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Abstract
Introduction: We introduce in this study CovMulNet19, a comprehensive COVID-19 network containing all avail-
able known interactions involving SARS-CoV-2 proteins, interacting-human proteins, diseases and symptoms
that are related to these human proteins, and compounds that can potentially target them.
Materials and Methods: Extensive network analysis methods, based on a bootstrap approach, allow us to pri-
oritize a list of diseases that display a high similarity to COVID-19 and a list of drugs that could potentially be
beneficial to treat patients. As a key feature of CovMulNet19, the inclusion of symptoms allows a deeper char-
acterization of the disease pathology, representing a useful proxy for COVID-19-related molecular processes.
Results: We recapitulate many of the known symptoms of the disease and we find the most similar diseases to
COVID-19 reflect conditions that are risk factors in patients. In particular, the comparison between CovMulNet19
and randomized networks recovers many of the known associated comorbidities that are important risk factors
for COVID-19 patients, through identified similarities with intestinal, hepatic, and neurological diseases as well as
with respiratory conditions, in line with reported comorbidities.
Conclusion: CovMulNet19 can be suitably used for network medicine analysis, as a valuable tool for exploring
drug repurposing while accounting for the intervening multidimensional factors, from molecular interactions to
symptoms.
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Introduction
The recent years have seen the booming of the field of
network medicine, a discipline that aims to exploit net-
works and their analysis to depict and understand the
complex relationships between biological processes,
drugs, phenotypes, and ultimately diseases.1

Never before has this approach been so relevant
to the worldwide medical community, as doctors

search for a cure for a novel disease, which appeared
suddenly and quickly started making victims.
COVID-19, the disease caused by infection with the
SARS-CoV-2 virus, was officially named in January
and since then the pace of science has been exceeding
what we thought possible. Very fast patient data
started being collected and hundreds of treatments
were tried, some with more success than others, but
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none of them being able to prevent many deaths.
Despite the debatable exact lethality of this disease,
and the optimistic prospect of having a vaccine
soon, the stress that treating these patients puts on
health systems and the many unknowns regarding
the exact pathology created by this virus contribute
to make this by far the biggest medical challenge in
recent times.

It is, therefore, interesting to see if all the tools that
have been developed in network medicine for other
diseases will help us better understand COVID-19
and also find better therapeutic options.

The most promising concept to find a treatment for
a new disease is that of repurposing, that is, using a
drug, or a combination of drugs, already approved
for a different condition.2 This facilitates the approval
of the treatment by the regulatory bodies as usage in
humans is proven to be safe. The main general princi-
ple behind repurposing is that the same compound
can be used for two diseases that are different but sim-
ilar in some respect. Disease similarity has been de-
scribed at many levels, either focusing on similarity
of genetic alterations, of gene expression profiles, of
symptoms and also of alterations of gene expression.3

All of these approaches lead to complex networks in
which nodes can be proteins, drugs, diseases, or even
patients. Commonly, diseases are represented as a net-
work of interacting genes or proteins that are some-
how altered in it.4–6

A possible approach to better understand COVID-
19 is to assemble a COVID-19 network, starting from
a basic understanding of the SARS-CoV-2 virus. This
was possible thanks to pioneering work that experi-
mentally mapped the interactions of the virus proteins
with human host proteins.7–9 Knowing which human
proteins can potentially interact with the virus allows
us to describe a more complex network in which entire
pathways and biological processes can be implicated in
COVID-19 pathology.

A few articles have developed drug-repurposing
strategies for COVID-19 starting from these initial
works. Gordon et al. propose candidate drugs,7 Gysi
et al. propose various ways of ranking drugs,10 and
Sadegh et al. share an online tool to explore repurpos-
ing options interactively, as well as proposing a few ex-
amples of how to search for repurposing candidate
drugs.11 Using expression from lungs of COVID-19 pa-
tients, Rian et al. identified specific pathways that are
affected by SARS-CoV-2 infection and predicted the
effect of 8000 compounds as potential treatments.12

An international effort is currently ongoing to organize
and mine all available knowledge and data on this dis-
ease,13 its epidemiology,14 and to create accessible data
repositories (https://github.com/CLAIRE-COVID-T4/
covid-data).

