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Abstract

Background: The protein energy landscape underscores the inherent nature of proteins as dynamic molecules
interconverting between structures with varying energies. Reconstructing a protein’s energy landscape holds the key
to characterizing a protein’s equilibrium conformational dynamics and its relationship to function. Many pathogenic
mutations in protein sequences alter the equilibrium dynamics that regulates molecular interactions and thus protein
function. In principle, reconstructing energy landscapes of a protein’s healthy and diseased variants is a central step to
understanding how mutations impact dynamics, biological mechanisms, and function.

Results: Recent computational advances are yielding detailed, sample-based representations of protein energy
landscapes. In this paper, we propose and describe two novel methods that leverage computed, sample-based
representations of landscapes to reconstruct them and extract from them informative local structures that reveal the
underlying organization of an energy landscape. Such structures constitute landscape features that, as we
demonstrate here, can be utilized to detect alterations of landscapes upon mutation.

Conclusions: The proposed methods detect altered protein energy landscape features in response to sequence
mutations. By doing so, the methods allow formulating hypotheses on the impact of mutations on specific biological
activities of a protein. This work demonstrates that the availability of energy landscapes of healthy and diseased
variants of a protein opens up new avenues to harness the quantitative information embedded in landscapes to
summarize mechanisms via which mutations alter protein dynamics to percolate to dysfunction.

Keywords: Protein dysfunction, Pathogenic mutations, Equilibrium dynamics, Energy landscape, Landscape
reconstruction, Basins, Saddles, Landscape mining

Background
Proteins are ubiquitous biological macromolecules
(biomolecules) found in nearly all processes that main-
tain and replicate a living cell. These biomolecules are
inherently dynamic, switching/interconverting between
shapes/conformations with different potential energies.
These interconversions regulate interactions of a protein
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with different molecular partners and by doing so reg-
ulate allosteric signaling, catalysis, and other cellular
processes that occur on 0.1 − 10Å length scales and
nanosecond-seconds time scales [1].

A protein energy landscape organizes the conforma-
tions accessible by a protein by their potential energies,
revealing local landscape structures, such as basins and
barriers. Basins correspond to thermodynamically-stable
and semi-stable conformational (macro-)states; barriers
are local landscape structures that separate basins and
thus control basin-to-basin diffusions that correspond to
state-to-state interconversions [2, 3]. Together, these local
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structures control the dynamics of a protein and are key
to a protein’s ability to regulate its molecular interactions
and so its function in the cell [1, 4].

Many human disorders (including cancer) are pro-
teinopathies driven by DNA mutations that percolate to
protein dysfunction by affecting the state-to-state inter-
conversions via which a protein regulates interactions
with molecular partners [5]. Such mutations change the
energy landscape and, in particular, the local landscape
structures that control the equilibrium dynamics [2].
Thus, it is highly desirable to quantify changes to the
energy landscape in response to a mutation. This task is
generally infeasible [6].

In principle, the protein energy landscape contains the
information needed to characterize and relate protein
equilibrium dynamics to function [7, 8]. However, state-
to-state interconversions may span spatial and temporal
scales of several orders of magnitude [6]. Due to the
disparate scales involved, no wet- nor dry-laboratory tech-
niques can fully and on their own reconstruct energy
landscapes of any protein of interest [6, 9].

The challenges with reconstructing protein energy land-
scapes are twofold. First, due to the high dimension-
ality of the protein conformation space (space of all
possible conformations), only randomized search algo-
rithmic frameworks are viable [10]. Such frameworks
probe the landscape one sample (conformation-energy
pair) at a time, and thus obtain a discrete, sample-based
representation of a landscape. Whether based on the
Molecular Dynamics (MD) or Monte Carlo (MC) tem-
plate, these frameworks operate under the umbrella of
global optimization and are thus prone to premature
convergence, which is not desirable when the objec-
tive is to obtain a broad view of the landscape so as
not to miss regions of importance for the dynamics of
the protein under investigation. The interested reader
can learn more about these frameworks and their chal-
lenges with obtaining detailed, sample-based representa-
tions of protein energy landscapes in a recent review in
[6]. The second challenge with reconstructing a protein
energy landscape is due to the utilization of a discrete,
sample-based representation; that is, given a set of sam-
ples spread over an invisible landscape, the challenge is
to uncover the underlying organization of the samples
in terms of the unknown basins and basin-separating
barriers.

