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Abstract

Progressive depletion of selected dopamine neurons is central to much Parkin-

son’s disease (PD) disability. Although symptomatic treatments can ameliorate

the disabilities that this neuronal depletion causes, no current strategy is docu-

mented to slow these losses. There is substantial evidence that dopamine in

intracytoplasmic/extravesicular neuronal compartments can be toxic. Here, I

review evidence that supports roles for dopamine compartmentalization, medi-

ated largely by serial actions of plasma membrane SLC6A3/DAT and vesicular

SLC18A2/VMAT2 transporters, in the selective patterns of dopamine neuronal

loss found in PD brains. This compartmentalization hypothesis for the dopa-

mine cell type specificity of PD lesions nominates available drugs for ameliora-

tion of damage arising from miscompartmentalized dopamine and raises

cautions in using other drugs.

Lost integrity of dopamine neurons whose cell bodies lie

in the ventral midbrain is the clearest pathological corre-

late of much of the rigidity and bradykinesia that provide

significant morbidity in Parkinson’s disease (PD).1 These

neurons also suffer losses with aging, in ways that com-

port with the powerful influence of age as a PD risk fac-

tor.2–6 Effective symptomatic therapies that replace lost

dopaminergic tone can offset some of the consequences

of dopaminergic neuronal losses.7 Other neuronal groups

are also at risk to varying extents in both aging and PD.8

Nevertheless, slowing losses in the integrity of ventral

midbrain dopaminergic neurons would be likely to signif-

icantly slow progression of key PD symptoms and aging

effects on motor abilities.7 There is no satisfactory current

drug therapy that prevents progression of the losses of

these key dopamine neurons in aging or PD. Optimally

preserving the health of important ventral midbrain

dopamine neurons provides a major potential focus for

efforts to understand and treat dopaminergic declines in

PD and aging.

We and others have long been impressed by several fea-

tures of dopamine and the biology of the dopaminergic

neurons that modulate locomotor activities and mood.9

Dopamine can be both a neurotransmitter and a neuro-

toxin. Dopamine can exert toxicities in several ways, includ-

ing (a) accelerating redox processes10,11 (b) forming protein

adducts in some cellular environments12–14 and (c) altering

synuclein aggregation.15 In the low pH of synaptic vesicles,

into which it is pumped by the synaptic vesicular monoa-

mine transporter (SLC18A2/VMAT2), dopamine is unlikely

to exert such toxic activities (Fig. 1). In the intracellular/ex-

travesicular cytosolic compartment into which it is pumped

by the plasma membrane dopamine transporter (SLC6A3/

DAT), dopamine can exert substantial damage. Aspects of

dopamine synthesis and metabolism are also localized in

this compartment.16 Inhibitors of monoamine oxidase that
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reduce dopamine redox damage in this intracellular/extrav-

esicular cytosolic compartment can modestly reduce PD

progression in some, though not all, studies.17–19 Evidence

reviewed here, including the consequences of altering dopa-

mine compartmentalization via amphetamine or cocaine

actions on compartmentalizing transporters, now provides

major support for the dopamine compartmentalization

hypothesis (see below).

SLC6A3/DAT (dopamine transporter) is a member of

the 12-transmembrane domain, sodium- and chloride-

dependent neurotransmitter transporter family that is lar-

gely expressed in the plasma membranes of dopaminergic

neurons.20–22 This protein’s activities contribute dramati-

cally to the regulation of the spatial spread and temporal

persistence of signals that arise when dopamine is released

by dopamine neurons. SLC6A3/DAT also mediates the

selective dopaminergic cellular accumulation of some of the

most studied dopamine-selective neurotoxins.9,23 Although

the degree to which these dopaminergic neurotoxins mimic

PD pathophysiology is questioned,24 experimental overex-

pression of SLC6A3/DAT in nonneuronal or GABA/non-

dopamine neurons allows MPP+ and/or dopamine to kill

previously resistant cells that now acquire the ability to con-

centrate these toxins in cytoplasmic/extravesicular compart-

ments.25,26 While SLC6A3/DAT is a principal site of action

for cocaine and other rewarding psychostimulants,27 not all

SLC6A3/DAT blockers cause cocaine-like euphoria or dis-

play sizable abuse liability (see below).