Our understanding about the disease has greatly
increased, and we now know that, contrary to initial
reports, this pathology is far more than a respiratory
disease, involving alterations of coagulation that can
be just as deadly as the respiratory distress, which
was one of the earliest identified causes of death asso-
ciated to the virus.15

In this article, we construct CovMulNet19, a com-
prehensive COVID-19 network, obtained retrieving
all available interactions involving SARS-CoV-2 pro-
teins, their interacting-human proteins (from here on
referred to as COVID-19 proteins), diseases and symp-
toms that are related to these human proteins, and
compounds that can potentially target them. We then
employ extensive network analysis methods based on
a bootstrap approach to prioritize a list of diseases
that display a specifically high similarity to COVID-
19 and a list of drugs that could potentially be beneficial
to treat patients affected by this disease.

Including symptoms in CovMulNet19 allows us to
further characterize the pathology of the disease and
to recapitulate many characteristic presentations such
as respiratory failure, chest pain, nausea, and several
neuronal dysfunctions.

We also found high similarity of COVID-19 to SARS
as well as to pathologies of the intestine, liver, and neu-
ral system, in accordance with some of the identified
risk factors. The integration of viral proteins, human
proteins, diseases, symptoms, and drugs in an interac-
tive visualization of this unified data set will enable the
community to freely explore this disease in its molecu-
lar and medical context.

Results and Discussion
Constructing an integrated COVID-19
interactions network
With the aim of summarizing available information
on COVID-19 to enable network medicine analyses of
this new pathology, we set out to collect information on
interactions of the viral proteins with human proteins
and the relationships between these proteins with
diseases and symptoms. We expanded the set of experi-
mentally validated SARS-CoV-2 interactors with pre-
dicted interactions (see Materials and Methods section)
and proceeded to reconstruct the human Protein–Protein
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Interaction (PPI) network that is potentially affected by
the virus. To this end we combined functional interac-
tions from STRING database16 with experimentally
detected physical and genetic PPIs from BioGRID.17

We then explored how these proteins are related to spe-
cific diseases as annotated in the DISGENET database,
which lists genes associated with diseases mainly through

mutations. We then integrated data from six different
drug–protein interaction databases into our network,
to provide a set of close to 6000 compounds that could
be potential repurposing candidates. Finally, and most
importantly, we added interactions between proteins
and symptoms, using the Human Phenotype Ontology
(HPO18), which allows us to identify specific connections

FIG. 1. Linking genotype to phenotype in SARS-CoV-2–Homo sapiens molecular interactions. We build a
highly reliable map of the human interactome and focus on the subset of human proteins that were shown to
putatively interact with the virus in the literature, both through experimental protein interaction assays,7

through structure-based predictions,9 and based on similarity of the proteins to other coronaviruses proteins.8

The COVID-19 PPI network is enriched by biological information related to each involved protein (GO terms), as
well as by an extensive data set of drug–protein interactions obtained by integrating different repositories.
Finally, the system is enriched with phenotype information about diseases and symptoms, allowing us to
include disease–symptom and protein–disease associations. Different icons represent different entities: genes,
diseases, compounds, and symptoms are represented by DNA fragments, diamonds, chemical structures, and
circles, respectively. Purple shaded area and purple icons represent entities associated with genes of human
proteins directly targeted by SARS-CoV-2, whereas blue shaded area and blue icons denote entities related to
genes of human proteins indirectly targeted by SARS-CoV-2 through human PPI. Cell icons represent GO terms,
including biological processes, molecular functions, and cellular components. Solid lines highlight human PPIs
and dotted lines represent other types of interactions between different entity types. See the text for details.
GO, Gene Ontology; PPI, protein–protein interaction.
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between SARS-CoV-2 proteins, human proteins and the
different manifestations of COVID-19. To facilitate the
user in the exploration of the resulting integrated net-
work, we have added Gene Ontology (GO) terms corre-
sponding to each human protein as nodes in the
network. Figure 1 shows an overview of the network
construction procedure.

The final result of this network construction com-
prises 27 viral genes, 457 human proteins, 5280 diseases,
2157 symptoms, 3487 GO terms, and 5703 drugs. It is
composed of 17 connected components, among which
the largest connected component is made of 19,892
nodes, including the 457 viral protein interactors and
representing 99.81% of the network. Figure 2 shows a
visual representation of our multidimensional network
that can also be interactively explored at https://
covmulnet19.fbk.eu/.

