 Normal reading
(Sentiment)

Task 2 Normal reading
(Wikipedia)

Task 3 Task-specific reading
(Wikipedia)

Total

words 7079 6386 8164 21629

word types 3080 2657 2995 7099

sentences 400 300 407 1107

M SD R M SD R M SD R M SD R

words per sentence 17.70 8.29 3–43 21.29 10.55 5–62 20.06 10.09 5–62 19.54 9.72 3–62

word length 6.97 2.71 1–26 6.70 2.65 1–29 6.69 2.58 1–21 6.79 2.65 1–29

Table 3. Descriptive statistics of reading materials (M = mean, SD = standard deviation, R = range).

Figure 1. Histogram of the reading speeds of all sentences for all three tasks.
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Task 1: Normal reading (Sentiment)
Task overview. In the first task, the subjects were presented with positive, negative or neutral sentences
for normal reading to analyze the elicitation of emotions and opinions during reading. As a control
condition, the subjects had to rate the quality of the described movies in 47 of the 400 sentences. The
average response accuracy compared to the original labels of the Stanford Sentiment Treebank is 79.53%
and the response accuracy per subject can be found in Table 2 in column “Score Task 1”.

Stimuli & experimental design. Figure 2a shows a sample sentence and how it was presented on the
screen. The movie ratings in the control condition questions were answered with the numbers 1–5 (very
bad - very good) on the control pad.

Participant instructions. The task was explained to the subject orally, followed by instructions on the
screen:

“Please read the following sentences. After you read each sentence, press 1 to continue. Press 6 to start
the task.” “Based on the previous sentence, how would you rate this movie? (very bad) |1- 2- 3 - 4 - 5 |
(very good) Please press the corresponding number on the keyboard.”

Task 2: Normal reading (Wikipedia)
Task overview. In the second task, the subjects were presented with sentences that contained semantic
relations. The control condition for this task consisted of multiple-choice questions about the content of
the previous sentence (68 sentences were followed by a question). The average response accuracy is
87.96% and the response accuracy per subject can be found in Table 2 in column “Score Task 2”.

a

b

c

Figure 2. Sample screens for a sentence of each task. (a) Task 1 (Sentiment). (b) Task 2 (Normal Reading).

(c) Task 3 (Task-specific Reading).
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Stimuli & experimental design. The sentences were presented to the subject in the same manner as in
Task 1. The numbers on the control pad were used to choose the answers of the control questions.
Figure 2b shows an exemplary sentence as it appeared on the screen.

Participant instructions. The task was explained to the subjects orally, followed by instructions on the
screen:

“Please read the following sentences. After you read each sentence, press 1 to continue. Press 6 to start
the task.”;

“Who was his childhood hero?

1) Superman
2) Spiderman
3) Batman

Please press the corresponding number on the keyboard.”

Task 3: Task-specific reading (Wikipedia)
Task overview. In a subsequent session, the subjects were presented with similar sentences as in the
second task, but with specific instructions to focus on a certain relation type. As described above, the
following relation types were contained in the sentences: award, education, employer, founder, job_title,
nationality, political_affiliation, visited and wife. This allows us to compare the EEG and eye-tracking
signals during normal reading to reading with a specific relation in mind. As a control condition, the
subjects had to report for each sentence whether a specific relation was present in the sentence or not.
The relation was not present in 72 sentences. The average response accuracy on this control condition is
93.16% and the response accuracy per subject can be found in Table 2 in column “Score Task 3”.

The sentences were presented in blocks of the same relations, so the subjects would know which
relation to look for without having to read the questions. Each of these blocks had a separate practice
round with a definition of the relations and three sample sentences.

Stimuli & experimental design. Figure 2c shows a sample sentence on a screen for this specific task.
Note that the control question in the bottom right was presented for each sentence.

Participant instructions. The task was explained to the subjects orally, followed by instructions on the
screen.

Definition of the relation type of the current block, shown before the practice round:
“AWARD; While reading the following sentences please watch out for the relation between a person or

their work and the award they/it received or were nominated for.”

