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Abstract
Platelet function can be quantitatively assessed by specific assays such as light-transmission aggregometry, multiple-electrode
aggregometry measuring the response to adenosine diphosphate (ADP), arachidonic acid, collagen, and thrombin-receptor
activating peptide and viscoelastic tests such as rotational thromboelastometry (ROTEM).
The task of extracting meaningful statistical and clinical information from high-dimensional data spaces in temporal multivariate

clinical data represented in multivariate time series is complex. Building insightful visualizations for multivariate time series demands
adequate usage of normalization techniques.
In this article, various methods for data normalization (z-transformation, range transformation, proportion transformation, and

interquartile range) are presented and visualized discussing the most suited approach for platelet function data series.
Normalization was calculated per assay (test) for all time points and per time point for all tests.
Interquartile range, range transformation, and z-transformation demonstrated the correlation as calculated by the Spearman

correlation test, when normalized per assay (test) for all time points. When normalizing per time point for all tests, no correlation could
be abstracted from the charts as was the case when using all data as 1 dataset for normalization.

Abbreviations: AA = acetylsalicylic acid, ADP = adenosine diphosphate, APT = antiplatelet therapy, CABG = coronary artery
bypass grafting, CFT = clot formation time, COL = collagen, CPB = cardiopulmonary bypass, ROTEM = rotational
thromboelastometry, CRISP-DM = CRoss-Industry Standard Process for Data Mining, CT = clotting time, Hb = hemoglobin,
Hct = hematocrit, K2EDTA = dipotassium ethylenediaminetetraacetate, K-NN = k-Nearest Neighbors, LTA = light transmission
aggregometry, MCF = maximum clot firmness, MEIA = multiple electrode impedance aggregometry, ML = maximum lysis, PCA =
principal component analysis, PF = platelet function, PlatCt = platelet count, PPP = platelet-poor plasma, PRP = platelet-rich
plasma, TRAP thrombin receptor-activating peptide.
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1. Introduction

Alterations in platelet function are a common finding in surgical
procedures involving cardiopulmonary bypass (CPB). Routine
laboratory assays such as activated clotting time, activated partial
thromboplastin time, prothrombin time, or platelet count do not
provide sufficient specificity and/or sensitivity toassess coagulation
and platelet disorders related to the surgical intervention. Platelet
function canbequantitatively assessedbymore specific assays such
as light-transmission aggregometry, multiple-electrode aggregom-
etry measuring the response to ADP, arachidonic acid, collagen,
and thrombin-receptor activating peptide and viscoelastic tests
such as rotational thromboelastometry (ROTEM). With more
data involved, the task of extracting meaningful statistical and
clinical information from high-dimensional data spaces, wherein
each patient at a certain point in time is defined by hundreds or
thousands of measurements, becomes more complex. The massive
growth of data set size in health care, in number of records and
attributes, has triggered the development of various Big Data
platforms that employparallel data analytics algorithmwith a high
potential for revealing meaningful clinical information through
pattern discovery.[1] Similarly, a high number of attributes triggers
the “curse of dimensionality” phenomenon that often prevents
building of predictive models and meaningful patterns with good
generalization performance (predictions onnewdata). As such, the
use of data dimensionality reduction procedures becomes a
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necessity for employment of Big Data analytics in medical
practice.[2] Selection of important attributes and samples is
especially difficult in temporal multivariate clinical data repre-
sented in multivariate time series. This task, most often cannot be
adequately addressed only by data driven methods and demands
deep understanding and involvement of clinical knowledge.
Because of that it is of critical importance to provide comprehensi-
ble and robust visualizationsof the insights obtainedbydatadriven
methods, so they could be complemented with clinical knowledge
and serve as in decision support. Building insightful visualizations
for multivariate time series demands adequate usage of normali-
zation techniques, because different natural scales of original
attributes can hide important correlations or temporal trends.[3]