The contribution of this paper is in addressing the chal-
lenge of reconstructing an energy landscape by utilizing
a discrete, sample-based representation for it. The abil-
ity to do so relies on recent methodological advances
that are making it possible to obtain detailed, sample-
based representations of energy landscapes for proteins
with sufficient, wet-laboratory, conformational data (the
“Related work” section summarizes these advances).

Specifically, these methods are able to feasibly compute
detailed, sample-based representations of energy landscapes
for different variants of a protein of interest [11–14].

We present two novel methods that analyze a given
set of energy-evaluated samples and automatically
identify the basins containing the samples and the basin-
separating saddles. The methods employ concepts from
topological and statistical analysis of spatial data. The first
method operationalizes a basin-driven approach, first
identifying basins and then utilizing working definitions
of saddle points to indicate basin-separating saddles. The
second method utilizes a saddle-driven approach, first
identifying saddles via precise mathematical formulations
and then detecting the basins separated by them. Both
methods expose the deepest point in a basin, which,
alongside with identified saddles, allow extracting quan-
titative features/descriptors of a landscape. The latter, as
we demonstrate here, permit quantitative comparison
of landscapes of healthy and pathogenic variants of a
protein and open up interesting avenues into landscape
mining techniques and formulation of thermodynamics-
based hypotheses on how mutations percolate to
(dys)function.

The next section places the proposed landscape analysis
methods in the context of related work. The methods are
detailed in the “Methods” section. The “Results” section
evaluates the proposed methods on many sequence
variants of an enzyme central to human biology. The
evaluation exposes several mechanisms of interest by
which oncogenic and non-oncogenic but syndrome-
causing mutations alter features of the energy landscape
and in turn impact the healthy/wildtype (WT) equilib-
rium dynamics. An interesting avenue is also related on
how the proposed methods open the way for machine
learning approaches to operate over energy landscapes.
Drawn landscape descriptors are correlated with wet-
laboratory measurements, furthering biological knowl-
edge. The “Discussion” section discusses the implications
of our findings, and the “Conclusion” section concludes
this paper with a summary of the contributions and their
relevance for understanding protein function.

Related work
We first summarize recent methodological advances that
allow to obtain detailed, sample-based representations
of protein energy landscapes and so allow the methods
proposed in this paper to reconstruct energy landscapes
from such discrete representations. We then provide pre-
liminaries on local landscape structures and summarize
pertinent related work in detecting such structures.

Sample-based representations of protein energy landscapes
Recent methodological advances are allowing the recon-
struction of energy landscapes of medium-size proteins
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in the presence of wet-laboratory-resolved conformations
[14]. The issue of disparate spatio-temporal scales is
circumvented by exploiting the information available in
wet-laboratory-resolved conformations of healthy and
diseased (pathogenic) forms/variants of a protein. This is
viable for many proteins of central importance to human
biology, as steady attention from wet laboratories on such
proteins has resulted in many conformations deposited for
them in the Protein Data Bank (PDB) [15].

In particular, since 2015, various stochastic optimiza-
tion algorithms have been proposed and refined that
delay premature convergence and so obtain detailed,
sample-based representations of energy landscapes of var-
ious medium-size proteins with reasonable computational
budgets) [11–14, 16–18]. Sampling of conformations
takes place over a carefully-selected variable space. The
variables are extracted via Principal Component Analysis
(PCA) of experimentally-known conformations collected
from the PDB for a protein’s healthy and diseased variants.
The latest molecular mechanics-based energy functions in
the Amber suite are integrated [12].

