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SUMMARY

Despite the success of antiretroviral therapy (ART), individuals with HIV remain at risk for experiencing
non-AIDS adverse events (NAEs), including cardiovascular complications and malignancy. Several surro-
gate immune biomarkers in blood have shown predictive value in predicting NAEs; however, composite
panels generated using machine learning may provide a more accurate advancement for monitoring and
discriminating NAEs. In a nested case-control study, we aimed to develop machine learning models to
discriminate cases (experienced an event) andmatched controls using demographic and clinical character-
istics alongside 49 plasma immunoproteins measured prior to and post-ART initiation. We generated sup-
port vector machine (SVM) classifier models for high-accuracy discrimination of individuals aged 30–50
years who experienced non-fatal NAEs at pre-ART and one-year post-ART. Extreme gradient boosting
generated a high-accuracy model at pre-ART, while K-nearest neighbors performed poorly all around.
SVM modeling may offer guidance to improve disease monitoring and elucidate potential therapeutic in-
terventions.

INTRODUCTION

The age of people living with HIV (PWH) is steadily rising,1 and these dynamic changes are projected to continue.2 Importantly, age-related

comorbidities, such as hypertension, diabetes, cardiovascular disease (CVD), and non-AIDS-defining cancers, are occurring more frequently

and at an earlier age in PWHdespite antiretroviral drug therapy (ART).3–5 Underlyingmechanisms leading to non-AIDS adverse events (NAEs)

are multifactorial and may be cumulative, including those due to residual HIV persistence, immune dysregulation, and co-infections.6,7 While

persistent inflammation and immune activation are hallmarks of chronic HIV infection that often remain during ART-mediated viral suppres-

sion, these processes can further be compounded by age progression.8,9 Currently, a lack of additional interventions to ameliorate immune

activation and immune dysregulation in PWH on ART warrants further understanding of the underlying processes that may drive NAEs and

development of modalities to predict and monitor their occurrence.

The evolution of improved diseasemodels in evaluatingmortality andmorbidity risk has been invaluable as potential indices for improving

the clinical management of PWH.10,11 Circulating immunoregulatory proteins have emerged as important indicators of HIV immunopatho-

genesis that may serve as ideal predictive biomarkers for NAEs as they are easily accessible, can capture the overall immune landscape in

blood and tissues, and are direct biological effectors. Indeed, many individual biomarkers of inflammation and immune dysfunction have

been identified to be independently associated with early mortality and age-related comorbidities12–15 and as potential predictors for

NAEs in PWH.16–18 Though the network of biological pathways these biomarkers represent does not occur independently, in combination,

their effectiveness as monitoring tools in a clinical setting has not been assessed. A machine learning (ML) approach can address this gap as

algorithms can assess patterns in data to make predictions. Various ML-based algorithms have been used to reveal biological features in the

classification of complex diseases, such as CVD and cancer,19,20 and predict changes in immune function, disease severity, andmortality risk in

infectious diseases.21–23 Previous studies have used ML to predict comorbid and virological failure outcomes in PWH based strictly with so-

cial-demographic and clinical-related variables24,25; however, applying an ML approach may be an effective tool to uncover composite
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immune features that can accurately identify individuals at the highest risk of NAEs and those who could benefit from recurrent clinical

monitoring.

Given the increased incidence of age-related comorbidities among PWH even despite effective viral suppression by ART and the limited

application of previously identified biomarkers into clinical practice, we aimed to developML-driven predictive models for the onset of NAEs.

Here, we leveraged the AIDS Clinical Trials Group Longitudinal Linked Randomized Trials (ALLRT) study of PWH prior and post-ART initiation

who did or did not experience anNAE.We evaluated circulating proteins associatedwith inflammation, CVD,myeloid/lymphocyte activation,

microbial translocation, or coagulopathy. To infer relationships with disease that are not apparent through traditional statistical approaches,

we employedmultipleML algorithms in efforts to generate immunoproteinmodels, pairedwith demographic and clinical variables, which are

highly accurate in the classification of PWH who experience an NAE.

RESULTS

Study design and participant demographics

Cryopreserved plasma from participants living with HIV from three time points (baseline [pre-ART]: 64 cases, 92 controls; one-year post-ART:

96 cases, 167 controls; and immediately preceding an event: 58 cases, 101 controls) was available. Case and control groups were comparable

in age, sex, and CD4+ T cell counts at baseline (pre-ART) and ART regimen at week 48 (protease inhibitor- or abacavir-containing regimens)

(Table 1). At study entry, participants were predominately male (83.5%), with a median age of 39 (range 23–69) years, 213 (Q1-Q3: 87–334)

CD4+ T cells/mL, and 4.77 (Q1-Q3: 4.38–5.40) log10 copies/mL plasma HIV RNA. Participants had a median CD4+ T cell count at year 1 of

404 (Q1-Q3: 269–561) cells/mL for controls and 213 (Q1-Q3: 87–334) cells/mL for cases. Frequency of specific NAEs among cases includes

13.4%mortality, 26.1% non-fatal myocardial infarction (MI)/stroke, 35.8% non-fatal malignancy, and 24.6% non-fatal serious bacterial infection

(Figure S1). NAEs occurred at amedian of 2.8 years (Q1-Q3: 1.7–4.6) after ART initiation and 10.5 (Q1-Q3: 6–19) weeks from the pre-event time

point.