Identifying unique features of CovMulNet19
To test whether this network captures some specific as-
pects of COVID-19, we investigated whether the set
of human proteins that interact with SARS-CoV-2 pro-
teins have specific functional roles, are associated to spe-
cific diseases and symptoms or can be targeted by specific
drugs, differently from equally large sets of randomly
chosen human proteins. We hypothesize that finding
the unique connections of COVID-19 to diseases,
drugs, and symptoms will help identify valid repurposing
options for its treatment that will specifically target this
pathology. Moreover, this prevents us from overestimat-
ing the importance of diseases or symptoms that simply
interact with many human proteins and appear in our
CovMulNet19 only for this reason, validating the speci-
ficity of our findings for COVID-19.

We performed a degree analysis on CovMulNet19 to
identify diseases and symptoms that interact with many
of the COVID-19 proteins, and potential drugs that
could represent valuable candidate COVID-19 treat-
ments. This approach builds on the principle that if a
drug can target multiple SARS-CoV-2 viral protein
interactors specifically, it might hit many of the mecha-
nisms the virus uses to attack the host.

To identify which disease, symptoms, and drug
nodes of the network are particularly important in
COVID-19 pathology, we used a bootstrap resampling
method to evaluate whether the nodes with a high de-
gree in CovMulNet19 were not simply highly con-
nected because they represent hubs in all known
protein networks from public interactomes, which
would lead these nodes to be also highly connected in

any random network. In contrast, we considered that
the nodes with a higher degree in CovMulNet19 than
in random networks were potentially medically rele-
vant. We generated 2500 mock networks composed
of 457 random proteins from the BIOSTR database ap-
plying the same method as we used in the creation of
CovMulNet19 to find associations with GO terms, dis-
eases, symptoms, and drugs for these sets of random
proteins. The mock networks contain between 212
and 654 (average 384.5) PPIs, compared with 1999
PPIs in CovMulNet19. This is evidence of the coher-
ence of proteins that interact with the virus, including
multiple members of the same specific pathway or pro-
tein complexes.

Degrees were calculated for all nodes as the number
of edges to human proteins (either putative SARS-
CoV-2 interactors in CovMulNet19 or random pro-
teins in the mock networks). We define the structural
degree as the number of connections of each node to
human proteins and the structural strength as the
ratio of the structural degree to the total number of
connections to proteins in the considered network
(in a node-type dependent manner). Z-scores were
then calculated and used to evaluate the over- and
under-representation for each node in CovMulNet19
compared with what was expected at random based
on results on the mock data sets (Fig. 3).

CovMulNet19 highlights potentially medically
relevant aspects of COVID-19
Figure 3 shows over-representation of GO terms,
drugs, diseases, and symptoms after bootstrap bias
correction and degree analysis. The GO terms that
are over-represented in CovMulNet19 compared
with the mock networks highlight biological pro-
cesses, molecular functions, and cellular components
consistent with the possible roles of SARS-CoV-2
interacting human proteins in the viral infection pro-
cess. These include viral processes (PABPC1 role in
the positive regulation of coronavirus genome replica-
tion19), immune processes (roles of TBK1 and IRF3 in
Type I interferon production20), RNA and DNA me-
tabolism (RAE1 role in tRNA export from nucleus,21

DNA replication stress induced by coronavirus infec-
tion22) and mitochondrial transport (Translocase
inner mitochondrial membrane subunits and their
role in antiviral immunity23).

The diseases that are over-represented in CovMul-
Net19 compared with the mock networks based on
their z-scores, include SARS and other respiratory,
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A B