The ability of these algorithms to compute detailed,
sample-based representations of Amber energy land-
scapes feasibly (a few CPU days) for different variants of
a protein of interest [12] allows the investigation in this
paper on reconstructing, summarizing, and comparing
landscapes to reveal the impact of mutations on dysfunc-
tion. Specifically, the data we utilize here are obtained with
the SoPriMp algorithm [17]. The SoPriM algorithm [17]
and its faster version, SoPriMp [11] do not directly operate
in the conformation space of a protein, so as to circum-
vent the dimensionality issue, but instead compute sam-
ples that represent conformations in a low-dimensional
variable space of principal components (PCs). Fast trans-
formations between the variable space and the all-atom
conformation space allow the algorithms to obtain low-
energy, all-atom conformations of a protein sequence of
interest. The interested reader can learn more about these
algorithms and their evaluation in Ref. [11]. In this paper,
the samples analyzed by the proposed landscape analy-
sis methods are generated by SoPriMp (due to its higher
exploration capability [17]) and correspond to computed,
all-atom conformations evaluated with the Amber ff14SB
forcefield.

Local landscape structures
Suppose d (d ≥ 1) variables are selected to describe a pro-
tein conformation. Then the range of possible values of
the d variables is the underlying domain D of the energy
landscape, which is a subset ofRd . In a more general sense,
a landscape can be understood as a function defined on a
multivariate domain. Hence, landscape analysis is related
to many other disciplines, where spatial data are available.
For example, the topology summarization of cosmological

data is important in understanding the evolution of our
universe [19].

Specifically, for an energy function e which maps D to
R, let emin = minx∈D e(x) and emax = maxx∈D e(x). For
any energy level c between emin and emax, the set L(c) =
{x ∈ D : e(x) ≤ c} is called a sublevel set (or level set for
brevity) of e and represents the subregion of D with energy
at or below c. Level sets have been extensively studied
in the mathematics and statistics literature. In particular,
the concept of level sets plays a critical role in the recent
advancement of topological data analysis (TDA) through
persistent homology [20, 21]. In fact, our level set-based
approach is similar in spirit to TDA, but our focus is on the
geometry rather than the topology of energy landscapes.

Specifically, we are interested in how the shape of L(c)
evolves as the level c changes, as this dependence reflects
unique characteristics of a landscape. If for some energy
level c, a connected component of L(c) has a saddle point
on its boundary, then this connected component is called
a basin. By this definition, a basin is a low-energy region
containing at least one local minimum of the energy e. The
various basins of the same energy landscape are organized
in a hierarchical global structure. For example, two adja-
cent basins can be connected via a common saddle point;
a smaller basin can be nested in a larger one. It is desirable
for an energy landscape analysis method to automatically
discover and organize such a global structure.

Due to the connection between basins and the geo-
metric concepts including level sets and saddle points, in
this paper we operationalize two different approaches in
two novel methods to organizing the hierarchical struc-
ture of basins, one based on level sets (to which we refer
as basin-driven), and the other based on saddle points
(to which we refer as saddle-driven). We note that basins
are also related to some other geometric features, such
as ridges [22, 23], and they are also the focus of com-
plementary approaches. For instance, a recent method
analyzes a nearest-neighbor graph embedding of protein
conformations, seeking critical points in the graph that are
then utilized as working definitions of saddles and local
minima onto which neighboring points are mapped to
constitute basins [24]. The basin-driven method we pro-
pose here analyzes the smoothed energy landscape. This
allows addressing both the ruggedness of the landscape
and the non-uniform sampling density obtained from
MD-, MC-, or other more powerful sampling-based meth-
ods that yield discrete, sample-based representations of
landscapes. In addition, the basins identified in this work
are subregions of the landscape itself with clear bound-
aries that allow both visualization and extraction of quan-
titative descriptors for feature-based summarizations of
landscapes.