Exploratory immunoregulatory protein distributions and correlates

Co-activation and dysfunction of T cells, B cells, and natural killer (NK) cell lymphocyte populations can be driven by diverse immunoregula-

tory receptor and cognate ligand interactions. Soluble forms of these immunoregulatory proteins offering a representation of lymphocyte

activation and exhaustion status not limited to the periphery have been shown to play a key role in maintaining immune homeostasis and

are suggested as putative markers in pathology in multiple disease states.26–28 Furthermore, levels of several immunoregulatory proteins

associate with viral persistence and T cell function among PWH on ART.18,29 While we previously identified immunoregulatory proteins

that individually predict NAEs, we expand on our findings by employing a 20-plex panel that encompasses shared and unique pathways

of innate and adaptive responses, including T cell activation (OX40, 4-1BB)30,31 and inhibition (V-type immunoglobulin domain-containing

suppressor of T cell activation [VISTA], V-set domain containing T cell activation inhibitor 1 [VTCN1]),32,33 NK cell cytotoxicity (DNAX accessory

molecule [DNAM]-1),34 lectin-mediated inflammation and lymphocyte regulation (Galectins, sialic acid binding Ig-like lectins [Siglecs]),35,36

and B cell differentiation and proliferation (B cell activating factor [BAFF], a proliferation-inducing ligand [APRIL]).37 Distributions of these sol-

uble immunoregulatory protein levels for cases and controls at pre-ART, one year post-ART, and pre-event time points are illustrated in Fig-

ure 1. Hodges-Lehmann estimates demonstrate many biomarkers are significantly lower at the one year post-ART time point compared to

pre-ART measures (Table S1), including noteworthy median differences in both controls and cases for 4-1BB, indoleamine-2,3-deoxygenase

1 [IDO1], and OX40 (all p < 0.0001), indicating ART use may impact associated mechanisms. However, the median levels of other immuno-

regulatory proteins, such as 4-1BBL, remain consistent with ART.

Paucity of individual biomarker differences overall among cases and control

To demonstrate the lack of stringency of a single biomarker in discriminating cases and controls, we evaluated significant differences and the

magnitude of change between cases and controls for all individual biomarkers, including newly measured immunoregulatory proteins and

biomarkers previously evaluated in this cohort,16–18 that were available at pre-ART, one year post-ART, and pre-event time points for total

and specific non-AIDS events. Together, these 49 plasma biomarkers known to be associated with inflammation, myeloid cell activation,

lymphocyte activation, microbial translocation, CVD, or coagulopathy were evaluated (Table S2), many of which were previously identified

as potential predictors of NAEs in previous exploratory conditional logistic regression analysis.16–18 On an independent basis, significant dif-

ferences in biomarkers including soluble urokinase plasminogen activator receptor (suPAR) and inducible T cell co-stimulator ligand (ICOSL)

at baseline; interleukin (IL)-6, CD27, CD14, suPAR, and b-D-glucan (BDG) at year 1; and D-dimer, IL-6, suPAR, BDG, interferon gamma

inducible protein 10 (IP-10), lipopolysaccharide-binding protein (LBP), CD27, Siglec-9, tumor necrosis factor receptor 1 (TNFR-1), and

VISTA at pre-event (Figure 2; allp<0.05) were observed. However, only pre-event D-dimer and IL-6p values remained significantwhen adjust-

ing for multiple testing (false discovery rate [FDR]). Of note, non-significant fold difference decreases in proteins when cases compared to

controls were observed, including decreases in 4-1BBL at baseline and pre-event and CD30 at year 1 and pre-event.

ML-driven composite immune biomarker models for total and non-fatal NAEs

To construct predictive ML classification models, we employed commonly used algorithms that implement varying approaches to modeling

data that limit computational burden while minimizing redundant analyses. ML algorithms utilized included K-nearest neighbors (KNN),
2 iScience 27, 109945, June 21, 2024



Table 1. Demographic and clinical characteristics of participants at parent study entry

Case Control Total

Characteristic (N = 134) (N = 267) (N = 401)

Age at parent study entry (years) 46.5 [23–69] 44.0 [23–67] 45.0 [23–69]

Regimens evaluated by parent study

ACTG 384:(AZT + 3TC vs. d4T + ddI) + (EFV vs.

NFV vs. NFV + EFV)/

24 (17.9%) 67 (25.1%) 91 (22.7%)

ACTG 388: (AZT + 3TC vs. d4T + 3TC) + (IDV

vs. NFV vs. IDV + NFV)

16 (11.9%) 10 (3.7%) 26 (6.5%)

A5014: NVP + [LPV/r vs. (ABC + 3TC + d4T)]/ 2 (1.5%) 5 (1.9%) 7 (1.7%)

A5095: AZT/3TC + (ABC vs. EFV vs. ABC +

EFV)/

41 (30.6%) 64 (24.0%) 105 (26.2%)

A5142: (EFV + AZT/d4T + 3TC) vs. (LPV/r +

AZT/d4T + 3TC) vs. (EFV + LPV/r)

19 (14.2%) 58 (21.7%) 77 (19.2%)

A5202: (ABC/3TC vs. TFV/FTC) + (ATV/r vs.