Task instructions. “Please read the following sentences. After you read each sentence, answer the
question below. Press 6 when you are ready.”;

“Does this sentence contain the award relation? [1]= Yes, [2]=No”

Procedure
Each participant read the entire reading material in two sessions of 2–3 hours each (at the same time of
day). In the first session the participants completed Task 2, followed by the first half of Task 1. In the
second session the participants completed Task 3, followed by the second half of Task 1. The sentences
were presented to all subjects in identical order. Before each task, a practice round of 3–5 sentences was
displayed for the subject to get familiar with the task. The eye-tracking device was re-calibrated in blocks
of 60 sentences (approx. every 10–15 minutes) for the first two tasks of normal reading and after every 40
sentences in the third task.

Data acquisition
Data acquisition took place in a sound-attenuated and dark experiment Faraday recording cage.
Participants were seated at a distance of 68 cm from a 24-inch monitor (ASUS ROG, Swift
PG248Q, display dimensions 531.4 × 298.9 mm, resolution 800 × 600 pixels (resulting in a display:
400 × 298.9 mm), vertical refresh rate of 100 Hz). A stable head position was ensured via a chin rest.
Subjects were instructed to stay as still as possible during the tasks. Participants were also offered snacks
and water during the breaks and were encouraged to rest.

The experiment was programmed in MATLAB 2016b13, using the PsychToolbox extension14,15. The
order of the reading paradigms was the same for all participants. Instructions for the tasks were presented
on the computer screen. Participants completed the tasks sitting alone in the room, while two of the
authors were monitoring their progress in the adjoining room.

Eye-tracking acquisition
During all of the EEG paradigms, eye position and pupil size were recorded with an infrared video-based
eye tracker (EyeLink 1000 Plus, SR Research, http://www.sr-research.com/) at a sampling rate of 500 Hz
and an instrumental spatial resolution of o0.01°. The eye tracker was calibrated with a 9-point grid
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before each paradigm. Specifically, participants were asked to direct their gaze in turn to a dot presented
at each of nine locations in a random order. In a validation step, the calibration was repeated until the
error between two measurements at any point was less than 0.5°, or the average error for all points was
less than 1°.

Eye-tracking preprocessing and feature extraction
The EyeLink 1000 tracker processes eye-position data, identifying saccades, fixations and blinks. Saccades
are detected by the velocity and acceleration of the eye movements. Here, SR-research default system
parameters have been used to define saccades: an acceleration threshold of 8000° per sec2, a velocity
threshold of 30° per sec, and a deflection threshold of 0.1°. Fixations were defined as time periods without
saccades. The dataset therefore consists of (x,y) gaze location entries for individual fixations (Fig. 3).
Coordinates were given in pixels with respect to the monitor coordinates (the upper left corner of the
screen was (0,0) and down/right was positive). We also provide raw sample data that can be used to
validate fixation detection settings. Further, a blink can be regarded as a special case of a fixation, where
the pupil diameter is either zero or outside a dynamically computed valid pupil, or the horizontal and
vertical gaze positions are zero.

For later analysis, only fixations within the boundaries of each displayed word have been extracted. On
the x-axis, the word boundaries were extended so that they were adjacent (Fig. 3). A Gaussian mixture
model was trained on (y-axis) gaze data for each sentence to improve allocation of the eye fixations to the
corresponding text lines. The number of text lines determined the number of Gaussians to be fitted
within the model. Subsequently, each gaze data point was clustered to the matching gaussian and the data
were realigned. As a result, each gaze data point is clearly assigned to a specific text line. Data points
distinctly not associated with reading (minimum distance of 50 pixels to the text) were excluded.

On the basis of a previous eye-tracking corpus5 we have extracted the following eye-tracking features
in MATLAB (code available in the data repository (Data Citation 1)): (I) gaze duration (GD), the sum of
all fixations on the current word in the first-pass reading before the eye moves out of the word; (II) total
reading time (TRT), the sum of all fixation durations on the current word, including regressions; (III) first
fixation duration (FFD), the duration of the first fixation on the prevailing word; (IV) single fixation
duration (SFD), the duration of the first and only fixation on the current word; and (V) go-past time
(GPT), the sum of all fixations prior to progressing to the right of the current word, including regressions
to previous words that originated from the current word. For each of these eye-tracking features we have
additionally computed the pupil size. Furthermore, we have extracted the number of fixations and mean
pupil size for each word and sentence.