Movement from the intracytoplasmic/extravesicular

compartment into synaptic vesicles uses the principal brain

synaptic vesicular monoamine transporter, SLC18A2/

VMAT2. SLC18A2/VMAT2 encodes another 12-transmem-

brane domain transporter gene family member that uses

proton gradients to pump monoamines into synaptic vesi-

cles, along whose membranes SLC18A2/VMAT2 is largely

localized.28 This transporter’s ability to sequester MPP+

and dopamine into synaptic vesicles is manifest by greater

MPP+ and dopamine toxicities when SLC18A2/VMAT2

expression levels are reduced.29,30 Experimental overexpres-

sion of SLC18A2/VMAT2 in nonneuronal cells confers

MPP+ resistance onto cells that acquire the ability to detox-

ify by concentrating MPP+ into vesicles.31 I have hypothe-

sized that intracellular/extravesicular concentrations of

dopamine, regulated chiefly by serial actions of SLC6A3/

DAT and SLC18A2/VMAT2, make large contributions to

the selective dopaminergic damage in Parkinsonism and in

normal aging.9 Below, I summarize and update evidence

that now supports this testable and treatable dopamine

miscompartmentalization mechanism for cell-specific con-

tributions to PD pathogenesis.

Intracytoplasmic/
extravesicular
dopamine

toxic

non
toxic

D1 D2

DAT/
SLC6A3

VMAT2/
SLC18A2

Figure 1. Dopamine terminal with plasma membrane SLC6A3/DAT and vesicular SLC18A2/VMAT2 transporters pumping dopamine into

cytoplasmic compartments where it is toxic and vesicular compartments where it is nontoxic.
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Mechanisms of Action of Toxicity
from Dopamine, Amphetamine,
MPTP, and 6-Hydroxydopamine

SLC6A3/DAT and SLC18A2/VMAT2 act to concentrate and

compartmentalize dopamine, the MPTP active metabolite

MPP+, 6-hydroxydopamine, amphetamines, and other

dopaminergic neurotoxins. These transporters regulate their

substrates’ concentrations in neuronal cytoplasm, where each

can exert toxicities, and in synaptic vesicles, where most are

less toxic (amphetamine’s properties providing an informative

exception; see below).9 SLC6A3/DAT mediates neuronal

uptake of these substances into the intracytoplasmic/extraves-

icular compartment with perhaps 0.5 µmol/L affinity for

dopamine and 2.7 pmol/mg protein density in rodent stria-

tum.32–34 SLC18A2/VMAT2 pumps each of these substrates

into synaptic vesicles with perhaps 1.5 µmol/L affinity for

dopamine and 28.6 pmol/mg protein density.35,36 SLC18A2/

VMAT2 action can thus lower free cytoplasmic concentra-

tions of these substrates and reduce experimental MPP+ neu-

rotoxicity. Amphetamine-like compounds classically cause

dopamine release from synaptic vesicles, thereby elevating

intracellular/extravesicular dopamine levels.37 While there are

other “nonclassic” ideas about amphetamine toxicities that

include hyperthermia,38,39 the major focus remains on dopa-

mine redox contributions. Human amphetamine exposures

are associated with significant changes in human dopaminer-

gic markers40 and in PD incidence/prevalence (see below and

41). Amphetamine-induced dopamine miscompartmentaliza-

tion and subsequent toxicity display face validity as a model

for dopaminergic aspects of PD pathogenesis that is at least as

great as that displayed by other models for these selective

dopaminergic aspects of PD neurodegeneration.24

Increased PD in Individuals Exposed
to Amphetamine versus those
Exposed to Cocaine or Controls