EFV)

32 (23.9%) 63 (23.6%) 95 (23.7%)

Natal sex

Male 112 (83.6%) 223 (83.5%) 335 (83.5%)

Female 22 (16.4%) 44 (16.5%) 66 (16.5%)

Race/ethnicity

White non-Hispanic 70 (52.2%) 126 (47.2%) 196 (48.9%)

Black non-Hispanic 48 (35.8%) 73 (27.3%) 121 (30.2%)

Hispanic (regardless of race) 15 (11.2%) 58 (21.7%) 73 (18.2%)

Other 1 (0.7%) 10 (3.7%) 11 (2.7%)

Baseline CD4+ T cell count (cells/mL) 207 [88, 333] 221 [87, 334] 213 [87, 334]

Baseline log10 HIV-1 RNA (copies/mL) 4.76 [4.39, 5.41] 4.79 [4.37, 5.39] 4.77 [4.38, 5.40]

Chronic hepatitis B/C status 33 (24.6%) 25 (9.4%) 58 (14.5%)

Current or previous injection drug use 17 (12.7%) 22 (8.2%) 39 (9.7%)

Waist-to-hip ratio 0.924 [0.897, 0.972] 0.931 [0.887, 0.973] 0.928 [0.893, 0.973]

History of clinician-diagnosed diabetes 11 (8.2%) 15 (5.6%) 26 (6.5%)

History of hypertension 43 (32.1%) 63 (23.6%) 106 (26.4%)

Use of antihypertensive or lipid lowering

agents

30 (22.4%) 44 (16.5%) 74 (18.5%)

Current or past smoker 100 (74.6%) 144 (53.9%) 244 (60.8%)

Family history of myocardial infarction 28 (20.9%) 42 (15.7%) 70 (17.5%)

Categorical variables are represented as frequency (%) and continuous variables as median [Q1, Q3] or median (range). Abbreviations: 3TC, lamivudine; ABC,

abacavir; ATZ/r, ritonavir-boosted atazanavir; AZT, zidovudine; d4T, stavudine; ddl, didanosine; EFV, efavirenz; FTC, emtricitabine; IDV, indinavir; LPV/r, ritonavir-

boosted lopinavir; NFV, nelfinavir; NVP, nevirapine; TFV, tenofovir.
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extreme gradient boosting (XGBoost), and support vectormachine classifier (SVM) paired with the following parameters for feature selection:

demographics (age and sex), HIV diseasemeasures (pre-ARTCD4 count, pre-ARTHIV-1 RNA levels), and the 49 plasmabiomarkers previously

evaluated (Table S2). To preserve the case-control nature of the study, we applied conditional transformation to the dataset.38 From baseline

measures, a KNNmodel resulted in poor prediction of participant case-control status (receiver operating characteristic area under the curve

[AUC-ROC] = 0.633 [0.502, 0.764], Figures 3 and S2). These results were echoed in the XGBoost (AUC-ROC = 0.622 [0.534, 0.791]) and SVM

(AUC-ROC= 0.673 [0.545, 0.800]) models. Accuracy increased when evaluating year 1measures for all models: KNNAUC-ROC= 0.736 [0.643,

0.829], XGBoost AUC-ROC = 0.759 [0.669, 0.849], and SVM AUC-ROC = 0.735 [0.642, 0.828]. However, all models remained poor using pre-

event measures: KNN AUC-ROC = 0.679 [0.553, 0.804]), XGBoost AUC-ROC= 0.691 [0.566, 0.815], and SVM AUC-ROC = 0.582 [0.449, 0.715].

When cases were limited to non-fatal events, baseline model performances were mixed (Figures 4 and S3): a simplified KNN model

comprised ICOSL, CD73, and age (AUC-ROC = 0.635 [0.494, 0.776]); XGBoost (consisting of lymphocyte-activation gene 3 [LAG3], cytotoxic

T-lymphocyte associated protein 4 [CTLA-4], suPAR, and age) produced an AUC-ROC = 0.815 [0.702, 0.929]; and a 31-feature SVM model

resulted in AUC-ROC= 0.708 [0.576, 0.841]. To determine if viremic control would improve prediction, models were retrained on non-morbid
iScience 27, 109945, June 21, 2024 3



Figure 1. Distributions of evaluated immunoregulatory proteins

Levels among cases (blue) and controls (black) at pre-ART initiation (baseline), a year after ART initiation (year 1), and visit immediately preceding a non-AIDS

event (pre-event). Jitter plots including median and interquartile range are displayed. BAFF, B cell activating factor; DNAM-1 DNAX accessory molecule;

ICOSL, inducible T cell co-stimulator ligand; IDO1, Indoleamine-2,3-deoxygenase 1; PVR, poliovirus receptor; Siglec, sialic acid binding Ig-like lectin; VISTA,

V-type immunoglobulin domain-containing suppressor of T cell activation; VTCN1, V-set domain containing T cell activation inhibitor 1.
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datasets generated from the 1 year-post-ART time points. A KNNmodel consisting of age, sCD14, sTNFR-I, BDG, and CD27 resulted in com-

parable performance to baseline (AUC-ROC = 0.715 [0.615, 0.815]), and an SVMmodel (consisting of BDG, CD27, sTNFR-I, and age) resulted

in a slightly reduced performance compared to baseline (AUC-ROC = 0.657 [0.551, 0.762]), while the SVM model (CD27, BDG, CD40L, IL-6,

sCD14, Arginase-1, CD4 Count, VTCN1, BAFF, sCD40, and CD30) showed improved performance over baseline (AUC-ROC = 0.787 [0.696,

0.878]). At the pre-event time point, all models resulted in reduced performance compared to year 1 (all AUC-ROC % 0.624).