Fixations that were shorter than 100 ms were excluded from the analyses, because these are unlikely to
reflect fixations relevant for reading16, however, the raw eye-tracking data are available to assess further
potential eye-tracking features.

EEG acquisition
High-density EEG data were recorded at a sampling rate of 500 Hz with a bandpass of 0.1 to 100 Hz,
using a 128-channel EEG Geodesic Hydrocel system (Electrical Geodesics, Eugene, Oregon). The

Figure 3. Visualization of single trial EEG and eye-tracking data. (a) Prototypical single sentence fixation

data for a representative subject. Red crosses indicate fixations. Boxes around the words indicate the area

in which fixations are allocated to the specific word. (b) Raw gaze data of the fixation data plotted above.

(c) Subset of the raw EEG data during the sentence. Electrodes matching the 10–20 systems were chosen and

for plotting purposes data were bandpass-filtered (0.5–30 Hz.). (d) Same data as in (c) after preprocessing.
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recording reference was at Cz. For each participant, head circumference was measured, and an
appropriately sized EEG net was selected. The impedance of each electrode was checked prior to
recording, to ensure good contact, and was kept below 40 kOhm. Electrode impedance levels were
checked after every third block of 60 sentences (approx. every 30 mins) and reduced if necessary.

EEG preprocessing steps and feature extraction
The data shared in this project are available as raw data, but also preprocessed with Automagic (version:
1.4.6). The MATLAB code for the preprocessing can be found at https://github.com/methlabUZH/
automagic. The data from each paradigm are saved as a separate file for each participant. In the first step
of preprocessing, EEG data were imported in MATLAB (pop_readegi.m) and the triggers and latencies for
each paradigm were extracted. One hundred and five EEG channels were used for scalp recordings and
nine EOG channels were used for artifact removal. The rest of the channels lying mainly on the neck and
face were discarded before data analysis.

Bad electrodes were identified and replaced. Identification of bad electrodes was based on the EEGLab
plugin clean_rawdata (http://sccn.ucsd.edu/wiki/Plugin_list_process). This plugin removes flatline
channels, low-frequency and noisy channels. A channel was defined as a bad electrode when recorded
data from that electrode were correlated at less than 0.85 to an estimate based on other channels (channel
criterion). Furthermore, a channel was defined as a bad channel if it had more line noise relative to its
signal compared to all other channels (4 standard deviations). Finally, if a channel had a longer flatline
than 5 s, it was considered as bad.

In a next step the EEG data were high-pass filtered at 0.5 and notch filtered (49–51 Hz) with a
Hamming windowed-sync finite impulse response zero-phase filter (EEGLAB function pop_eegfiltnew.
m). The filter order was defined to be 25% of the lower passband edge. Eye artifacts were removed by
linearly regressing the EOG channels from the scalp EEG channels17. The EOG electrodes were placed on
the participant’s forehead, outer and inner canthi (#'s 8, 14, 17, 21, 25, 125, 126, 127, and 128 from the
HydroCel Geodesic Sensor Net). In this study, MARA18 (Multiple Artifact Rejection Algorithm), a
supervised machine learning algorithm that evaluates ICA components, is used for automatic artifact
rejection. MARA has been trained on manual component classifications, and so captures the wide range
of artifacts that manual rejection detects. MARA has proven especially effective at detecting and
removing eye and muscle artifact components. Specifically, MARA evaluates each component on the six
algorithm features: Current Density Norm and Range Within Pattern, Fit Error k, 8–13 Hz, and Mean
Local Skewness as the feature set. MARA rejects any components with artifact probabilities greater than
0.52. Subsequently, bad electrodes were interpolated by using a using spherical spline interpolation
eeg_interp.m. Moreover, after automatic scanning, noisy channels were selected by visual inspection and
interpolated. The effect of preprocessing is displayed in Fig. 3 for representative subject and sentence.