PD incidence/prevalence in control samples has been com-

pared to rates in individuals with histories of cocaine use or of

amphetamine use, though none of these reports details a pre-

cise amphetamine dose or a precise duration of exposure. PD

patients attending San Francisco faculty practice clinics were

eight times more likely to display histories of prolonged

amphetamine use than their unaffected spouses.42 California

group practice attendees with amphetamine histories were

more likely to have Parkinsonism diagnoses recorded subse-

quently than those identified by cocaine use (hazard ratio

2.44) or those identified based on a preceding appendectomy

(hazard ratio 1.76).43 Amphetamine-exposed individuals from

a Utah registry displayed 2.8-fold increased risks for having

PD diagnoses when compared to cocaine-exposed or to popu-

lation-based samples.44 Importantly, smoking (a PD

protective factor45) was controlled for in this Curtin et al.

work. Individuals prescribed amphetamine as therapy for nar-

colepsy subsequently developed Parkinsonism more fre-

quently than expected by chance.46 Amphetamine-exposed

individuals displayed differences in substantia nigra volumes

determined via ultrasound, finger tapping speed, and assess-

ments of bradykinesia when compared with “other-drug” and

“no-drug” control/comparison subjects47 as well as the

dopaminergic imaging changes noted above. In recently-

reported work, stimulant-treated Utah registry individuals

with adult diagnoses of attention-deficit hyperactivity disorder

(ADHD) displayed up to eight fold increased risks of subse-

quent PD diagnoses.48

Taken together, this evidence supports the idea that

increases in intracellular/extravesicular dopamine, medi-

ated by amphetamine but not by cocaine, damage human

dopamine neurons in ways that predispose to PD. Most

of the amphetamine exposures identified in these reports

were unlikely to have been lifelong. These results thus

support the idea that even alterations in dopamine com-

partmentalization that occur during parts of the lifespan

can exert lasting influences on these important human

brain systems. The cocaine results from these epidemio-

logical studies also provide important assurance about the

relative lack of human toxicity from blocking the plasma

membrane transporter SLC6A3/DAT alone. Indeed, trends

identified in these data (e.g., hazard ratios 2.44 (cocaine)

versus. 1.76 (appendectomy comparison group)19,20) pro-

vide some of the most tantalizing currently available

human evidence that block plasma membrane dopamine

transport might be neuroprotective, though appendect-

omy may provide a flawed control comparison group.

There are no clearcut epidemiological data that convinc-

ingly links chronic treatment with the plasma membrane

transporter SLC6A3/DAT blockers methylphenidate or

bupropion (see below) to altered PD risk though recent data

that seeks to identify stimulant use may raise questions about

methylphenidate use.48 There are requirements for careful

attention to covariates, including likely use of amphetamines

in many who were prescribed methylphenidate for attention

deficit hyperactivity disorder (ADHD) and cigarette smoking

exposure in many who were prescribed bupropion to aid

smoking cessation. Overall, existing epidemiological data does

support dopamine compartmentalization hypotheses for

regional dopamine pathology in PD.

Altered Effects of Dopaminergic
Neurotoxins in Mice with Altered
Levels of Expression of Dopaminergic
Transporters

We and others have assessed the relationships between

alterations in levels of expression of these transporters
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and the extent of damage exerted by model dopaminergic

