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Influenza virus infection remains one of the largest disease burdens on humans.

Influenza-associated bacterial co-infections contribute to severe disease and mortality

during pandemic and seasonal influenza episodes. The mechanisms of severe morbidity

following influenza-bacteria co-infections mainly include failure of an antibacterial immune

response and pathogen synergy. Moreover, failure to resume function and tolerance

might be one of the main reasons for excessive mortality. In this review, recent advances

in the study of mechanisms of severe disease, caused by bacterial co-infections following

influenza virus pathogenesis, are summarized. Therefore, understanding the synergy

between viruses and bacteria will facilitate the design of novel therapeutic approaches

to prevent mortality associated with bacterial co-infections.
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INTRODUCTION

Influenza viruses are responsible for an average of 400,000 deaths per year globally (Simonsen
et al., 1997; Bakaletz, 2004; King et al., 2017; Tansey, 2017). During previous influenza pandemics
(H1N1, 1918; H2N2, 1957; H3N2, 1968; H1N1, 2009) and seasonal epidemics, many influenza-
related deaths actually occurred due to bacterial co-infections (Guarner et al., 2006; Taubenberger
and Morens, 2008; Weiser, 2010; Klein et al., 2016; McDanel et al., 2016; Shah et al., 2016). Since
the 1950s, researchers have increasingly focused on concomitant infections with influenza viruses
and a range of bacterial agents (Table 1).

Mortality incidence can be affected by several factors, one of which being the order of co-
infections. Although it is difficult to distinguish the order in which bacterial and influenza infection
occurs in a clinical setting, laboratory data have shown that mortality is associated with this
sequence. Specifically, mortality incidence peaks when bacterial infections occur 3–7 days after
an established influenza infection (Jamieson et al., 2013). In this review, we mainly address the
mechanisms of severe morbidity and mortality associated with bacterial co-infections following
influenza infection.
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TABLE 1 | Bacterial co-infection with influenza.

Influenza strain Bacteria Gram-stain References

H1N1 Streptococcus pneumoniae (S. pneumoniae) Positive Morens et al., 2008

Streptococcus pyogenes (S. pyogenes)

group (A Streptococcus)

Positive Schwarzmann et al., 1971

Methicillin resistant staphylococcus aureus

(MRSA)

Positive Hageman et al., 2006

Mycobacterium tuberculosis (M. tuberculosis) Positive Tan et al., 2011; Park et al., 2014;

Alghamdi et al., in press

Meningococci Negative Reilly and Gaunt, 1991; Legriel et al., 2011

Legionella pneumophila Negative Iannuzzi et al., 2011

Staphylococcal aureus (S. aureus) Positive Takayama et al., 2014; Park et al., 2015;

Gabrilovich et al., 2017

H2N2 Streptococcus pneumoniae (S. pneumoniae) Positive Oseasohn et al., 1959

Staphylococcal aureus (S. aureus) Positive Petersdorf et al., 1959

Haemophilus influenzae Negative Watt et al., 2009

H3N2 Streptococcus pneumoniae (S. pneumoniae) Negative Schwarzmann et al., 1971

Staphylococcal aureus (S. aureus) Positive Kobayashi et al., 2013; Collins et al., 2017

Campylobacter jejuni Negative Kahar-Bador et al., 2009

H7N9 Legionella pneumophila Negative Gao et al., 2013

Klebsiella pneumoniae Negative Gao et al., 2013

Acinetobacter baumannii Negative Gao et al., 2013

Burkholderia cepacia Negative Gao et al., 2013

Pseudomonas aeruginosa Negative Gao et al., 2013

Enterobacter aerogenes Negative Gao et al., 2013

K. oxytoca Negative Gao et al., 2013

P. putida Negative Gao et al., 2013

Staphylococcal aureus (S. aureus) Positive Yang et al., 2016

INFLUENZA INFECTION INCREASES HOST
SUSCEPTIBILITY TO BACTERIA

In both humans and mice, influenza virus titers in the lung
reach a peak 3–5 days after primary infection is established.
Thereafter, the virus clearance begins, with almost complete
resolution of infection between 10 and 12 days (Metzger and
Sun, 2013). In general, the influenza virus preferentially replicates
in epithelial cells and induces the most lung tissue damage at
approximately day 6 (Nugent and Pesanti, 1983). This pathology
is partly responsible for the observed increase in susceptibility to
opportunistic bacterial pathogens, as epithelial cell damage and
increased receptor availability enable invading bacteria to adhere
and grow.