Individual biomarker levels demonstrate distinct age trajectories

Immune cell frequency and function as well as circulating immunoprotein profiles are dynamic and vary with age progression.39–41 Given

age-related changes in immunoproteins, the broad age range of the cohort, and age as a common feature included in previous models

generated, we next aimed to determine potential age effects on biomarker levels. We evaluated changes in biomarker levels in age dif-

ferences over 10 years in cases and controls individually to detect changes in the context and absence of non-AIDS events, respectively, at

the year 1 visit when all participants were virally suppressed and the slope of decline in immune activation had stabilized.42 Regression

models adjusted for CD4 T cell count between biomarkers and age demonstrated substantial differences in biomarker levels for increasing

age among both cases and controls (Figure 5A). However, we also observed a high rate of intragroup variability (i.e., VISTA, cases:

mean G SD, 5.30 G 63.79; IL-6 controls: 2.34 G 28.95), demonstrating biomarker level changes with age are not one directional. We

next evaluated trends over the 40-year age range spectrum of the cohort. Case/control fold differences in predicted biomarker levels

per simulated age values were calculated (Figure 5B), and dramatic fluctuations were observed among many biomarkers over the age

spectrum independent of case/control status. The age at which differences in cases and controls inflect or become zero was evaluated
4 iScience 27, 109945, June 21, 2024



Figure 2. Individual biomarkers and non-AIDS events

Volcano plots showing the estimated fold changes (x-axis) versus the -log10 p values (y axis) for each biomarker among cases and controls at baseline, year 1, and

pre-event time points for total non-AIDS events.
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(Table S3). These biomarker dynamics with age suggest age restriction criteria may be appropriate when evaluating biomarkers for their

predictive efficacy in modeling.
Age-restricted composite immune biomarker ML models predict non-fatal adverse events

Based on the age trajectory analysis, we applied an age restriction criterion of 30–50 years to reduce data noise and re-evaluated all models.

At baseline, KNN (featuringD-dimer, IL-6, IP-10, suPAR, CD27, VTCN1, TNFRSF8,Galectin-3, and age) resulted in anAUC-ROC=0.707 (0.516,

0.897; Figures 6 and S4), comparable to baseline non-age-restricted KNN models, with and without mortal events. XGBoost showed a dra-

matic increase in performance, featuring Galectin-9, BAFF, and age, resulting in an AUC-ROC = 0.943 (0.861, 1.000), which was less complex

but had comparable accuracy to the SVMmodel (CD40L, CD27, oxidized low-density lipoprotein [oxLDL], CD137, sCD14, intestinal fatty-acid

binding protein [I-FABP], suPAR, T cell immunoglobulin mucin 3 [TIM-3], Galectin-3, CD276, CD155, sTNFR-I, Arginase-1, IL-6, and herpes-

virus entry mediator [HVEM]; AUC-ROC = 0.952 [0.876, 1.000]). At one year post-ART, KNN (age, CD4 count, D-dimer, sCD14, BDG, CD27,

CD276, CD30) produced an AUC-ROC = 0.698 [0.565, 0.830], which was consistent to the XGBoost model (CD4 count, CD276, BDG, suPAR,

CD73, CD155, IDO1, APRIL, Galectin-1, TNFSF9, and TNFSRSF8) which resulted in an AUC-ROC = 0.645 (0.507, 0.783). Meanwhile, the SVM

model comprising 26 features produced high accuracy classification for cases (AUC-ROC= 0.919 [0.840, 0.998]). At the pre-event time point, a

KNNmodel consisting of age, IP-10, LBP, and CD27 resulted in an AUC-ROC = 0.597 (0.458, 0.736), consistently performing as the weakest of

the 3 algorithms tested. XGBoost (featuring BDG, LBP, LAG3, age, VTCN1, and Galectin-1; AUC-ROC = 0.652 [0.479, 0.825]) resulted in per-

formances consistent with KNN except for baseline. SVM, which performed well at baseline and year 1, showed a dramatic decrease in per-

formance at pre-event (AUC-ROC= 0.387 [0.210, 0.565]). Restricting the highest performingmodel, SVM, to includemales only demonstrated

reduced accuracy for all three time points (Figure S5).
DISCUSSION

Biomarker feedback was a concept previously discussed to guide approaches to halt HIV disease progression.43 In this era of ART, elucidating

the impact of HIV on a range ofNAEs, such as CVD and cancer, can contribute to amore comprehensive and clear characterization for risk. HIV

and aging are associated with excess comorbidity, and select immune biomarkers may partially explain these discrepancies. Identifying fac-

tors that discriminate PWH at risk of non-communicable disease is an important ongoing area of investigation. In this study, we demonstrate

that an ML approach can predict non-fatal NAEs among PWH with high accuracy pre-ART initiation and one-year post-ART at viral suppres-

sion. We have presented an integrated computational approach that combines SVM and cross-validation to generate optimal predictive

models for non-fatal NAEs among PWH 30–50 years of age. Importantly, immunoproteins were the strongest features, selected over tradi-

tional demographic, comorbid, and HIV disease measures, demonstrating the potential importance in the surveillance of these immune

parameters.