toxins in vivo. Heterozygous SLC18A2/VMAT2 knockouts29

with reduced compartmentalization into synaptic vesicles

suffer more than twice as much dopamine cell killing by

a modest MPTP regimen than wild-type littermates.29

Enhanced methamphetamine toxicity in these mice is also

consistent with easier amphetamine disruption of vesicu-

lar dopamine compartmentalization in mice with reduced

vesicular transport capabilities.28

Mice with modestly increased SLC6A3/DAT expression

in catecholamine neurons display more MPTP-induced

dopamine cell losses than wild-type mice.49 Mice that over-

express SLC6A3/DAT selectively in dopamine neurons dis-

play enhanced dopamine neuron losses with aging and

elevated levels of markers for oxidative stress.50 These and

other data51 increase confidence that differences in levels of

expression of these transporters can impact dopaminergic

cell toxicities of model neurotoxins and aging. They sup-

port the idea that increased in vivo and in vitro toxicity can

result from increases in intracytoplasmic/extravesicular

toxin (or dopamine) levels through augmented pumping

into the cell by SLC6A3/DAT and/or reduced sequestration

into vesicles by SLC18A2/VMAT2. While interpretation of

these data may be limited by the validity of the model

dopaminergic toxicities employed,24 they are consistent

with intracytoplasmic/extravesicular targets (e.g., electron

transport chain/mitochondrial) for these toxins.

Altered Effects of Aging in Mice with
Altered Levels of Expression of
Dopaminergic Transporters

We have studied aged mice with heterozygous deletions of

SLC18A2/VMAT2 or of SLC6A3/DAT, each reducing trans-

porter expression to about 50% of levels found in wild-type

mice.51 Heterozygous SLC18A2/VMAT2 knockout mice dis-

play increased age-related loss of DA-mediated behaviors. By

contrast, these features are preserved in aged heterozygous

SLC6A3/DAT KO mice, when compared to modest to mod-

erate losses in aging wild-type littermates. Neurochemical

assessments confirm greater losses of ventral striatal dopamin-

ergic markers in aged heterozygous SLC18A2/VMAT2 KO

mice. These findings support the idea that lifelong alterations

in levels of SLC6A3/DAT and SLC18A2/VMAT2 expression

exert significant effects on age-related changes in dopaminer-

gic function, likely due to their roles in regulating intracellu-

lar/extravesicular dopamine concentrations.

Transporter Expression by
Dopaminergic Cell Groups and Cell
Losses in PD Brains

Three dopaminergic neuronal groups display substantially

different degrees of neuronal loss in PD brains studied

postmortem. Quantitative studies document no detectable

losses of arcuate neurons in PD brains.52 40–60% of ven-

tral tegmental area dopamine neurons are lost from PD

brains.53 Most associated with much PD symptomatology

are the losses of dopaminergic substantia nigra pars com-

pacta neurons54; perhaps >80% of these are lost in brains

of individuals who die with PD.55 Explanations for PD

pathogenesis must account for this selective pattern of

dopamine neuronal losses.

These patterns of neuronal loss display striking paral-

lels with their differential expression of the transporters

that compartmentalize dopamine. In situ hybridization

studies in rodents reveal significantly greater levels of

SLC6A3/DAT mRNA expression in cells of the nigra

compacta than in those of the ventral tegmental area,

and very low levels of expression in arcuate hypothala-

mic neurons.56 Sections from postmortem human brains

also reveal more expression by nigra compacta than by

ventral tegmental area neurons.57,58 In remaining grossly

intact PD nigral neurons, levels of expression of

SLC6A3/DAT mRNA are lower than those of average

nigral neurons sampled from matched control individu-

als. Levels of SLC18A2/VMAT2 expression have also

been studied. SLC18A2/VMAT2 immunoreactivity is

more abundant in human ventral tegmental area than

nigra compacta neurons.59 In situ hybridization studies

also provide evidence for greater SLC18A2/VMAT2

mRNA expression in the ventral tegmental area than in

nigra compacta cells.56

The distributions of Parkinsonian damage and trans-

porter expression within the more dorsal versus ventral

parts of the nigra compacta also provide support. Greater

ventral tier losses in human PD have been correlated with

greater expression of SLC6A3/DAT and lower expression

of SLC18A2/VMAT2 immunoreactivity in nonhuman pri-

mate studies.60

These data support parallels between densities of

SLC6A3/DAT expression and extent of dopaminergic cell

loss in PD brains. Since much expressed SLC6A3/DAT

and SCL18A2/VMAT2 protein is axonal, work on cell

body levels of mRNA, and protein expression is limited

by the assumption that these cell body levels predict

axon/terminal levels. Parallels (nigral losses > VTA losses)

in amphetamine-exposed rats do support the idea that

disrupted compartmentalization can provide this PD-like

pattern of cell type selectivity.61 Of course, these findings

do not account for losses of nondopaminergic neurons in

PD brains.