Influenza Affects the Antibacterial Innate
Immune Response
Typically, the respiratory tract immune system is strictly
controlled to prevent inflammation in response to innocuous
antigens or commensal bacteria. When harmful pathogens
colonize the respiratory tract, the local immune system becomes
activated to eliminate the threat. It was found that typical mice
can effectively clear up to 105 pneumococci within 4–12 h
(Sun and Metzger, 2008). However, with influenza infection
onset, several processes occur that might impact the antibacterial
innate immune response, rendering both the upper airways and

lungs susceptible to subsequent bacterial infiltration, leading
to increased bacterial load and mortality (Hillyer et al., 2004;
Ishikawa et al., 2016). These processes include inhibition by type
I interferons (IFNs) and depletion of alveolar macrophages.

Influenza-Induced Type I IFNs Might Interfere with

Antibacterial Responses

The influenza non-structural protein 1 (NS1) is produced
by infected cells and can modulate innate immune pathways
including IFN signaling (Hale et al., 2008; Bucasas et al., 2013).
Besides playing a central role in the host antiviral response
(Theofilopoulos et al., 2005), type I IFNs can also disrupt lung
immune responses to bacteria (Kukavica-Ibrulj et al., 2009;
Techasaensiri et al., 2010; Kimaro et al., 2013; Lee et al., 2015).

In general, all cells are equipped with specific receptors,
known as pattern-recognition receptors, to detect the presence
of pathogens such as viruses and bacteria. The Toll-like receptor
family comprises this class of receptors and includes receptors to
viral and bacterial products. Type I IFNs are produced following
the recognition of influenza nucleic acids by these receptors (Tian
et al., 2012), which probably functions by suppressing the normal
phagocytic activity and early innate responses of macrophages
and neutrophils, which would normally help to clear the bacteria
from the lungs (Sun and Metzger, 2008; Shahangian et al., 2009).

Furthermore, type I IFNs can inhibit Type 17 T cells (Kudva
et al., 2011; Nakamura et al., 2011), which play an important role
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in clearance of pulmonary pathogenic bacteria. The immunity of
Type 17 T cells depends on IL-17, IL-22, and IL-23. However,
type I IFNs can decrease these cytokines. Meanwhile, type I
IFNs can decrease the production CCL2, which is required for
macrophage recruitment (Nakamura et al., 2011). Interestingly,
the antibacterial innate immune response is recovered until type
I IFN levels return to baseline (Lee et al., 2015).

Influenza Viruses Deplete Alveolar Macrophages

Alveolar macrophages are vital for the first cellular line of defense
against inhaled antigens, and account for >90% of all cells
in the bronchoalveolar lavage fluid of uninfected respiratory
tissue (Vermaelen and Pauwels, 2004). However, airway-resident
alveolar macrophages are specifically targeted by influenza
viruses during the primary stages of infection (Ghoneim et al.,
2013). These depleted alveolar macrophages can be replaced
over next 2 weeks by the proliferation and differentiation of
macrophages of other classes. Therefore, there is a window of
primary susceptibility to bacterial infection (Douek et al., 2009).
For example, pneumococcal colonization density increases in
mice 1 week after inoculation of influenza due to the absence
of macrophages, which are necessary to clear the infection
upon single-agent inoculation (Zhang et al., 2009). Moreover,
influenza infection can inhibit G-CSF secretion; this decrease
in G-CSF might reduce myeloperoxidase activity. Interestingly,
the digestion ability of phagocytized bacteria of Neutrophils
dependents on the activity of myeloperoxidase (Anderson et al.,
1985; Ishikawa et al., 2016).

Influenza Viruses Help to Provide More
Binding Receptors and Sites for Bacteria
After influenza infection is established, most viral subtypes
replicate in the mucosal epithelial cells of the upper respiratory
tract, providing more receptors for bacteria (Hatta et al., 2007;
Nakamura et al., 2011). However, some viral subtypes can target
both upper and lower respiratory tract tissues (Shinya et al.,
2006; Childs et al., 2009; Maines et al., 2009; Munster et al.,
2009). In particular, when viral infection precedes the presence
of bacteria, access to otherwise inaccessible receptors in the
lower respiratory tract might be available to invading bacteria
(McCullers and Bartmess, 2003). Here, we consider three main
mechanisms associated with this phenomenon.