However, in current state-of-the-art scientific output, researchers
often do not address this problem (adequate normalization of data
at hand) in a rigorous manner, potentially leading to biased
conclusions.
Optimal implementation of current and new hemostasis and

coagulation assays requires quantitative analysis of the involve-
ment of all useful attributes. In this article, several methods for
data normalization are presented discussing the most suited
approach for platelet function data series.[4] Additionally, a
visualization was created, enabling examining multivariate
patient data over time more accurately and efficiently than
current tabular visualizations.[5]

2. Materials and methods

2.1. Study design and patients

From January 2013 until January 2014, a single-centre,
longitudinal observational study collected data from 20
patients at the Maastricht University Medical Centre, after
approval by the local medical ethics committee (NTR 4238).
Adult patients scheduled for elective CABG with CPB, and a
preoperative PlatCt (platelet count) of ≥250�109/L were
included. Exclusion criteria consisted of emergency surgery,
chronic thienopyridine APT, not discontinued at least 5 days
prior to surgery, the use of any other anticoagulation drug
other than prophylactic low-molecular-weight heparins, con-
genital disorders of the haemostatic system, and detection of an
infection prior to surgery. Eligible patients were recruited on
the medical ward the day prior to surgery where they provided
written informed consent. Data collection was covered for
3 consecutive days, starting on the day prior to surgery until
24hours postoperatively. The dataset used in this article
consisted of 20 patients and 171 attributes from 3 time points:
S1 (before surgical incision), S2 (after weaning from CPB), and
S3 (24hours postoperative).

2.2. Blood collection and laboratory analyses

Blood samples were collected in vacuum tubes, using a VenoJect
Quick Fit luer adapter (XX-MN2000Q, Terumo Medical,
Leuven, Belgium). Following discarding 10mL of blood at each
time point, 4mL whole blood was collected in a K2EDTA 7.2mg
BD Vacutainer (Ref.: 368861, Becton, Dickinson & Company,
Plymouth, UK), 4.5mLwhole blood in a sodium citrate 3.2% BD
Vacutainer (Ref.: 367714, Becton, Dickinson & Company), and
3mL whole blood in a hirudin 15mg/mL Vacutainer (Ref.:
MP0600, Verum Diagnostica GmbH,Munich, Germany). Blood
samples were directly transported to the laboratory and analyzed
within 2 to 4hours after collection to allow for minimal necessary
resting time for PF tests.
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2.2.1. Standard hematological analyses. EDTA–-
anticoagulated blood was used for cytometric analysis using a
whole blood counter Sysmex XE 2100 (Sysmex, Kobe, Japan) to
obtain a whole blood count.

2.2.2. Light transmission aggregometry (LTA). Citrate–-
anticoagulated whole blood was centrifuged 10minutes at
170g to obtain PRP. The remaining blood was centrifuged twice
more, 5minutes at 2.500g followed by 10minutes at 10.000g,
providing platelet-poor plasma (PPP) as reference material.
Platelet aggregation was subsequently measured in test cuvettes
(Ref.: HB-5538-FG, Hart Biologicals Ltd, Hartlepool, UK) filled
with nonadjusted PRP, using the Platelet Aggregometer PAR-4
(Ref.: 50.000.1070, Hart Biologicals Ltd), after addition of
platelet agonists: AA (Ref.: LS101297, Bio/Data Corporation,
Horsham, PA), ADP (Ref.: HB-5502-FG, Hart Biologicals Ltd),
COL (Ref.: CH 385, CHRONO-LOG Corporation, Havertown,
PA) and TRAP (Ref.: H-8105.0001, BACHEM, Bubendorf,
Switzerland) in final concentrations of 1mMAA, 5mMADP, 2m
g/mL COL, and 20mM TRAP, respectively.