Figure 4. Omission rates and skipping proportions (means and standard errors) for all tasks and subjects

(means and standard error). (a) The omission rates for each task and for each subject, where the y-axis shows

the proportion of words being skipped in a sentence (0–1). (b) The skipping proportion (y-axis) for each task

and for each subject.
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After preprocessing, the EEG and eye-tracking data were synchronized using “EYE EEG extension”19

to enable EEG analyses time-locked to the onsets of fixations. The synchronization is performed by
identifying “shared” events and fitting a linear function to the shared event latencies in order to refine the
estimation of the latency of the start- and end-event. Synchronization quality was ensured by comparing
the trigger latencies recorded in the EEG and eye-tracker data. All synchronization errors did not exceed
one sample (2 ms).

For the purposes of the current project, we were interested in oscillatory power in different frequency
bands; however, the time-series data are shared as well. To compute oscillatory power measures, we band-
pass filtered the continuous EEG signals across an entire task period for five different frequency bands
resulting in a time-series for each frequency band. The independent frequency bands were determined
following: theta1 (4–6 Hz), theta2 (6.5–8 Hz) alpha1 (8.5–10 Hz), alpha2 (10.5–13 Hz), beta1 (13.5–18
Hz) beta2 (18.5–30 Hz) and gamma1 (30.5–40 Hz) and gamma2 (40–49.5 Hz). We then applied a Hilbert
transform to each of these time-series, resulting in a complex time-series. The Hilbert phase and
amplitude estimation method yields results equivalent to sliding window FFT and wavelet approaches20.
We specifically chose the Hilbert transformation to maintain temporal information for the amplitude
of the frequency bands to enable the power of the different frequencies for time segments defined through
fixations from the eye-tracking recording. Thus, for each eye-tracking feature we computed the
corresponding EEG feature in each frequency band. Furthermore, we have extracted EEG features based
on sentence-level by calculating the power in each frequency band. For all EEG features, we
have additionally calculated the difference of the power spectra between frontal left and right homologue
electrodes pairs (see the readme file for the exact electrodes). For each EEG eye-tracking feature,
all channels were subject to an artifact rejection criterion of 790μV to exclude trials with transient noise.

Code availability
The code for the preprocessing can be found here: https://github.com/methlabUZH/automagic.

Data Records
Data privacy
All data are de-identified and participants gave permission for their data to be openly shared as part of
the informed consent process.

Distribution for use
Raw and preprocessed EEG and eye-tracking data are available online (Data Citation 1). EEG and eye-
tracking data are available openly, along with basic personal data (age, gender, handedness) and linguistic
performance measures (LexTale scores). Public data are distributed under the the Creative Commons
Attribution 4.0 International Public License (https://creativecommons.org/licenses/by/4.0/).

EEG and eye-tracking data organization
The data are stored in folders by task (Data Citation 1). Combined EEG and eye-tracking data can be
found in the MATLAB files, one file per subject.

Technical Validation
Eye-tracking
Omission rates & skipping proportions. The eye-tracking data were evaluated by analyzing the
fixations made by each subject. On the one hand, we analyze the fixations on sentence level using the
omission rate. The omission rate is defined as the percentage of words that is not fixated in sentence.
Figure 4a shows the omission rates per task for each subject. On the other hand, we analyze the skipping
proportion on the word level. The skipping proportion is the rate of words being skipped (i.e. not being
fixated). Figure 4b presents the skipping proportion for all tasks and each subject. The values of the
reported metrics are in accordance with values reported in other eye-tracking reading studies5,21.
Moreover, we present the effect of word length on skipping proportion, as it has been presented
previously5. As mentioned above, both the omission rates and the skipping proportions are significantly
higher in Task 3, the only task-specific paradigm. Because readers in Task 3 were searching for a
particular relation, this does not necessarily require reading all sentences until the end; however, Fig. 5
shows that the probability of a word being skipped decreases for longer words, but short words are
frequently skipped consistently in all tasks.