First, influenza virus proteins can contribute. Neuraminidase,
present on the envelope of the influenza virus, is responsible
for sialidase activity, required by the virus for budding. After
neuraminidase cleaves sialic acid from the termini of glycochains,
cryptic receptors on host cells become exposed, and bacteria such
as pneumococci can adhere (Foster and Hook, 1998; McCullers
and Tuomanen, 2001). Furthermore, disrupted sialylated mucins
can provide decoy receptors for bacteria (Plotkowski et al.,
1986, 1993). For example, substantial numbers of epithelial
cells can be destroyed by virulent viruses such as the mouse-
adapted influenza strain PR8, resulting in exposed sites for
bacteria to attach in the tracheobronchial tree (Plotkowski et al.,
1986; McCullers and Rehg, 2002). Interestingly, neuraminidase
proteins are not restricted to viruses. Some bacteria like
Streptococcus pneumoniae also provide neuraminidases to access
receptors and inhibit host defenses by cleaving sialic acids from

protective mucins, allowing efficient infection of host lungs
(Camara et al., 1991).

Second, the host inflammatory response to influenza
infections can provide additional receptors. The host
inflammatory response can alter not only the regulatory
state, but also the surface display of multiple proteins, to facilitate
pneumococcal invasion (Cundell and Tuomanen, 1994; Miller
et al., 2007).

Third, adherence sites might also be provided during wound
recovery in the airways (Plotkowski et al., 1993; de Bentzmann
et al., 1996; Martin and Leibovich, 2005). There are some
differences in terms of the wound recovery between common
infection and co-infection. During co-infection with complex
pathogens, reduced damage tolerance will occur; however,
as a result, repair efficiency will decrease compared to that
with a typical infection. This is also one of the causes of
increased mortality with co-infection. Although some progress
has been made, many potential mechanisms still need to be
elucidated. Apical receptors including asialylated glycans (for
example, GalNacβ1-Gal) or α5β1 integrins can be expressed
on the surfaces of injured cells or those in an intermediate
state of differentiation. Bacteria such as Staphylococcus aureus
or Pseudomonas aeruginosa can adhere to receptors (Puchelle
et al., 2006). Furthermore, bacteria such as S. pneumoniae,
Haemophilus influenzae, or S. aureus can bind to exposed areas of
incomplete healing via traditional adhesins. These exposed areas
can be covered by basement membrane elements such as fibrin
and fibrinogen deposition, laminin, or type I and IV collagen.
This phenomenon has been observed in the clinics; patients can
be easily infected by bacteria while recovering from primary
illness (Louria et al., 1959; Peteranderl et al., 2017). In addition,
many bacterial virulence factors can attach to elements of the
extracellular matrix or basement membrane (Foster and Hook,
1998; McCullers and Tuomanen, 2001).

BACTERIAL CO-INFECTIONS FOLLOWING
INFLUENZA INFECTION RESULTS IN
MORBIDITY AND MORTALITY

Influenza Causes Substantial Lung
Epithelial Damage
The viral cytotoxin PB1-F2, not present on all subtypes of
influenza, is a non-structural protein encoded by an alternative
reading frame on genomic segment 2 of influenza A. PB1-F2
is encoded by a small, variable open reading frame in PB1
that exists in most influenza viruses. This protein is capable
of activating AP-1 transcription factors via ERK1/2 kinase,
and was confirmed to be a determinant of virulence. The
length of PB1-F2 differs according to subtype; full-length PB1-
F2 is 90 aa (amino acids). However, that of the A/Puerto
Rico/8/24 strain was found to be 87 aa. Most avian influenza
viruses have complete PB1-F2-encoding genes. After 1947,
PB1-F2 of the H1N1 subtype was found to be cleaved at
position 57, and that of the classical swine H1N1 subtype was
determined to be cleaved at 11, 25, and 34 aa, which results in
reduced viral pathogenicity. Since 1968, variations in the PB1-
encoding gene of the H3N2 subtype gradually stabilized, and
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PB1-F2 truncation gradually represented a novel evolutionary
feature. The 2009 H1N1 strain did not show any significant
antigenic and pathogenic variation. Patient infection after
obvious gastrointestinal symptoms is not associated with viral
virulence, but might be caused by individual-specific properties.
When viral infection is established, PB1-F2 can induce apoptosis,
mediated by mitochondrial permeabilization (McAuley et al.,
2007, 2010; Alymova et al., 2011; Leymarie et al., 2013),
ultimately providing nutrients to invading opportunistic bacteria,
following cytopathic damage and disruption of surfactant in the
lungs. Consequently, inhaled or commensal bacteria can become
overgrown, adversely affecting host survival (Loosli et al., 1975).
In 2016, observations (Sun et al., 2016) showed that effective
antibiotic treatment of clinical post-influenza bacteria depends
on nicotinamide adenine dinucleotide phosphate oxidase 2
(Nox2), and that a balance exists between Nox2-dependent
antibacterial immunity and inflammation. However, influenza
infection might disrupt this balance and increase susceptibility
to bacterial infection.