2.2.3. Multiple electrode impedance aggregometry (MEIA).
Platelet aggregation was measured by MEIA principle using the
Multiplate multiple electrode aggregometer (Roche Diagnostics,
Almere, The Netherlands). Similar to LTA measurements,
platelet aggregation was analyzed using the following agonists:
AA at a final concentration of 0.5mM (ASPI-Test; Ref.: MP0210,
Dynabyte Medical, Munich, Germany), ADP at a final
concentration of 6.4mM (ADP-Test; Ref.: MP0220, Dynabyte
Medical), COL at a final concentration of 3.2mg/mL (Ref.: 385,
Chronolog-PAR, Stago BNL, Leiden, The Netherlands) and
TRAP at a final concentration of 32mM (TRAP-Test; Ref.:
MP0250, Dynabyte Medical). All samples were measured after a
resting period of 30minutes following blood collection.

2.2.4. Rotational thromboelastometry (ROTEM). Thrombus
formation was measured by ROTEM (Tem International GmbH,
München, Germany). Standard assays and reagents (Tem
International GmbH) were used according to the manufacturer’s
recommendations: EXTEM, FIBTEM, and HEPTEM. All
samples were measured within 1hour after blood collection.
Furthermore, by means of EXTEM and FIBTEM results, the
contribution of platelet count to the thrombus formation was
calculated as the PLTEM parameter.

2.3. Statistical analysis

Analysis was performed by RapidMiner (7.0, Boston, MA).
RapidMiner (previously: Rapid-I, YALE) became popular in
recent years and is supported by a large scientific community
(http://www.kdnuggets.com/2016/02/rapidminer-leader-2016-
gartner-mq-advanced-analytics-platforms.html). RapidMiner
provides multiple extensions suited for dimensionality reduc-
tion.[1] Furthermore the tool enables seamless parameter optimi-
zation, being a necessary step for many cutting edge algorithms
(e.g., PCA). Data were displayed by Tableau (9.2, Seattle, WA)
(https://www.tableau.com/about/press-releases/2016/gartner-posi
tions-tableau-leader-magic-quadrant-bi-and-analytics-platforms).
The dashboard developed for this study is publicly accessible on
Tableau Public: https://public.tableau.com/views/LineChart_8/
Dashboard1?:embed=y&:display_count=yes&:showTabs=y.

2.4. Normalization

Normalization is as preprocessing step used to rescale attribute
values to fit in a specific range. In data analysis, normalization is a
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Table 1

Spearman rank test and P values of correlation analyses between
LTA, MEIA, and ROTEM versus PlatCt and Hct (n=20).

PlatCt Hct

r P r P

LTA–AA 0.135 0.338
∗ ∗

LTA–ADP 0.317 0.022‡
∗ ∗

LTA–COL 0.338 0.014‡
∗ ∗

LTA–TRAP 0.359 0.009x
∗ ∗

MEIA–AA 0.318 0.019‡ 0.492 0.000x

MEIA–ADP 0.741 0.000x 0.405 0.003x

MEIA–COL 0.494 0.000x 0.301 0.030‡

MEIA–TRAP 0.551 0.000x 0.328 0.018‡

ROTEM–PLTEM MCF 0.067 0.629 �0.066 0.640
ROTEM–EXTEM MCF 0.749 0.000x 0.302 0.030‡

ROTEM–FIBTEM MCF † † 0.374 0.006x

AA= arachidonic acid, ADP=adenosine diphosphate, COL= collagen, Hct=hematocrit, LTA= light
transmission aggregometry, MCF=maximum clot firmness, MEIA=multiple electrode impedance
aggregometry, PlatCt=platelet count, PRP=platelet rich plasma, ROTEM= rotational thromboelas-
tometry, TRAP= thrombin-receptor activating peptide.
∗
Correlation analysis was not performed for LTA versus Hct because the assay is performed in PRP.