Searching for saddle points has also been important for
spatial data analysis. In particular, the reduced gradient
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curve following (RGF) approach originated in a computa-
tional chemistry setting to extract saddle points [25, 26].
In this paper, we leverage mathematical formulations and
techniques from the RGF approach to find all the sad-
dle points on a protein energy landscape, which we then
additionally link to basins.

Methods
From now on, we refer to the two novel methods
described below as Basin-Driven_Reconstruction (BDR)
and Saddle-driven_Reconstruction (SDR). Both methods
explicitly reconstruct a landscape by finding basins and
saddles. BDR first finds basins, using precise mathemat-
ical formulations derived from the level set approach
summarized above, and then uses working definitions of
saddle points to detect saddles. SDR first finds saddles,
using precise mathematical formulations derived from the
reduced-gradient curve approach, and then uses identi-
fied saddles (and local minima) to detect basins.

The application of both methods here is limited
to analysis of three-dimensional (3D) samples, using
as observations the first two coordinates (PC1, PC2)
of SoPriMp-computed samples and the Amber ff14SB
energy values of the structures corresponding to the sam-
ples. In principle, one can utilize all coordinates (typical
numbers range from 10 to 25 PCs), but the dimen-
sionality adds to the computational cost of the analy-
sis. It is worth noting that in cases where SoPriMp can
be employed to obtain sample-based representations of
energy landscapes, the top two PCs capture more than
50% of the conformation variance, and the top three cap-
ture more than 70% of the variance [11–14, 17, 18]. The
emphasis on reasonable computational costs is due to the
objective to apply BDR or SDR in comparative analysis set-
tings that screen numerous variants of a protein in search
of landscape features to learn the impact of mutations on
dysfunction.

Boundaries and landscape smoothing
Both BDR and SDR preprocess the samples as follows.
First, the α-convex shape [27, 28], a generalization of the
convex hull, is computed on the PC1-PC2 sample loca-
tions. This is illustrated in Fig. 1. Then, a 2D grid is then
defined over the samples that fall in the alpha-convex
shape. A parameter δ1 is used to control the distance
between adjacent grid points. The resulting collection of
grid points is denoted as Smax.

Kernel regression is used to estimate the energy of
each grid point. Kernel regression is a central smooth-
ing technique in spatial data analysis, as illustrated
in Fig. 2. Protein energy landscapes reconstructed
with all-atom energy functions, such as Amber ff14SB
here (and others), are known to be overly rugged
[6]. Kernel regression is a mechanism to reduce the

Fig. 1 Both proposed methods first find the alpha-convex shape that
encapsulates samples, illustrated here on randomly-generated 2D
points

ruggedness and address the non-uniform density of
samples.

As reported in the “Results” section, we evaluate
different kernels on the trade-off between accuracy and
computational speed. Three kernels are available in
python’s sklearn library, Gaussian, Epanechnikov, and
Tricube; they are compared to one another and our own
implementation of a bounded-support Gaussian kernel.
In each case, the energy estimate of each grid point x
is the weighted average of energies of observed sam-
ples (PC1-PC2 locations). Specifically, the sklearn kernels
sum up the contribution from each sample in the com-
puted alpha-convex shape and weight the contribution of
each sample based on the sample’s distance (in PC1-PC2
space) to the grid point whose energy is being estimated.
Our own implementation of a bounded support kernel
considers only samples within an h-radius neighborhood
centered at a grid point (note that the amount of smooth-
ing is controlled by h); the kernel utilizes a kd-tree, a
proximity-query data structure to expediently find the
nearest neighbors (among samples) of a grid point, thus
yielding computational savings.

Fig. 2 Once a grid is imposed on points in the computed
alpha-convex shape, the energies of the grid points are estimated via
kernel regression. This is illustrated here on 1d points
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Once the energies of grid points have been estimated,
each of the proposed BDR and SDR methods proceeds
differently. We now relate details.