Synergism during Influenza/Bacterial
Co-infections
Both influenza and bacteria contribute to the
immunopathogenicity of co-infection. For example, expression
of PB1-F2 has been associated with excessive inflammatory
responses, which can lead to increased cellular infiltration of the
lungs and airways, together with a cytokine storm (Conenello
et al., 2007; McAuley et al., 2007, 2010). Interestingly, it was
proposed that nascent hemagglutinin can be cleaved, from its
primary state to a fusion-active complex, by bacterial proteases
from S. aureus (Tashiro et al., 1987), which might increase
influenza viral titers and spread.

Likewise, bacterial cytotoxins such as pneumolysin and
Panton-Valentine leukocidin (PVL), can also contribute to
immunopathogenicity (Rogolsky, 1979; Tuomanen et al., 1995;
Loffler et al., 2013; Wolf et al., 2014). Bacterial components that
lead to exacerbated cell death, associated with pore formation or
enhanced inflammatory signaling, might synergize with influenza
virulence factors (Boulnois et al., 1991). In addition, multiple
innate immune mechanisms that involve pathogen recognition
receptors also generate inflammatory responses to influenza
and/or bacteria (Koppe et al., 2012; Ramos and Fernandez-
Sesma, 2012). These inflammatory pathways work together,
leading to synergistic activation of the immune system and
increased mortality (Joyce et al., 2009; Bucasas et al., 2013;
Kimaro et al., 2013).

Moreover, certain pathogenic virulence factors are only
evident with the presence of a co-pathogen, as is the case for
a mouse model of influenza and H. influenzae co-infection
(Wong et al., 2013). However, it has not been possible to identify
synergistic pathogenicity genes that facilitate co-infections using
traditional virulence screens during single-agent infections
(Bellinghausen et al., 2016).

Influenza Compromises Host Tolerance
The concept of tolerance used here is different from
“immunological tolerance,” which is described as a state of

unresponsiveness to self-antigens. Tolerance, in the current
context, can reduce the negative impact of pathogen outgrowth
and immunopathology, but can be compromised by the
influenza virus, resulting in mortality even in the context of
effective resistance.

For example, recent observations (Jamieson et al., 2013)
demonstrated that influenza can compromise tolerance to
tissue damage and result in mortality when mice were co-
infected with Legionella pneumophila. It was shown that
lethal synergy can be independent of impaired resistance to
either influenza or L. pneumophila. Notably, this is different
from previously discussed co-infections with influenza and
opportunistic bacterial pathogens. Moreover, during the 1918
influenza outbreak, it was observed that human mortality was
not directly related to infection rates (Shanks and Brundage,
2012). This study also demonstrated that lethal synergy between
the influenza and L. pneumophila is unlikely to be due
to failed immune resistance to either agent (Mendel et al.,
1998).

DISCUSSION

The mechanisms of enhanced mortality following influenza-
associated bacterial co-infections not only include failed
antibacterial resistance and synergistic immunopathogenicity,
but also failed tolerance. As a relatively new concept in
animal immunity, tolerance has been largely overlooked and
deserves further consideration regarding its effect on co-infection
(Medzhitov et al., 2012).

Upon infection by a virus and/or bacterium, the host
can protect itself through two distinct strategies, resistance
and tolerance. Resistance is based on pathogen detection and
elimination, whereas tolerance can restrict harm caused by the
pathogen burden. However, virus/bacterial co-infections results
in some difficulty in the treatment of either infection. For
example, it is unknown whether antiviral treatments that viral
load have any effect on concurrent bacterial infection (McCullers,
2004; Naguib et al., 2017). Similarly, the efficacy of treatments to
counteract host inflammatory responses to bacterial co-infection
is unknown (Kudva et al., 2011; Arduin et al., 2017). Therefore,
distinguishing between failed resistance and failed tolerance
might be of vital importance for the selection of therapeutic
approaches to treat the primary problem.

Considering that mortality during co-infection can be
decreased when bacterial infection occurs before influenza
challenge, albeit through unknown mechanisms (McCullers and
Rehg, 2002; Wang et al., 2013), it is possible to develop novel
recombinant vaccines that include both influenza and bacterial
antigens. Ideally, this vaccine would elicit cross-reactive antibody
responses to both influenza and bacteria. Furthermore, such
vaccines would represent an appealing alternative to classical
inactivated vaccines.

Therefore, understanding the mechanisms involved in the
synergy between viral and bacterial co-infection will facilitate
the design of novel therapeutic approaches for the prevention
of elevated mortality associated with bacterial co-infections
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following influenza infection (Boianelli et al., 2016; McDonald
et al., 2017; Smith, 2017).
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