† Correlation analysis was not performed for FIBTEM versus PlatCt because the assay is performed in
presence of cytochalasin D, which completely inhibits platelet action.
‡ P-value<0.05.
x P-value<0.01.
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type of data transformation referring to the replacement of a
variable by a function of that variable: for example, replacing a
variable x by the square root of x or the logarithm of x. In a
stronger sense, a transformation is a replacement that changes the
shape of a distribution or relationship.
Normalization of the data is of particular importance when

dealing with attributes of different units and scales. In some
data mining algorithms like K-NN, the input attributes are
expected to be numeric and normalized because the algorithm
compares values of different attributes and calculates distance
between data points. Data normalization methods enable to
bring all of the variables into proportion with one another.[6]

Finding an appropriate method to deal with time series
normalization is not an easy task because most of the
traditional normalization methods make assumptions that do
not hold for most time series. The first assumption is that all
time series are stationary, that is, their statistical properties,
such as mean and standard deviation, do not change over time.
The second assumption is that the volatility of the time series is
considered uniform.[7]

In this study, normalization is calculated by 4 normalization
methods. Each method calculated normalization on the complete
dataset, by test for the 3 points in time and by time point for all
the tests.
Results of this article were based on the following normaliza-

tion methods:
z_transformation
This is also called statistical normalization. The purpose of

statistical normalization is to convert a data into Normal
(Gaussian) distribution with mean=0 and variance=1. The
formula of statistical normalization is Z= (X�u)/s. Attribute
values are considered as vector X which are subtracted by the
mean of the attribute values, u, and the difference is divided by the
standard deviation, resulting in a vector Z with normal
distribution (with zero mean and unit variance), also called
Standard Normal distribution, N(0,1). However, the range of the
standard Normal distribution is not limited to [0,1]. Limiting the
range to �3 and +3 captures 99.9% of the data. This scaling
method is useful when the data follows normal distribution, if the
data do not follow normal distribution themethod is less suitable.
Proportion_transformation
Each attribute value is normalized as proportion of the total

sum of the respective attribute, that is, each attribute value is
divided by the total sum of the attribute values.
Range_transformation
Range transformation normalizes all attribute values in the

user specified range [min,max]. Consider the min–max and the
decimal scaling methods, for instance. Their applicability
depends on the knowledge of the minimum and/or maximum
values of a time series, which is not always possible.
Interquartile_range
Since normalization by range_transformation (described

above) only takes into account max and min values for each
feature, it may be heavily influenced by outliers in the data.
Therefore, another criterion—the interquartile range—is com-
monly used. It is the distance between the 25th and 75th
percentiles (Q3�Q1). The interquartile range is essentially the
range of the middle 50% of the data. Because it uses the middle
50%, the interquartile range is not affected by outliers or extreme
values.
Normalized values are represented by polynomial trend lines

(polynomial trends in Tableau, have model degrees of freedom of
1 plus the degree of the polynomial).
3

3. Results

Guided by the CRoss-Industry Standard Process for DataMining
(CRISP-DM), the initial dataset (20 patients, 154 attributes) was
imported in RapidMiner for data preparation.
The variables (attributes) from standard hematological testing,

rotational thromboelastometry, light transmission aggregometry,
and multiple electrode aggregometry (units) are: Laboratory tests:
Hb (mmol/L); Hct (%); PlatCt (�109/L); MPV (fL) ROTEM
(Rotational Thromboelastometry): A5 EXTEM (mm); A5
EXTEMtPA (mm); A5 FIBTEM (mm); A5 HEPTEM (mm); A5
PLTEM (mm); A10 EXTEM (mm); A10 EXTEMtPA (mm); A10
FIBTEM (mm); A10 HEPTEM (mm); A10 PLTEM (mm); A20
EXTEM (mm); A20 EXTEMtPA (mm); A20 FIBTEM (mm); A20
HEPTEM (mm); A20 PLTEM (mm); Alpha EXTEM (mm); Alpha
EXTEMtPA (mm); Alpha FIBTEM (mm); Alpha HEPTEM (mm);
Alpha PLTEM (mm); MCF EXTEM (mm); MCF EXTEMtPA
(mm);MCF FIBTEM (mm);MCFHEPTEM (mm);MCF PLTEM
(mm);ML EXTEM (%);ML EXTEMtPA (%);ML FIBTEM (%);
ML HEPTEM (%); ML PLTEM (%); CT EXTEM (s); CT
EXTEMtPA (s); CTFIBTEM(s);CTHEPTEM(s);CTPLTEM(s);
CFT EXTEM (s); CFT EXTEMtPA (s); CFT FIBTEM (s); CFT
HEPTEM (s); CFT PLTEM (s); LTA (Light Transmission
Aggregometry): MA AA (%); MA ADP (%); MA COL (%);
MA TRAP (%);MEA (Multiple Electrode Aggregometry): AUC
ASP (U); AUCADP (U); AUCCOL (U); AUCTRAP (U) AggrRate
AA (na); AggrRate ADP (na); AggrRate COL (na); AggrRate
TRAP (na).