C D

FIG. 3. Top 25 over-represented GO terms, drugs, diseases, and symptoms in CovMulNet19. The 25 most
over-represented GO terms (A), drugs (B), diseases (C), and symptoms (D) are ranked based on their z-scores
calculated on structural strength using the bootstrap sampling procedure. The top X-axis shows z-score values
and bottom X-axis shows structural degrees (nodes degrees to protein nodes). Red and blue bars depict
z-scores calculated on the structural degrees and on their structural strength (i.e., degrees to proteins relatively
to the total degrees to proteins from all nodes), respectively. Purple bars represent the nodes’ structural
degrees observed in CovMulNet19’s network. Terms preceded with a (*) or (**) were significantly over-
represented in CovMulNet19 compared with observed appearance in the mock random networks ( p-value
< 0.1 and 0.05, respectively). The complete list of nodes with their associated z-scores and p-values can be
accessed in the bootstrap results tables in supplementary data (Supplementary Tables S1 and S2).
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intestinal, liver, and neurological diseases or condi-
tions, as well as a blood cancer, consistent with
COVID-19 pathology and risk factors highlighted by
recent meta-analyses.24 Interestingly, symptoms that
are over-represented in CovMulNet19 compared to
the mock networks according to their z-scores, also in-
clude respiratory failure, nausea, and other neurolog-
ical conditions. From the start, the list of COVID-19
symptoms included respiratory issues and nausea,
but there are increasing reports of neurological symp-
toms that had been overlooked in the first few weeks
of the epidemic that can be typical of other virus infec-
tions or quite specific.25 Finally, among the drugs
targeting a high number of SARS-CoV-2 interacting
human proteins, we found many BCL-2 inhibitors
(A-385358, Obatoclax Mesylate, ABT-737, Apogossy-
pol, Sabutoclax), which suggests that inhibiting this
protein, thus controlling the related antiapoptotic
pathways, might be beneficial to COVID-19 patients.
Interestingly, BCL-2 is targeted by some of the treat-
ments for leukemias, which incidentally share some
of the less specific symptoms of COVID-19 such as fa-
tigue, fever, and nausea. Several studies proposed that
BCL-2 inhibitors could also be repurposed for antivi-
ral drug development.26,27 Although the mechanisms
at play remain to be unveiled, the authors of these
studies suggested that infected cells might release
proapoptotic proteins from BCL-xL to initiate mito-
chondrial membrane permeabilization, adenosine tri-
phosphate degradation, and caspase-3 activation.
Subsequent treatments with BCL-2 inhibitors drove
apoptosis of the infected cells. However, these treat-
ments might need to be evaluated individually, as
they might need to be combined with other drugs
modulating the inflammatory response or promoting
viral clearance as another study reported altered
proinflammatory cytokine profile in the lung and a
slightly higher viral load in influenza virus-infected
mice treated with ABT-263.28 In addition, several
Janus kinase inhibitors have also been included in
clinical trials to treat COVID-19 patients admitted
to hospitals,29–31 and we find two drugs from this cat-
egory among our top hits (Momelotinib, XL-019).

Taken together, these observations point to the
potential of our approach to highlight relevant drug-
repurposing candidates and also to explain some of
the most mysterious symptoms of COVID-19 by high-
lighting this disease’s similarities with other patholo-
gies. The strong connection between COVID-19 and
the immune system might be at the origin of the sim-

ilarities between this new pathology and tumors of
the blood and the state of overall body-wide inflamma-
tion observed in patients.

Limitations of the current approach
Despite our best efforts in collecting all available infor-
mation at the time of writing, this virus and associated
pathology remain new and mostly uncharacterized.
The availability of an interactome involving human
and viral proteins has been a game changer, but it is
clear that even experimental interaction assays have
biases and a high level of false positives and negatives.
To begin with, the interactions were assessed inside a
human cell line with plasmid-based expression of the
bait proteins, meaning that the physiological relevance
of the observed interactions is not guaranteed inside
any cell of the human body. The addition of predicted
interactions clearly increases the chances that some
of the edges included in the network might not be
real. For this reason, we have repeated the entire analysis
using exclusively the 332 proteins that were experimen-
tally detected by Gordon et al.7 and we have included the
corresponding results in Supplementary Tables S1–S4.
As can be seen in the Supplementary Tables S3 and
S4, most of the results remain unchanged, indicating
that the further inclusion of the 125 proteins from pre-
dicted interactions does not substantially alter our find-
ings, and might even increase their specificity toward
SARS-CoV-2 pathology, since, for example, ‘‘Severe
Acute Respiratory Syndrome’’ appears to be the second
most over-represented disease only after adding these
predicted interactions and is only found at position
1198 of the ranking with a negative z-score of
�0.14682 in the analysis using exclusively experimen-
tal interactions. Moreover, we must also consider that
inaccuracies generally plague large-scale databases of
proteins/drugs/diseases interactions, both due to the
data being inaccurate and to issues in the merging of
different identifiers and simple human errors. Overall,
the bootstrap approach presented in this study and the
recapitulation of most of our results with a data set
considering only experimentally validated interactions,
should ensure that our findings are robust and do not
rely on just a few specific network edges (which
could represent false positives in the network’s interac-
tions). CovMulNet19 should only be viewed as a tool
for hypothesis generation and any suggestion for bio-
logically relevant associations between COVID-19
and genes, drugs, diseases, or symptoms should be ex-
perimentally verified before being considered further.
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Conclusion
Overall, the analysis presented in this study shows that
CovMulNet19 can be suitably used for network medi-
cine analysis, as a valuable tool for exploring drug
repurposing while accounting for the intervening
multidimensional factors, from molecular interactions
to symptoms. The result of the comparison between
CovMulNet19 and randomized networks recovers
many of the known associated comorbidities that
are important risk factors for COVID-19 patients,
through identified similarities with intestinal, he-
patic, and neurological diseases as well as with respi-
ratory conditions, which is in line with reported
comorbidities.24 Interestingly, focusing on the differ-
ent components of CovMulNet19, we can explore the
mechanistic connection between SARS-CoV-2 pro-
teins, human proteins, other diseases, and symptoms,
with a view toward more specifically targeting biolog-
ical processes altered by COVID-19.