F. Context This paper focuses on dopamine compart-

mentalization, the two transporters that are key to this

process, evidence that features of this compartmentaliza-

tion correlate with the dopaminergic cell type specificity

of PD pathology and human and mouse support for the
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idea that dopamine compartmentalization provides an

approachable pharmacologic target for reducing cell type

specific losses in PD. This pharmacological evidence is

stronger than available physiological evidence. We lack

details of the precise ways in which physiologically rele-

vant concentrations of human intracellular DA exert toxi-

city in human aging and PD.

There are also potential interactions between dopamine

compartmentalization and other pathophysiological

mechanisms that are proposed for dopaminergic neuronal

degeneration in PD. While detailed discussions are

beyond the scope of this paper, there is no reason to

believe that dopamine compartmentalization mechanisms

could not interact with mechanisms involving synuclein,62

autophagy63 calcium,64 axonal arbor size,65 or mitochon-

drial oxidant stress.66 There is no reason why potential

dopaminergic neuronal protection from optimizing dopa-

mine compartmentalization could not add to benefits

from reducing dopamine redox cycling via monoamine

oxidase inhibition or calcium compartmentalization

strategies to reduce dopamine redox damage.

Dopamine compartmentalization ideas can be placed in

the context of the genes that harbor common or rarer

variants whose contributions to PD vulnerability have

been identified by genome wide association (GWAS) or

linkage/association in families.67,68,69 A number of these

genes, including ATP13A2, DDRGK1, GPNMB, GBA,

GCH1, INPP5F, LRRK2, MAPT, PARK7, PINK1, RIT2,

SNCA, STK39, UCHL1, and VPS35, are expressed either

moderately or robustly in mouse ventral midbrain neu-

rons in data available at [70]. However, there is no cur-

rent strong documentation of nigra > ventral tegmental

area > arcuate expression for any of these genes. Dopa-

mine-selective mechanisms could be superimposed on the

more generalized toxicities conferred by variation in these

genes to provide the patterns of selective dopaminergic

cell loss noted in PD brains.

Therapeutic Opportunities:
Pharmacologies of Drugs that could
Alter and Optimize Dopamine
Compartmentalization

Reductions in dopamine concentrations in the intracellu-

lar/extravesicular compartment could come from drugs

that (a) reduce SLC6A3/DAT-mediated dopamine uptake

into this compartment (b) increase SLC18A2/VMAT2-

mediated dopamine uptake from this compartment into

synaptic vesicles. Added motivation for using such drug

(s) could come from features that include well-under-

stood use in humans, relatively long durations of action,

modest toxicities, and modest, well-understood abuse lia-

bilities.

We are fortunate that two drugs that block SLC6A3/

DAT have long histories of use in humans. Each is docu-

mented to display modest toxicities and modest abuse lia-

bility. Both are available in extended release formulations.

Each can act indirectly to stimulate actions of SLC18A2/

VMAT2 in experimental animals. By contrast, while tetra-

benazines block SLC18A2/VMAT2, we are not aware of

any drug approved for human use that acts directly at

SLC18A2/VMAT2 to enhance its activity.

Dopamine Transporter Blockers that
Increase SLC18A2/VMAT2 Activity and
have Substantial Human Use:
Bupropion and Methylphenidate

Bupropion and methylphenidate each reduce dopamine

uptake into intracytoplasmic/extravesicular compartments

of dopaminergic neurons. They are each used, often

chronically via extended release formulations, for on- and

off-label clinical indications. In a recent year, more than

13 million methylphenidate and 24 million bupropion

prescriptions were dispensed in the US.71 Bupropion has

successfully treated depression in Parkinson’s patients72,73;

methylphenidate has also been used in PD.74 Human

imaging studies have identified relationships between

plasma levels of these drugs and SLC6A3/DAT occupan-

cies.75,76 There is thus deep human clinical experience to

aid therapeutic application of insights into roles for

SLC6A3/DAT and SLC18A2/VMAT2 in dopamine com-

partmentalization based on use of these drugs.