3.1. Correlation

Correlations between LTA/MEIA/ROTEM and PlatCt or Hct,
were analyzed using Spearman correlation test (Table 1). The
Spearman correlation is nonparametric with the exact sampling
distribution obtained without requiring knowledge of the joint
probability distribution of the parameters. Correlation analysis
using Spearman correlation coefficients (Table 1) identified a
strong (r>0.40 or r<�0.40) correlation between MEIA results

http://www.md-journal.com


Figure 1. Data of PlatCt, MCF EXTEM, MCF PLTEM for baseline, post-CPB,
postop. No normalization. Charts generated by Tableau and available from:
https://public.tableau.com/views/LineChart_8/Dashboard1?:embed=y&:dis
play_count=yes&:showTabs=y. Normalization modes: no: without normal-
ization. CBP=cardiopulmonary bypass, MCF=maximum clot firmness,
PlatCt=platelet count, postop=postoperative.

Figure 2. Data of PlatCt, MCF EXTEM, MCF PLTEM for baseline, post-CPB, posto
postop). Charts generated by Tableau and available from: https://public.ta
showTabs=y. Normalization mode: test: normalization by test for the 3 points in
(B) range: range transformation; (C) prop: proportion transformation; (D) Z: z-tra
PlatCt=platelet count, postop=postoperative.
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and PlatCt for respectively ADP- (r=0.741, P<0.01), COL- (r=
0.494, P<0.01), and TRAP-induced (r=0.551, P<0.01) platelet
aggregation. With respect to ROTEM measurement, EXTEM
MCF (r=0.749, P<0.01) demonstrated a strong correlation with
PlatCt (Fig. 1). No moderate (0.30< r<0.39 or �0.30> r>�
0.39) or strong correlations were found between LTA measure-
ment and PlatCt intrinsic to LTA methodology. Further, strong
correlation is observed (r>0.40 or r<�0.40) between MEIA
results and Hct for, respectively, AA- (r=0.492, P<0.01) and
ADP-induced (r=0.405, P<0.01) platelet aggregation. Addition-
ally, ROTEM values were correlated with Hct results (FIBTEM
MCF r=0.374, P<0.01). Correlation analysis between LTA and
Hct was not performed since this assay is performed in PRP.
In order to illustrate different normalization methods the

correlation of PlatCt and ROTEM EXTEMMCF (r=0.749, P=
0.000) and ROTEM PLTEM MCF (r=0.067; P=0.629) is
studied (Table 1). Each method calculated normalization, on the
complete dataset, by test for the 3 points in time and by time point
for all the tests.With a strong and significant correlation of PlatCt
with ROTEM EXTEM MCF, and a weak, nonsignificant
correlation of PlatCt with ROTEM PLTEMMCF, the difference
between the 2 features should be clearly to illustrate.With platelet
p. Normalization by test for the 3 points in time (moments: baseline, post-CPB,
bleau.com/views/LineChart_8/Dashboard1?:embed=y&:display_count=yes&:
time (moments: baseline, post-CPB, postop). (A) InterQ: interquartile range;
nsformation. CBP=cardiopulmonary bypass, MCF=maximum clot firmness,

https://public.tableau.com/views/LineChart_8/Dashboard1?:embed=y%26:display_count=yes%26:showTabs=y
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count (PlatCt) expressed as�10 /L (normal range: 150–450) and
ROTEM maximal clot formation (MCF) as mm (normal range
ROTEM EXTEM MCF: 49–71 and ROTEM PLTEM MCF:
35–45). PLTEM, was calculated by subtracting FIBTEM from
EXTEM to distinguish thrombocytopenia from hypofibrinoge-
nemia.[8]