Materials and Methods
Building the human interactome: BIOSTR
In this section, we provide details about the procedure
used to reconstruct the interaction network of human
proteins by cross-linking different publicly available
databases.

Since databases do not use the same format for pro-
tein names, as a first step we used the NCBI gene data-
base to map all protein names and aliases to a common
nomenclature of official symbols. Specifically, we used
the data made publicly available from NCBI at the
URL ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/GENE_
INFO/Mammalia/(Accessed March 28, 2020).32

In a second step, we downloaded two PPI networks
for Homo sapiens. More precisely, we considered Bio-
GRID v3.5.18217,33 (publicly available at URL: https://
downloads.thebiogrid.org/BioGRID/Release-Archive/
BIOGRID-3.5.182/) and the STRING v11.016 func-
tional interactions network (publicly available at URL:
https://string-db.org/cgi/download.pl).

In the BioGRID data, we filtered by official (com-
mon) symbols for proteins, identifying a total of
429,232 PPIs. A total of 30,959 interactions (7.21% of
the data set) contained at least one protein with non-
common symbol. After discarding the later interac-
tions, a total of 18,053 proteins (nodes) and 398,273
interactions (edges) were identified. The resulting Bio-
GRID network of interactions exhibits a multilayer
structure,34,35 including different biologically relevant
layers36–38: (1) direct interaction, (2) physical associa-

tion, (3) suppressive genetic interaction defined by in-
equality, (4) association, (5) colocalization, (6) additive
genetic interaction defined by inequality, and (7) syn-
thetic genetic interaction defined by inequality. For
the following analysis, we will consider the aggregated
representation of this multilayer functional PPIs.

In the STRING data, we filtered high-confidence
interactions with any type of evidence (score > 0.7),
identifying a total of 17,161 proteins and 839,522 PPIs
out of the original data—including low-confidence
interactions—consisting of 11,759,454 PPIs among
19,566 proteins. No biological layer classification is
performed on this data set.

The merging of the two distinct networks was per-
formed by applying the union of the corresponding
sets of PPIs and the final result is named BIOSTR. Overall,
the merged interactome—after removing duplicated
PPIs—consists of 19,945 proteins and 737,668 high-
confidence and undirected PPIs. Therefore, BIOSTR is
more complete than BIOGRID and STRING separately,
complementing them with 10.5% and 16.2% more pro-
teins, respectively. Note that, a posteriori, filtering the
BIOSTR network data by the NCBI map described ear-
lier results in about 900 less proteins, since some
names are not recognized as official.

Building the human
genotype–phenotype interactome
We gathered information about gene–disease interactions
from DISGENET v6.039 (publicly available database at the
URL: https://www.disgenet.org/downloads) and filtered
genes by the ones in our BIOSTR interactome, thus ex-
cluding associations involving proteins not in our PPI
network. All types of sources were included: curated
(UniProt, PsyGeNET, Orphanet, the Cancer Genome
Interpreter, Comparative Toxicogenomics Database
(CTD) (human data), ClinGen, and the Genomics Eng-
land PanelApp), from animal models (Rat Genome
Database, Mouse Genome Database, and CTD [mouse
and rat data]) and inferred (HPO, and GDAs inferred
from Variant-Disease Associations reported by Clinvar,
the GWAS catalog and GWAS database). We considered
all gene–disease associations with no further filtering
based on scores. See https://www.disgenet.org/dbinfo#
score for more details.39 Each disease found in the fil-
tered DISGENET database was associated to symptoms
found in the HPO (accessed on March 2020)18 pub-
licly available at the URL: https://hpo.jax.org/app/.