Methylphenidate potently blocks dopamine and nore-

pinephrine transporters while inhibiting serotonin transport

with lower potency.77 Extended release methylphenidate

preparations can provide 8–12 h efficacies.78

Bupropion blocks dopamine SLC6A3/DAT transport with

more selectivity, though its major hydroxybupropion active

metabolites display potency in inhibiting the norepinephrine

SLC6A2 transporter as well.79 The bupropion XL product

label indicates 21 h half-life for the parent compound.

In experimental animals, both methylphenidate and

bupropion can increase vesicular transport mediated by

SLC18A2/VMAT2. Exposure to these drugs triggers cellu-

lar redistribution of SLC18A2/VMAT2 through changes

in dopamine signaling that are attributed to actions at

D2-like receptors.80,81 If methylphenidate and bupropion

increase SLC18A2/VMAT2 function in humans, there

would be synergies with their abilities to inhibit SLC6A3/

DAT. Both activities, taken together, would provide

enhanced neuroprotection against dopaminergic toxicities

mediated in intracytoplasmic/extravesicular compart-

ments. Though many other compounds can inhibit

SLC6A3/DAT, methylphenidate and bupropion gain sal-

ience for this work as the two SLC6A3/DAT inhibitors

410 ª Published 2019. This article is a U.S. Government work and is public domain in the USA. Annals of Clinical and Translational Neurology

published by Periodicals, Inc on behalf of Veterans Health Administration.

Dopamine Compartmentalization and Parkinson’s Disease G. R. Uhl



that have been widely used in humans and may also

increase SLC18A2/VMAT2 activity.

Neither bupropion nor methylphenidate causes high

frequencies of any serious adverse side effect. Neither dis-

plays large abuse liability in many clinical settings.82 Label

information indicates that seizures are identified in about

1/1000 individuals who take sustained release bupropion.

Users of either bupropion or methylphenidate can report

nervousness, agitation, anxiety, insomnia, anorexia and/or

weight loss, increased heart rate, and/or blood pressure.

Despite the list of possible side effects, there is infrequent

discontinuation based on side effects when either of these

two drugs is used. Both of these drugs thus seem good

candidates for repurposing to test their abilities to slow

rates of selective loss of dopaminergic neurons in PD.

Concerns about Dopamine
Miscompartmentalization Hypotheses
for the Dopamine-Cell Type
Specificity of Parkinson’s Disease