Polynomial trend lines of PlatCt, ROTEM EXTEM MCF,
ROTEM PLTEM MCF values, illustrated without any normali-
zation (Fig. 1), was not able to illustrate correlation of PlatCt and
ROTEM EXTEMMCF (Fig. 1). Additionally, differences in unit
and scale of PlatCt values compared to ROTEM EXTEM MCF,
ROTEM PLTEM MCF values impede a clear display of the time
related changes of ROTEM EXTEM MCF, ROTEM PLTEM
MCF values (Figs. 2–4).
Similar observations are noticeable, although with different

scaling, with normalization of all data by z-transformation
(Fig. 4D), range transformation (Fig. 4B), proportion transfor-
mation (Fig. 4C), and interquartile range (Fig. 4A).
Analyzing normalization by test for all time points only reveals

correlation of PlatCt andROTEMEXTEMMCFby interquartile
range (Fig. 2A), range transformation (Fig. 2B), and z-
transformation (Fig. 2D). No correlation is abstracted from
visualization by proportion normalization (Fig. 2C).
Figure 3. Data of PlatCt, MCF EXTEM, MCF PLTEM for baseline, post-CPB, pos
PlatCt). Charts generated by Tableau and available from: https://public.ta
showTabs=y. Normalization mode: time: normalization by time point for all tests
range: range transformation; (C) prop: proportion transformation; (D) Z: z-transform
platelet count, postop=postoperative.

5

Analyzing normalization by time point for all tests did not
demonstrate correlation of PlatCt and ROTEM EXTEMMCF in
any chart (Fig. 3A–D).
4. Discussion

In biomedical environments, it is desirable to compare dynamical
systems based on their behavior.[9] Similarity of behavior often
implies similarity of internal mechanisms or dependency on
common extrinsic factors (e.g., LTA and MEIA agonists).
Although methods for comparing univariate time series are
generally adopted, most dynamical systems in biomedicine are
characterized by multivariate time series. Comparison of multi-
variate time series has been limited to cases where a common
dimensionality is shared.[10]

Normalization is a generally employed preprocessing technique
used to rescale attribute values to fit in a specific range.
Normalization of the data is critical when dealing with attributes
with different units and scales because certain data mining
techniques (e.g., the ones based on distance/similarity calculations)
require normalization. However, normalization of biomedical
data is often ignored, and this can lead to misinterpretation of the
results and ultimately wrong decisions.[11]
top. Normalization by time point for all tests (MCF EXTEM, MCF PLTEM, and
bleau.com/views/LineChart_8/Dashboard1?:embed=y&:display_count=yes&:
(MCF EXTEM, MCF PLTEM, and PlatCt); (A) InterQ: interquartile range; (B)

ation. CBP=cardiopulmonary bypass, MCF=maximum clot firmness, PlatCt=

https://public.tableau.com/views/LineChart_8/Dashboard1?:embed=y%26:display_count=yes%26:showTabs=y
https://public.tableau.com/views/LineChart_8/Dashboard1?:embed=y%26:display_count=yes%26:showTabs=y
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Figure 4. Data of PlatCt, MCF EXTEM, MCF PLTEM for baseline, post-CPB, postop. Normalization on the complete dataset. Charts generated by Tableau and
available from: https://public.tableau.com/views/LineChart_8/Dashboard1?:embed=y&:display_count=yes&:showTabs=y. Normalization mode: all: normalization
on the complete dataset; (A) InterQ: interquartile range, (B) range: range transformation; (C) prop: proportion transformation; (d) Z: z-transformation. CBP=
cardiopulmonary bypass, MCF=maximum clot firmness, PlatCt=platelet count, postop=postoperative.
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Finding an appropriate method for time series normalization is
not a clear cut task.[7] Most of the traditional normalization
methods make assumptions that are lacking in time series. A first
assumption is related with the nonstationary property of time
series. Stationary processes assume that their statistical properties
(e.g., mean and standard deviation), do not fluctuate over time.
The second assumption is related with the volatility of the time
series which is considered uniform. It is proposed to normalize
time series by Adaptive Normalization.[7] In Adaptive Normali-
zation, the original nonstationary time series is transformed into
a stationary sequence. This transformation is based on the
concepts of moving averages. In this article, moving averages
were not implemented because only 3 time points were included.
The authors attempted to find the adequate normalization
technique(s) illustrating the correlations as calculated for the
different features.
When feature values cover a large range, the use of the