Note that even if DISGENET provides a mapping to
other databases, including the HPO and the Disease
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Ontology (DO), cross-linking with the DO data is very
restrictive and we opted for the HPO. The main issue
of this choice is to link DISGENET diseases identifiers
to symptoms in the HPO: we used Unified Medical
Language System identifiers available in DISGENET
to link cross-references in the HPO. The final network
consists of 15,228 HPO symptoms (nodes) and 628,686
gene–disease associations (edges) in DISGENET among
which we found 598,556 matching symbols in our
BIOSTR. Among the 96,745 diseases in DISGENET, a
subset of 5280 was identified as being related to
COVID-19 given their interaction with COVID-19 pro-
teins, together with a set of 2157 symptoms. For each
gene–disease–symptom interaction identified, a link be-
tween the gene and the symptom was added.

Enhancing proteins metadata
with GO information
For each protein in our BIOSTR PPI network, we
searched for functional information by connecting it
to terms in the GO publicly available at the URL:
http://geneontology.org/docs/download-ontology/(go
.obo and goa_human.gaf data sets).40,41 This infor-
mation is added to the multidimensional system in
terms of gene-biological class relationships, including
all GO terms (molecular function, biological process,
and cellular component). In total, proteins from
BIOSTR concern 30,657 biological processes, 12,134
molecular functions and 4431 cellular components.

Building the SARS-CoV-2 virus–host interactions
We started from the molecular interactions of SARS-
CoV-2 with human proteins (virus–host interactions)
identified by affinity-purification mass spectrometry by
Gordon et al.7 The identified bait–prey interactions con-
sist of 22,153 unthresholded links, with 332 (1.5%)
above the threshold suggested by Gordon et al. We
have further expanded this subset of the human pro-
teome involved with COVID-19 by including 113 pro-
teins predicted to be related by Vandelli et al. through
homology9 and 30 proteins found by Cui et al. from an-
alyses across > 2500 coronaviruses.8 The overall number
of proteins considered in our virus–host interaction net-
work is 457, after filtering for duplicated protein aliases.

Building the drug–target interactions
The interactions between a chemical compound (or a
drug) and its protein targets were collected from six
publicly available data sources. The definition of inter-
action is heterogeneous across different sources, and

thus, for each database, we explicitly list hereafter the
corresponding definition. Note that some drug nodes
are reported in terms of their combination with other
drugs, for example, ‘‘G3139 + DEXAMETHASONE.’’

DrugBank v.5.1.542 (https://www.drugbank.ca/): A
target is defined as a protein, macromolecule, small
molecule, and so on to which a given drug binds or
otherwise interacts with, resulting in an alteration of
the normal function of the bound molecule and de-
sirable therapeutic effects or unwanted adverse effects.

DGIdb v.3.0.243 (http://www.dgidb.org/): Here a
drug–gene interaction is defined by the database cu-
rators as a known interaction (e.g., inhibition) between
a known drug compound (e.g., lapatinib) and a target
gene (e.g., EGFR).

Therapeutic Target Database v.11 November 201944

(http://db.idrblab.net/ttd/): Interactions are defined as
connections between known and explored therapeutic
protein targets and the corresponding drugs directed at
each of these targets.* Note that some drugs in the data
set are reported in terms of their combination with
other drugs.

Drug Target Commons45 (http://drugtargetcommons
.fimm.fi/): Interactions are defined as annotated or un-
annotated bioactivity between drug and target.

chEMBL v.2646 (https://www.ebi.ac.uk/chembl/):
Interactions are known pharmaceutical associations as
declared by drug producers. chEMBL also provides
annotated experimental drug–target interactions that
were not included in CovMulNet19.{

Tabei et al.47 (http://labo.bio.kyutech.ac.jp/~yamani/
drugprotein/): The links are a subset of 78,692 drug–
protein interactions extracted from older versions of
ChEMBL,48 KEGG,49 DrugBank,50 PDSP Ki,51 and
Matador.52

The original sources adopt the following nomencla-
ture for the drug ID (as reported from the correspond-
ing official information):

� DrugBank—Standard name of drug as provided by
drug manufacturer
� Tabei DB—Drugbank ID
� DGIdb—the primary drug name
� Therapeutic Target Database—Drug Name
� Drug Target Commons—Compound name
� ChEMBL—Compound name and synonyms.