Reading time
The reading times in the recorded data were also validated. As described previously, we extracted the
features described in the GECO corpus5: first fixation duration (FFD), single fixation duration (SFD), gaze
duration (GD), total reading time (TRT) and go-past time (GPT). This is visualized in Fig. 6, which shows
the mean and distributions of the reading times for each feature, separated by task. For reference,
Supplementary Table S1 presents the exact values. For the calculation of these reading times only fixations
>100ms were considered. The presented ranges are in line with those presented by the previous study5.
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EEG
The aim of the technical validation of the EEG data was to replicate findings of previous studies
investigating co-registration of EEG and eye-movement data during free reading tasks12,21.

Preprocessing of the EEG data was analogous to the feature extraction; however, after preprocessing a
single bandpass filter was applied in addition (0.5–30 Hz). Afterwards, EEG data were re-referenced to
the average reference and segmented to onsets of fixations. Analogous to Dimigen et al.12, a time-window
of 1600 ms was chosen (600 ms before onset of the fixation to 1000 ms after). Furthermore, the pool of
fixations was limited to first-pass reading fixations, which yielded in 154,173 trials in total.

Fixation-related potentials
As a first validation step, fixation-related potentials (FRPs) were extracted. Therefore, the pool of fixations
described above was divided into the three task conditions (Task 1, n= 56743; Task 2, n= 48723; Task 3,
n= 48707) and trials were averaged within each condition. Data were baseline corrected using a 100ms
time-window before fixation onset. Figure 7 shows the time-series of the resulting FRPs for two electrodes
(PO8 and Cz) as well as topographies of the voltage scalp distributions at selected timepoints. Due to the
different EEG system in the study of Dimigen et al.12, electrode locations did not match perfectly22. In
order to compare the results, we used similar electrodes. The time-points were chosen according to
Dimigen et al.12, namely the visually evoked lambda response of the previous fixation (1), the mygoenic
spike potential at saccade onset (2), the lambda response of the current fixation (3), the N170 component
(4) and the N400 component, which is overlapped by the lambda response of the succeeding fixation (5).

All results are in line with the findings of Dimigen et al.12. The five ERP components (for which the
scalp topographies are plotted) are highly similar to this study in the time-course of the chosen electrodes.
This also applies for the scalp level topographies.

Fixation duration effect on ERPs
Previous studies12,22 were able to show an effect of fixation duration on the resulting FRPs. We followed
two approaches to demonstrate this dependency in the current dataset. The first followed the procedure
of Dimigen et al.12, therefore all single-trial FRPs were ordered by fixation duration. As a next step, a
vertical sliding time-window was used to smooth the data; that is, for each EEG segment, the average of
50 adjacent trials was calculated. Figure 8b shows the resulting plots per task condition. In line with this
previous study12 a first positivation P1 can be identified at 100 ms post-fixation onset. A second positive
peak P2 is located dependent on the duration of the fixation, which can be explained by the time-jittered
succeeding fixation.

The second approach is based on previous related work23 in which single trial EEG segments are
clustered by the duration of the current fixation. Here, four clusters were chosen (100–150 ms, 150–200

Figure 5. Effect of word length on the skipping proportion per task (mean and standard deviation),

x-axis = word length, y-axis = mean skipping proportion.
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ms, 200–250 ms, 250–300 ms). Data within each cluster were averaged in order to get four different FRPs,
depending on the fixation duration. The results can be seen in Fig. 8a. While P1 is located around 100 ms
post-fixation onset, the P2 component also moves as a function of the fixation duration, which is
consistent with the findings reported by Henderson et al.22.

Figure 6. Violin plot showing means, distributions, and ranges of the reading time measures per word for

each task and each eye-tracking feature (x-axis) in milliseconds.

Figure 7. FRPs during the different task conditions with selected scalp level potential distributions.

Topographies show amplitudes in microvolt, coded as color.
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Figure 8. Clustered EEG segments. (a) FRPs of electrode Cz, clustered by duration of the fixation. (b) Each

horizontal line represents the mean of the current and 50 adjacent EEG epochs, segmented on fixation onset.

Segments are ordered by fixation duration (top: shortest fixation, bottom: longest fixation). Color represents

the amplitude of the signal in microvolt.
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