logarithms of the values rather than the actual values reduces
the wide range to a more manageable size. This approach might
be suitable for visualization, when using certain analytical
methods, normalization becomes essential. Basically, normali-
zation is performed to obtain the same range of values for data
6

mining and machine learning techniques like support vector
machine, neural network, etc. This can guarantee stable
convergence of weight and biases and speed of the optimization
process.
We developed an online dashboard (Tableau) enabling to

measure similarity for multivariate time series representations of
physiological and laboratory data allowing physicians to identify
patients with similar events and/or phenotypes for the purpose of
predicting patient outcomes.[12]

Polynomial trend lines of PlatCt, ROTEM EXTEM MCF,
ROTEM PLTEM MCF values with normalization (by z-
transformation, range transformation, proportion transforma-
tion, and interquartile range) or without normalization on all
values of the dataset, was not able to illustrate correlation of
PlatCt and ROTEMEXTEMMCF (Fig. 1). This approach is also
not suitable for time series considering the nonstationary
property of the data. When normalization was performed for
each test separately but for all time points, correlation of PlatCt
and ROTEM EXTEM MCF was illustrated by interquartile
range (Fig. 2A), range transformation (Fig. 2B) and z-
transformation (Fig. 2D). No correlation is abstracted from
visualization by proportion normalization (Fig. 2C). Analyzing

https://public.tableau.com/views/LineChart_8/Dashboard1?:embed=y%26:display_count=yes%26:showTabs=y
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normalization separately for each time point but for all tests,
correlation of PlatCt and ROTEM EXTEM MCF could not
be abstracted in any chart (Fig. 3A–D). Besides correlation
analysis of features, temporal trend should be considered. The
chart illustrating no normalization (Fig. 1) and the chart
illustrating normalization performed for each test separately
but for all time points (Fig. 2A–D), both ROTEM EXTEMMCF
and ROTEM PLTEM MCF have a negative correlation, but on
the chart illustrating no normalization (Fig. 1), no clear temporal
change of ROTEM EXTEMMCF and ROTEM PLTEMMCF is
observed.t
5. Conclusion

There is no unique assay to quantitatively assess platelet function.
Tools as been provided by this study enable clarification of the
complex relationship between the various features measured in
clinical medicine. Results of multivariate time series are often
represented without normalization. Because of different scales of
original features, such visualizations most often cannot reveal
significant correlations between variables, nor temporal trends.
Additionally, manymachine learning and datamining algorithms
require normalization as preprocessing step in order to provide
valid models (i.e., k-means or k-NN) or to allow fast and stable
convergence to the optimal solution (i.e., logistic regression).
However, there is a multitude of available normalization
techniques, and not all of them are suitable for each type of
data. In this study, we examined the value of several
normalization techniques (z-transformation, range transforma-
tion, proportion transformation, and interquartile range) for
visualizing correlations and temporal trends of temporal tests.
Interquartile range, range transformation, and z-transformation
demonstrated correlation when normalized per assay (test) for all
time points; when normalizing per time point for all tests, no
correlation could be abstracted from the charts as was the case
when using all data as 1 dataset for normalization. These
conclusions might provide a tool for deeper investigation of
potential correlations. Different normalization techniques lead to
different views on data.
7
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