The BDR method: basin-driven landscape reconstruction
Let the minimum and maximum energy over the (grid)
points in the grid Smax be cmax and cmin. Starting from
c = cmax, BDR iteratively decreases the energy level c
by a small step δ2, detecting splitting of basins and stor-
ing resulting basins and saddles in a list �; the latter is
utilized for further visualization and quantitative analysis
and comparison of landscapes.

Algorithm 1 shows pseudocode for a recursive imple-
mentation of the BDR method. The initial arguments to
BDR are all the grid points S = Smax, the maximum energy
c = cmax, and an empty � list of yet-to-be-found basins
and saddles.

Lines 3–4 in Algorithm 1 show that on a given collection
S of grid points (S is initialized to Smax), BDR calculates
the k boundaries of S (using the α-convex hull). If k = 1
(no basin splitting has been detected), BDR decreases c by
δ2 and focuses on the corresponding level set (lines 5–7);
the grid locations that meet the energetic threshold are
updated (line 7). Otherwise, if k > 1, basin splitting has
been detected (lines 8–12); the new S1 . . . Sk components
with separate boundaries are basins that are added to �.
Saddles saddlei,j are defined for each pair of neighboring
basins Si and Sj. The minimum distance between vertices
on polygonal boundaries of different basins Si, Sj is com-
puted; if this distance is not above a threshold d_th, Si and
Sj are deemed neighboring basins, and the middle point
of the minimum-length line is estimated to be the sad-
dle point saddleij. The identified saddles are also added to
�. Whether k = 1 or k > 1, BDR proceeds to identify
further, possible hierarchical structure in the landscape
(lines 13–14). The method terminates when no more grid
locations are left (lines 1–2).

In the interest of clarity, the pseudocode in Algorithm 1
does not show modifications made to lower the
computational cost. One modification concerns avoiding
computing the dense boundaries in the high-energy
regions, which is both time-consuming and irrelevant,

since the basins in which we are most interested are in
the low-energy regions of the landscape (that is where we
want most detail). This is achieved by making use of a
cutoff point c0. If c ≤ cmin + c0, no adjustment of BDR
occurs. Else, a threshold n0 is used; if the number of grid
points within any basin Si is less than n0, BDR does not dig
further into Si.

The value of δ2 in BDR affects the overall computational
cost, as well. There is a trade-off between keeping the
computational budget reasonable and capturing the exact
moment when a basin splits. Rather than always lowering
the energy level by δ2 (line 6 in Algorithm 1), a jump test
is performed first by decreasing cby mδ2 for some mod-
erately large m. If the resulting lower level set at c − mδ2
splits into smaller basins, then the exact moment of basins
splitting is missed, and BDR reverts back to c − δ2. Other-
wise, no interesting events occur between c and c − mδ2;
so, BDR directly moves down to the level c − mδ2 and
continues with the jump test until the test fails. We note
that jumps are only applied for c > cmin + c0, as compu-
tational costs decrease with c ≤ cmin + c0 (computation
time correlates negatively with c). It is possible that some
very small and shallow basins can quickly appear and dis-
appear in a jump between c and c − mδ2. In this sense, the
parameter m has a similar effect to n0 in terms of ignoring
small basins. These modifications to BDR recognize that
it is best to focus computational resources (and so keep all
details) in the region with energy level c ≤ cmin + c0.

The SDR method: saddle-driven landscape reconstruction
The foundation of the SDR method is the fact that adja-
cent basins are connected at saddle points. The goal of
searching for the splitting moments in BDR can also be
achieved by direct detection of saddle points. Once sad-
dle points are detected, the corresponding basins can be
found by tracking the boundaries of basins.