*TTD was updated on June, the 1st 2020 while drafting the current manuscript.
New interactions have not been added to CovMulNet19.
{chEMBL was updated on May, the 21st 2020 while drafting the current manuscript.
New interactions have not been added to CovMulNet19.
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The harmonization of the drug identifier was thus
needed, by mapping on the BioGrid reference.

Integrating the genotype–phenotype network
with drugs
We cross-linked the gene–disease interactions with
the drug–target interactions described in the previous
sections to obtain an overall map linking molecular
interactions to phenotypes related to COVID-19 in
Homo sapiens. Finally, the overall network consists of
27 viral genes, 457 human proteins, 5280 diseases,
2157 symptoms, 3487 GO terms, and 5703 drugs. See
Figure 2 for a visual representation of our multidimen-
sional network, which can also be interactively ex-
plored at https://covmulnet19.fbk.eu/.

Bootstrap analysis
A total of 2500 sets of 457 proteins chosen randomly
from those included in the BIOSTR database were
used to create mock data sets comparable with Cov-
MulNet19. Degrees were calculated for all nodes as
the number of edges to human proteins (either putative
SARS-CoV-2 interactors in CovMulNet19 or random
proteins in the mock networks). We define the struc-
tural degree as the number of connections of each
node to human proteins and the structural strength as
the ratio of the structural degree to the total number
of connections to proteins in the considered network
(node-type dependent). Z-scores were calculated
according to the standard formula Z = x�l

r , with x
being the structural strength (or structural degree) of
a node measured in CovMulNet19, and m and s
being the mean structural strength (or mean structural
degree) and the standard deviation structural strength
(or standard deviation structural degree) of the same
node across the random networks where it was found,
respectively. p-Values were then calculated for each
node based on the obtained z-scores and the normality
of the structural degrees or structural strengths distri-
butions across mock networks. When normally distrib-
uted, p-values were calculated with p = 1� er f (

jZj
ffiffi

2
p ),

and adjusted to 0.5 for null z-scores. When not nor-
mally distributed, we used Chebyshev’s inequality
with p = 1

Z2, and adjusted p-values to 1 for jZj £ 1.
Finally, the calculated z-scores and corresponding
p-values were used to evaluate the over- and under-
representation for each node in CovMulNet19 com-
pared with what was expected at random based on
results in the mock data sets, allowing us to identify
the top ranking gene ontology terms, diseases, drugs,

and symptoms in CovMulNet19 compared with the
mock random data sets (Fig. 3 and Supplementary
Tables S1 and S2).

Data Availability
The CovMulNet19 data set consists of two text files,
named COVID19-GDDS457-nodes and COVID19-
GDDS457-edges, respectively, both in csv format, de-
posited on the public repository FigShare and publicly
available at the web addresses https://figshare.com/
articles/CovMulNet19_zip/12563192/2.

The first file includes the 17,111 biological entities
representing the nodes of the CovMulNet19 network.
Each row has three columns, detailing the node name,
an integer code for the node type, and the node type de-
scription, with the following notation:

0 Viral Gene;
1 Human PPI (target);
3 Disease;
4 Symptom;
5 Drug;
6 GO.
The second file includes the 57,526 interactions be-

tween pairs of nodes: each row consists of three
comma-separated columns, with the names of the
two nodes being linked and their type of association
(disease–symptom, human PPI (target)–drug, human
PPI (target)–GO, etc.).

We decided to share CovMulNet19 in a flat text file
format to maximize its usability within different analyt-
ical frameworks and to allow its easy visualization on
multiple platforms.

Apart from the data set, we provide access to an in-
teractive dashboard at the https://covmulnet19.fbk.eu/
allowing to visually explore the CovMulNet19 net-
work and its metadata.

Code Availability
The data set was generated by open source frameworks
(R and Python) processing publicly available data sets.
The source code creating the network is available upon
request to the corresponding author.
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35. Kivelä M, Arenas A, Barthelemy M, et al. Multilayer networks. J Complex
Networks. 2014;2:203–271.

36. De Domenico M, Nicosia V, Arenas A, et al. Structural reducibility of
multilayer networks. Nat Commun 2015;6:1–9.

37. De Domenico M. Multilayer network modeling of integrated biological
systems: comment on ‘‘network science of biological systems at different
scales: A review’’ by Gosak et al. Phys Life Rev. 2018;24:149.

38. Mangioni G, Jurman G, De Domenico M. Multilayer flows in molecular
networks identify biological modules in the human proteome. IEEE Trans
Network Sci Eng. 2020;7:411–420.
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