Given our previous findings on associations between immunoregulatory proteins and morbidity in HIV,18 we implemented here an

expanded panel of biomarkers linked to lymphocyte overactivation and exhaustion. Elevation of soluble immune checkpoints in the plasma

not only affects the development, prognosis, and treatment of cancer26 but is also shown to predict the trajectory of cardiovascular compli-

cations.44,45 However, soluble immune checkpoints have also been shown to be associated with disease outcomes in other viral infections,

including human T-lymphotropic virus type 1 (HTLV-1) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).46–48 While these

biomarkers are not restricted to HIV, they could allude to immune perturbations that would lead to morbidity development. Furthermore, it

would be optimal to determine whether the panel of biomarkers we evaluated paired with our ML approach can assess morbidity events that

occur in other viral infections, or rather our findings are specific to HIV.
iScience 27, 109945, June 21, 2024 5



Figure 3. Machine learning classification models of total non-AIDS adverse events

ROC curves illustrating KNN, XGBoost, and support vector machine classification model results in predicting total NAEs (fatal and non-fatal) using biomarkers

measures at baseline (pre-ART), year 1 (post-ART), or pre-event. Receiver operating characteristic area under the curve (AUC-ROC)measuringmodel accuracy for

training and test sets is detailed in legend.
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ML algorithms have several strengths whichmake them suitable for complex applications and identifying individuals at risk for disease.49,50

ML provides increased flexibility and a higher level of interpretability and is free from standard assumptions typical with traditional statistics.51

Previous studies have generated ML models using a variety of features, including patient demographics, clinical tests, and genetic data, for

disease classification, risk, and therapeutic response for several infectious and age-related diseases.21,52–56 However, determining the most

appropriate ML algorithm is integral and ideally based upon the consideration of data features and project requirements. We assessed mul-

tipleML classificationmethods, including KNN, XGBoost, and SVM, which each represents a variety of linear and non-linear approaches. KNN

represents a simple, yet versatile, approach to non-linear classification at the expense of computational cost, memory, sensitivity to k choice,

and susceptibility to dimensionality, whereas SVM’s linear approach excels on data with clear separation between classes and is more effec-

tive in high-dimensional space where dimensions exceed sample observations but suffers with large datasets and lacks a probabilistic inter-

pretation. Finally, XGBoost decision trees perform well on non-linear, non-monotonic data or data with segregated clusters and do not
6 iScience 27, 109945, June 21, 2024



Figure 4. Machine learning classification models of non-fatal adverse events

ROC curves illustrating k-nearest neighbors (KNN), extreme gradient boosting (XGBoost), or support vector machine (SVM) classification model results in

predicting non-fatal NAEs using biomarkers measures at baseline (pre-ART), year 1 (post-ART), and pre-event. Receiver operating characteristic area under

the curve (AUC-ROC) measuring model accuracy for training and test sets is detailed in legend.
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require normalized features. These characteristics help XGBoost boast high accuracy, quickness, and efficiency, while maintaining flexibility,

but come at the increased cost of complexity of implementation, memory demands, and interpretability. In this study, KNN consistently

underperformed suggesting our dataset did not conform well to non-linear space resulting in the low AUC-ROC observed. This observation

is further supported by the exceptional performance we observed of SVM, which does not utilize non-linear space. While there are several

approaches in modeling high-dimensional data in linear and non-linear spaces, the potential increase in accuracy would be minimal

compared to the additional investment of time and computational resources. Our results overall indicate, among models tested, SVM is

the ideal approach for a linear case/control analysis for high prediction accuracy for NAEs and evaluating measures early on during viremia

or a year post-ART initiation.

Aging alone is a complex process, and effects on the immune system can manifest at multiple levels, including reduced production and

functional capacity of lymphocytes and chronic low-grade inflammation that heightens with age.57–59 Circulating immunoproteins in plasma
iScience 27, 109945, June 21, 2024 7



Figure 5. Biomarker changes with age among cases and controls at one-year post-ART initiation

(A) Average biomarker increase for an age difference of 10 years. Relationship between each biomarker and age was assessed via Gaussian linear regression

model adjusted for CD4 T cell count.

(B) Predicted biomarker concentrations and simulated age values were used to create scatterplots with 4-knotted splines and calculate fold differences between

cases and controls.
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can also reflect or influence these age-associated changes of immune function and dramatically change in quantity with age progression.

Indeed, our results are consistent with the literature detailing individual biomarker levels are dynamic with age.40 These changes with age

were also demonstrated to differ significantly in individuals that experience NAEs, suggesting the capacity of these markers in disease pre-

diction may be age dependent. Furthermore, unique non-linear patterns in proteins across a 40 years age range with waves of changes de-

pending on the decade of life were observed, similar patterns seen in other studies outside the context of HIV.60 Finally, the age restriction we

implemented for NAE prediction significantly increased model accuracy. As PWH experience the development of age-related comorbidities

earlier in life, it is logical to monitor these immune parameters prior to the age of morbidity onset observed in the general population.

In summary, we investigated the potential of applying ML models in predicting NAEs. These strategies may serve as optimal predictors

and monitoring tools representative of a real-world scenario once these findings are further validated in larger cohort studies. This will allow

the confirmation of these models at various stages of disease progression and ART exposure and their potential as surrogates for clinical trial

endpoints.While we limitedmodel generation using primarily immunoprotein data, amulti-omic approach evaluating other parameters, such

as cellular senescence, DNAmethylation, and glycosylation, and/or the inclusion of traditional measures of morbidity, such as clinical indices

of CVD, may delineate higher-accuracy models and reveal additional potential mechanisms at play during disease progression.