Dopamine miscompartmentalization hypotheses for the

dopamine-cell type specificity of Parkinson’s disease have

limitations. The results of work assembled in this review

have accumulated over several decades; there is less cur-

rent focus on dopamine systems in much thinking about

PD pathogenesis than in the time during which this

hypothesis was first proposed. A recent review of PD

pathogenesis, for example, cites mitochondrial damage,

energy failure, oxidative stress, excitotoxicity, protein mis-

folding/aggregation, impairment of protein clearance

pathways, cell-autonomous mechanisms and prion-like

protein infection without explicit reference to miscom-

partmentalization ideas.83 Though there is no compelling

evidence that L-dopa administration dramatically changes

dopamine compartmentalization, lack of clear-cut evi-

dence for L-dopa toxicity in clinical trials84 has been

interpreted by some to weigh against any pathophysiolog-

ical role for dopamine toxicity. Availability of PD treat-

ments that acceptably manage many problems caused by

dopamine deficiency has supported ideas that drugs that

aid dopamine neuronal survival would only provide mod-

est changes in PD’s natural history. The increasing focus

on PD’s multisystem nature8 has been coupled with

heightened realization that even striking success in aiding

dopaminergic neuronal survival with methylphenidate,

bupropion, or other agents that help to optimize com-

partmentalization would be unlikely to ameliorate all PD

disability. Other therapeutic targets have been proposed

and tested to varying extents. For example, there are both

positive and cautionary notes concerning roles for cal-

cium channel blockers in preventing degeneration of

dopaminergic, and perhaps other, neurons.85,86

It is likely that agents that aim to ameliorate dopamine

miscompartmentalization would have different impacts in

different individuals. There are significant ranges of indi-

vidual differences in expression of SLC6A3/DAT and

SLC18A2/VMAT2 that are likely to have genetic and epi-

genetic bases.28,87 Stem cells derived from discordant

twins differ in expression of monoamine degrading

enzymes.88 Individual differences in bupropion metabo-

lism are well documented to alter ratios of active metabo-

lites that provide differential activities at different

monoamine transporters.89

Drugs that reduce dopamine miscompartmentalization

might have the best impact when applied early in the PD

pathological process.90 Unambiguous documentation of

disease modifying effects of bupropion or methylpheni-

date will mandate experimental designs that parse out

symptomatic effects.

Despite these limitations, however, there is increasing

recent support for compartmentalization hypotheses from

imaging studies,40,91 hypothesis-testing epidemiology in

amphetamine and cocaine users43,44 and work with aging

in mice that have constitutive differences in levels of

transporter expression.51

Open Questions for Dopamine
Compartmentalization Hypotheses
for Dopamine Selective Lesions in PD

Questions that arise from the ideas above include (1)

What chronic doses of SLC6A3/DAT blocking/SLC18A2/

VMAT2 stimulating drugs can be tolerated by patients

with early stage PD? When imaging detects asymptomatic

dopaminergic lesions?; (2) Can bupropion and/or methyl-

phenidate treatment beginning early in PD change com-

partmentalization sufficiently to slow losses of dopamine

neurons and progression of dopamine-linked PD symp-

toms? Can treatment be more effective when initiated

even earlier (e.g., when imaging of dopaminergic systems

identifies preclinical dopamine depletion)?; (3) Do these

compartmentalization hypotheses mandate increased

surveillance of individuals with therapeutic and/or recre-

ational exposures to drugs that miscompartmentalize

dopamine (including amphetamine and the SLC18A2/

VMAT2 blocker tetrabenazines)?; (4) How does dopamine

compartmentalization-related toxicity differ in individuals

with differing levels of transporter expression? With dis-

tinct PD-predisposing genetic variants? With distinct PD-

related environmental exposures, including the robust

protection from PD conferred by smoking and the more

modest risks posed by pesticides, well water and rural

environments in some epidemiological studies? With dif-

fering constellations of other PD medications?; (5) How

could individuals’ therapeutic responses be altered by
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pharmacogenomic differences in genes whose products

metabolize these drugs, including the cytochrome P450s

that produce active bupropion metabolites? (6) Which of

the postulated pathophysiologic mechanisms (e.g., redox,

adduct formation, other) cause the toxicity from physio-

logically relevant concentrations of intracellular/extraves-

icular dopamine?

Compartmentalization of dopamine within neurons

that utilize this important and toxic neurotransmitter

now provides a well-supported hypothesis to help

explain the selectivity of dopaminergic cell losses in PD

brains. This hypothesis provides opportunities for novel

therapeutic approaches to ameliorate the dopaminergic

decline that occurs following PD diagnoses, based on

repurposing available SLC6A3/DAT blocking/SCL18A2

enhancing drugs with which we have abundant human

experience. Dopamine compartmentalization hypotheses

also provide cautions about chronic use of drugs that

physiologically or directly antagonize SLC18A2/

VMAT2. Further animal model and human work in

this area is thus highly justified. PD patients impa-

tiently await safe and effective ways to slow the pro-

gression of the increasing, dopamine-linked disabilities

that are among the unfortunate burdens imposed by

this neurodegeneration.
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