The proposed SDR method builds over the RGF
approach originally presented in [25, 26] to compute sad-
dle points. The RGF approach utilizes the knowledge that
all critical points of a smooth function have to have zero
first-order derivatives (gradient in a multivariate setting),
and the critical points can be viewed as solutions to d
equations with d parameters, where d is the dimension of
the landscape. In a multi-dimensional space, if one of the
equations is neglected, the solutions becomes curves that
connect all the critical points. The RGF approach takes
a local minimum as input, then follows the trajectory of
the solution curves of the reduced-gradient equations and
stops when the definition of a saddle point is satisfied (that
is, the gradient evaluated at that point is close to zero, and
the eigenvalues of the Hessian matrix evaluated at that
point have opposite signs).

In the proposed SDR method, our goal is to find all the
saddle points on the energy landscape so as to detect the
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organization of the landscape. The implementation of the
SDR method shown in pseudocode in Algorithm 2 takes a
grid S (initialized to Smax as for BDR). The method detects
all local minima first, and then follows the reduced gra-
dient curves starting from the identified local minima to
find all saddle points.

Algorithm 2 SDR(S)

1: Smin ← gd(S){ //local minima starting from S using
Newton’s method}

2: M ← cl(Smin){//removal of duplicates via clustering}
3: Msad ← rfg(M){ //saddles detected using the RGF

approach}
4: P ← cl(Msad){ //removal of duplicates via cluster}
5: B ← bf (P){ //basins attached to all the saddle points}

To ensure the detection of all local minima, Newton’s
conjugate gradient descent method (utilized via python’s
scipy library) is applied to each grid point to obtain the local
minimum nearby each grid point (line 1 in Algorithm 2).
It is possible that multiple estimates of a local minimum
can be obtained when starting from nearby grid points.
It is worth noting that in numerical programming, the
notion of duplicates (which ideally request a testing for
equality) is extended to include sufficiently-close points,
so clustering is employed (line 2). We make use of a simple
leader-clustering algorithm, where a point either forms a
new cluster (becoming its representative) or is assigned to
the first cluster whose representative is within ε; Euclidean
distance is used to determine the distance between a point
and a cluster representative.

The SDR method then finds all saddle points using
the RGF approach on the resulting local minima (line 3).
Briefly, the RGF approach proposes iterations between
predictor and corrector steps to walk along a reduced gra-
dient curve. Let a local minimum be x1; x1 is on a reduced
gradient curve by definition. A tangent direction �t to the
reduced gradient curve can be obtained via an orthogo-
nal vector to a column of the Hessian matrix evaluated
at x1; Four options are possible in two dimensions, based
on the two columns of the Hessian matrix that can be
considered and the two options for the definition of an
orthogonal vector. All options are followed in SDR. For
a given tangent vector, the predictor step yields a point
x2 = x1+p·�̂t, where p is a user-defined step length, and �̂t is
the normalized tangent vector. Since x2 deviates from the
reduced gradient curve, the corrector step yields pulls it
back to the reduced gradient curve by setting x3 = x2 + �c,
where �c is the correction vector orthogonal to �t. The exact
solution for �c is obtained by solving two linear equations,
as detailed in the RGF approach in [26]. This iterative,
prediction-correction process is now repeated from x3

and so on. The process stops when the reduced gradient
curve being followed exits the grid. Points in a reduced
gradient curve that are saddle points are identified via the
saddle point test summarized above. Note that in numeri-
cal programming, testing for equality (e.g., in determining
whether the gradient is 0) needs to make use of a very
small tolerance parameter, which we denote by εg .

The separation between the predictor and corrector
steps can be avoided by linearly combining the two steps
into one [26]. That is, x3 can be obtained directly as
x3 = x1 + �d, where �d is a vector that satisfies two linear
equations outlined in [26]. In our SDR implementation,
both techniques are supported.