Limitations of the study

While the study herein described ML-driven high-accuracy predictive models for NAEs, there are several key limitations, including common

caveats of case/control retrospective studies. Case andmatched control numbers varied among time points due to specimen availability. ART

regimens no longer recommended were in use while current first-line regimens were limited, and many participants demonstrated relatively

low CD4+ T cell reconstitution. Our analyses were conducted on a case-control dataset, which does not represent a random sampling of the

study population. Secondary cohorts of PWH or people without HIV who experienced similar events were not available for comparison. Con-

ditional transformations were applied to the dataset to preserve these relationships for the ML models; however further evaluation within a

cohort study would be beneficial. Classificationmodels were not implemented for biomarker discovery but rather assess potential biomarkers

selected by feature selection that are informative in classifying disease from non-disease states. As women were underrepresented, it

impacted our ability to adjust for sex, which is significant as sex differences are observed in circulating protein abundance and HIV manifes-

tations.61–63 Models built to only includemales demonstrated lower accuracy, most likely due to further decreasing dataset size. However, sex
8 iScience 27, 109945, June 21, 2024



Figure 6. Age-restricted ML classification models of non-fatal adverse events

ROC curves illustrating k-nearest neighbors (KNN), extreme gradient boosting (XGBoost), or support vector machine (SVM) classification model results in

predicting total non-AIDS events using biomarkers measures at baseline (pre-ART), year 1 (post-ART), or pre-event. Receiver operating characteristic area

under the curve (AUC-ROC) measuring model accuracy for training and test sets is detailed in legend.
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was included as a variable in generatedmodels but was not selected as a significant feature, suggesting removing female participants merely

reduces power rather than a confounding variable. Additionally, predicting cancer orMI/stroke individually was not feasible due to the limited

number of cases and controls for the respective specific event and the risk of model overfitting.
STAR+METHODS

Detailed methods are provided in the online version of this paper and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY
B Lead contact
iScience 27, 109945, June 21, 2024 9



ll
OPEN ACCESS

iScience
Article
B Materials availability

B Data and code availability

d EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

d METHOD DETAILS

B Biomarker quantification

d QUANTIFICATION AND STATISTICAL ANALYSIS

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.isci.2024.109945.

ACKNOWLEDGMENTS

Wewould like to thank all study participants and clinical staff involved in the ACTGALLRT study and the James B. Pendleton Charitable Trust.

This research was supported by the National Institutes of Health (NIH) grants R01MH112457 (L.C.N.), R01AI147821 (S.G.), DA051915 (S.G.),

UM1AI068634 (C.B.M.), UM1AI068636, and UM1AI106701. The content is solely the responsibility of the authors and does not necessarily

represent the official views of the NIH. The funders had no role in the study design, study management, data collection, data analysis,

data interpretation, and writing of the manuscript.

AUTHOR CONTRIBUTIONS

T.A.P. and L.C.N. designed the study and concept. T.A.P. and C.M.F. performed the experiments. T.A.P. and S.B. performed the data analysis

and interpretation. All authors contributed to the writing and overview of the manuscript.

DECLARATION OF INTERESTS

L.C.N. has served on an advisory board for AbbVie, ViiV, and CytoDyn for work unrelated to this project. M.H. has received project funding

from Gilead, Pfizer, and Astellas. M.M.L. has consulted for Lilly and has received competitive grant funding from Gilead for unrelated work.

Received: October 30, 2023

Revised: March 12, 2024

Accepted: May 6, 2024

Published: May 8, 2024
REFERENCES

1. Centers for Disease Control and Prevention

(2020). HIV Surveillance Report, 33. https://
www.cdc.gov/hiv/statistics/overview/
index.html.

2. Smit, M., Brinkman, K., Geerlings, S., Smit, C.,
Thyagarajan, K., Sighem, A.v., de Wolf, F.,
and Hallett, T.B.; ATHENA Observational
Cohort (2015). Future challenges for clinical
care of an ageing population infected with
HIV: a modelling study. Lancet Infect. Dis. 15,
810–818. https://doi.org/10.1016/S1473-
3099(15)00056-0.

3. Shepherd, L., Borges, Á., Ledergerber, B.,
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Critical commercial assays

Human Immuno-Oncology Checkpoint

Protein Panel 1

Millipore Sigma Cat#HCKP1-11K

Human Immuno-Oncology Checkpoint

Protein Panel 2

Millipore Sigma Cat#HCKP2-11K

suPARnostic ELISA ViroGates Cat#E001

LBP Human ELISA Hycult Biotech Cat#HK315

Human CD163 Quantikine ELISA R&D Systems Cat#DC1630

Human FABP2/I-FABP DuoSet ELISA R&D Systems Cat#DY3078

Oxidized LDL ELISA Mercodia Cat#10-1143-01

Human Galectin-9 Quantikine ELISA R&D Systems Cat#DGAL90

Human IL-6 Quantikine HS ELISA R&D Systems Cat#HS600B

Human CD14 Quantikine ELISA R&D Systems Cat#DC140

Human CXCL10/IP-10 Quantikine ELISA R&D Systems Cat#DIP100

Human TNFRI/TNFRSF1A Quantikine ELISA R&D Systems Cat#DRT100

Human TNFRII/TNFRSF1B Quantikine ELISA R&D Systems Cat#DRT200

STA-Liatest D-Di Kit Diagnostica Stago Inc Cat#NC0233244

Fungitell� Assay Associates of Cape Cod, Inc. Cat#FT001

Deposited data

Python code and statistical approach Zenodo https://doi.org/10.5281/zenodo.10635960

ACTG study data ACTG-158, Data Request https://member.mis.s-3.net/pss/0

Software and algorithms

GraphPad Prism v9.5.1 https://www.graphpad.com/features NA

R environment v4.2.1 https://www.r-project.org/ NA

matrixStats v1.2.0 https://cran.r-project.org/ NA

fda.usc v2.1.0 https://cran.r-project.org/ NA

Python v3.8.8 https://www.python.org/downloads/release/

python-3810/

NA
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to andwill be fulfilled by the lead contact, LishomwaNdhlovu

(lndhlovu@med.cornell.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

Individual participant data and a data dictionary defining each field in the set will be made available to investigators on a case-by-case basis

via request to Advancing Clinical Therapeutics Globally for HIV/AIDS andOther Infections (ACTG). Completion of an ACTGData Use Agree-

ment may be required. All original code has been deposited at Zenodo and is publicly available as of the date of publications. DOIs/data

applications are listed in the key resources table. Any additional information required to reanalyze the data reported in this paper is available

from the lead contact upon request.
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

NWCS 411 is a retrospective nested case-control study of PWH that were enrolled in the Advancing Clinical Therapeutics Globally for

HIV/AIDS and Other Infections (ACTG) Longitudinal Linked Randomized Trials (ALLRT) cohort from 2001 to 2009. This study examined a

multitude of potential predictive biomarkers of inflammation and immune activation and their relationships with NAEs and death.16 All

401 participants (134 cases, 267 controls), identified from prior ACTG studies, were ART naive when enrolled in an ACTG study, had a plasma

HIV RNA level of <400 copies/mL at all subsequent time points (isolated values R copies/mL were allowed if preceding and subsequent

values were <400 copies/mL. Participants (or, for minors, their parent or legal guardian) provided written informed consent, and institutional

review board approval for ALLRT was obtained by each ACTG site.

Cases were defined as individuals who experienced a myocardial infarction (MI) or a stroke, a non-AIDS-defining malignancy or

serious bacterial infection or died from a nonaccidental non-AIDS-related event. The core team previously reviewed and confirmed

events.64,65 Diagnosis of MIs and non–AIDS-defining malignancy outcome (all cancers except Kaposi’s sarcoma, B cell non-Hodgkin’s lym-

phoma, primary central nervous system lymphoma and cervical cancer) were collected as part of the parent study and the ALLRT protocols

accorded with standard ACTG definitions and reporting criteria. MIs were prospectively reported in each parent study and in ALLRT in the

ACTG database and, during parent study follow-up, via the Division of AIDS serious adverse events reporting system. Additionally, standard-

ized reporting criteria that required confirmation via electrocardiogram or elevation in serum myocardial injury enzymes were added to the

reporting system.MI diagnoses identified underwent independent review by two study investigators and were classified as definite, possible,

or unclassifiable. Investigators were provided with supporting documentation for each MI and details of adverse events occurring within

6months of the putativeMI. A final determination ofMIs classified differently by the initial reviewers wasmade by two additional investigators.

Analyses included definite and possibleMIs; for subjects with multiple qualifyingMIs, only the first event was included. At each clinic visit, site

personnel recorded all newly diagnosedmalignancies (except squamous cell carcinoma of the skin) on standard ACTG case report forms and

were reviewed by two study investigators, which included all supporting data from the case report forms for each malignancy. Additional

documentation was requested from the study sites, if required to confirm each diagnosis.Malignancies were classified as prevalent (pre-entry)

and incident (post-entry) based on the date of diagnosis.

For each case, up to 3 controls were identifiedwho had an event-free follow-up time equal or greater than the relevant case. Controls were

matched on age (within 10 years), sex at time of visit, pre-ART CD4+ T cell count (within 50 cells/mm3), ART regimen at year 1 (whether it

contained a protease inhibitor or abacavir), and parent study.16

Stored available plasma specimens obtained from cases and controls at the following 3 time points were evaluated: before ART initiation

(hereafter, baseline), 48–64 weeks after initiating ART (hereafter, year 1), and the time point immediately preceding the event for cases and a

similar time point for corresponding controls (hereafter, pre-event). The year 1 time point was chosen because by 48 weeks post-ART initia-

tion, all participants were virally suppressed and the slope of decline in activation had stabilized.42 Plasma samples were available for 156

participants at baseline (64 cases and 92 controls), 263 participants at year 1 (96 cases and 167 controls), and 159 participants at pre-event

(58 cases and 101 controls). At each time point, as part of their ACTG study, whole blood was obtained in tubes containing EDTA. Specimens

were spun at 4003g for 10 min, and plasma was pipetted and spun again at 8003g for 10 min. Plasma was aliquoted, frozen, and stored at

�70�C until assayed.
METHOD DETAILS

Biomarker quantification

Wemeasured a panel of immunoregulatory proteins in available plasma samples using a custombead-basedmultiplex immunoassay accord-

ing to manufacturer’s instructions (Millipore Sigma, HCKP2-11K). Soluble markers measured include the following: 4-1BB (CD137), 4-1BBL

(TNFSF9), APRIL (TNFSF13a), Arginase-1, BAFF (B cell activating factor; BLyS; TNFSF13b), CD276 (B7-H3), CD30 (TNFRSF8), CD40L

(CD154), CD73 (50-NT), DNAM-1 (DNAX accessory molecule; CD226), Galectin-1, Galectin-3, ICOSL (inducible T cell co-stimulator

ligand; B7-H2), IDO1 (Indoleamine-2,3-deoxygenase 1), OX40 (CD134), PVR (poliovirus receptor; CD155), Siglec-7 (sialic acid-binding Ig

like lectin-7; CD328), Siglec-9 (CD329), VISTA (V-type immunoglobulin domain-containing suppressor of T cell activation; B7-H5), and

VTCN1 (V-set domain-containing T cell activation inhibitor 1; B7-H4). Data was acquired on a Luminex 200 analyzer and analyzed using

MILLIPLEX Analyst software (Millipore). All samples were analyzed in duplicate. Immunoregulatory protein results below the limit of quanti-

fication were set to an analytic lower limit. Analytic lower limits were taken as half of the largest lower limit for the specific protein. Any result

that was below the identified largest lower limit was also set to the analytic lower limit.

All additional biomarker data were obtained from prior ACTG projects (ALLRT A5001, NWCS 329 and NWCS 387).16–18 Soluble plasma

markers previously analyzed include the following: IL-6 (Interleukin-6), TNFRI (Tumor necrosis factor receptor I), TNFR-II, TLR2 (Toll-like recep-

tor 2), Galectin-9, CD163, CD14, suPAR (Soluble urokinase plasminogen activator receptor), IP-10 (Interferon gamma inducible protein

10), CD40, GITR (Glucocorticoid-induced tumor necrosis factor receptor-related protein), GITRL (GITR ligand), CD80, CD86, CD27,

ICOS, CD28, HVEM (Herpesvirus entry mediator), BTLA (B and T lymphocyte attenuator), TIM-3 (T cell immunoglobulin mucin 3), LAG-3

(Lymphocyte-activation gene 3), PD-1 (Programmed death-1), PD-L1 (Programmed death ligand-1), CTLA-4 (Cytotoxic T-lymphocyte associ-

ated protein 4; CD152), I-FABP (Intestinal fatty-acid binding protein), BDG (b-D-glucan), LBP (Lipopolysaccharide-binding protein), D-dimer,

and oxLDL (Oxidized low-density lipoprotein).
14 iScience 27, 109945, June 21, 2024
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QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses of cohort and biomarker data were performed in Graphpad Prism v9.5.1 or R software v4.2.1. Demographic and clinical

characteristics are presented using the median (Q1, Q3) for continuous variables and frequency for categorical variables. To preserve the

case-control nature of this dataset for a machine learning platform, conditional transformations for clinical and immunological biomarkers

was applied following recommendations by the TEDDY StudyGroup.38 Briefly, data was centeredwithin case-control pairings by their means.

Differences in data comparing baseline to year 1 were summarized with unpaired non-parametric Hodges-Lehmann estimates and 95%

confidence intervals (CIs). Volcano plots were constructed by plotting the negative logarithm of calculated unpaired non-parametric

Mann-Whitney test p-values and fold difference between cases and controls. Benjamini-Hochberg false discovery rate (FDR) procedure

was applied to control for false discoveries in multiple testing.

The relationship between each biomarker and age was assessed using linear regression modeling, adjusted for absolute CD4 T cell count

(Biomarker � Age+CD4). Adjustment for sex was also considered but was not pursued due to the large proportion of men in the dataset.

Separate models were generated for cases and controls using year 1 values. Fitted Gaussian models simulated and tuned 1500 Age/CD4

datapoints to generate predicted biomarker concentrations. Simulated biomarkers were adjusted by mean biomarker concentration within

10 years of age to produce percent change per 10 years age (PC/10). PC/10 was used to create scatterplots with 4-knotted splines and

calculate age trajectory fold differences among cases and controls. Inflection points in biomarker age trajectory were calculated using the

‘‘matrixStats’’ and ‘‘fda.usc’’ R packages. Respective min or max age was used when inflection point(s) were not detected.

Machine learning analyses was carried out in Python environment v3.8.8. Z score standardization was applied to the dataset prior to

employing machine learning algorithms. The standardized dataset comprised of clinical and biological parameters were split into a training

and test sets, with one-third of the dataset being reserved for test. To discriminate the case-control status of PWH at each of the pre-ART,

1-year post-ART initiation, and closest pre-event timepoints, we implemented three supervised machine learning models: Support Vector

Machine Classifier (SVM), K-Nearest Neighbors (KNN), and extreme gradient boosting (XGBoost). One of highly correlated feature pairs

(correlation coefficientR0.65) were removed. To improve efficiency and accuracy of our models, feature selection was employed to reduce

model complexity by selecting optimized features (i.e., biomarkers, demographics, clinical measures) which carry significant and non-redun-

dant predictive power to correctly classify participants. For SVM, Recursive Feature Elimination (RFE) with stratified 2-fold cross validation (CV)

was employed. SelectKBest was used for feature selection for KNN. SelectKBest works by retraining the model on K features with the highest

values returnedby a score function (ANOVA F-value between labels by default). Feature selection and hyperparameter tuning of the XGBoost

model (utilizing gbtree booster) was performed using the RFE algorithm and feature importance values in shap-hypetune (version 0.2.4,

‘BoostRFE’ function). Class imbalance was adjusted for by applying the ratio of the dominant class/minority class to scale_pos_weight within

the XGClassifier function of XGBoost. All models were saved using Pickle package. Finally, we plotted the receiver operating characteristic

(ROC) and calculated the area under the curve (AUC) to assess a model’s capability to distinguish classes. 95% confidence intervals were

generated for test dataset following the normal approximation interval of a single training-test split (arxiv.org/abs/1811.12808, ‘‘Model

Evaluation, Model Selection, and Algorithm Selection in Machine Learning’’, Confidence Intervals via Normal Approximation, Sebastian

Raschka). All AUC-ROCs are reported along with 95% confidence intervals.
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