It is possible that multiple estimates of a saddle point
can be obtained when starting from different local min-
ima, as a saddle point can be crossed by multiple reduced
gradient curves; the leader clustering algorithm is utilized
again in this case (line 4). The groups of duplicates are
well-separated, because each group contains the estimates
of the same critical point, and within-group variation is
controlled by the error tolerance in the optimization and
the RGF approach. Therefore, clustering can consistently
find the critical points. We note that the detections of local
minima and saddle points are both embarrasingly paral-
lel processes, as the computations initiated from different
starting points are independent and can be run in parallel.

With all the saddle point estimates, we can now find
boundaries of basins (line 5). For each saddle point, we
first compute the energy associated with it. Ideally, if one
tracks along the orthogonal directions to the gradient, one
should obtain the trajectory of the contour lines. How-
ever, the gradient at a saddle point is zero and thus has no
well-defined orthogonal directions. To address this prob-
lem, we perform a technical treatment called “jitter” by
slightly deviating from the estimated saddle points. The
direction of deviation is chosen to be the eigenvector of
the Hessian corresponding to the smallest eigenvalue. The
chosen direction points to the inner part of the basins.
Then as indicated above, following the directions orthog-
onal to the gradient, we can track the boundary of a basin,
until a closed curve is created. In this way, for each saddle
point, we find two paired basins, which are attached at the
saddle point. Again this process is highly parallel, as runs
can be setup in parallel for the different saddle points.

Implementation details
The values of parameters in the BDR method are: δ1 = 0.1,
δ2 = 0.3, m = 50, c0 = 200, n0 = 100, α = 0.15
(parameter for the α-convex shape), and d_th = 20·α. Dif-
ferent values of h are analyzed (see the “Results” section).
BDR has been implemented in R and python. In the R
implementation, the method takes 12–24 CPU hours to
complete in a single-processor setting on about 50,000
samples; slightly over half of the time is used by the kernel
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regression. In the python implementation, the utilization
of the bounded-support Gaussian kernel cuts down this
time by more than two orders of magnitude (e.g., from of
7.5 h to 80 s). The employment of the bounded-support
kernel, multiple processors (4 for the results reported in
the “Results” section), and the jump test described above
bring down the running time of the BDR method from
12–24 h to under 2 h. In the SDR method, the values of
the parameters are: p = 0.1, ε = 0.01, and εg = 0.001.
SDR has been implemented in python. The bounded-
support kernel and multiple processors are also employed
to obtain estimated energies for grid points in an embar-
rassingly parallel fashion. Overall, SDR takes about 1 h on
about 50,000 samples.

Results
We evaluate BDR and SDR on samples obtained for 15
variants (sequences) of the H-Ras enzyme, which is a
human cell growth regulating enzyme with mutations
implicated in many human disorders that include cancer
[5]. Three sets of results are related.

First, the ability of BDR to reconstruct an energy land-
scape is related first on the H-Ras WT. The impact of
the bandwidth parameter (which serves to smooth the
ruggedness) is showcased by comparing the landscape
reconstructed at two different bandwidth values. The local
minima detected by the SDR method are also shown on
the landscapes reconstructed at the two different band-
widths. The comparison at two different bandwidths is
utilized to select a bandwidth value at which to relate
the rest of the results. At the selected bandwidth value,
SDR is shown in action, with its reduced gradient curves,
local minima, and saddles. Second, once a baseline band-
width value is selected, landscapes are reconstructed for
all 15 variants of H-Ras. The landscapes are first com-
pared visually, and insightful observations are drawn into
what mechanisms the different mutations (in the variants)
employ to alter the H-Ras energy landscape with implica-
tions for H-Ras dysfunction. Third, quantitative descrip-
tors extracted off identified basins and basin-separating
saddles are then correlated to wet-laboratory biochemical
measurements. This allows relating alterations of land-
scapes to specific biological activities in which H-Ras
participates in the cell.

Before we proceed relating these three sets of results, we
first summarize current biological knowledge on the H-
Ras equilibrium dynamics and function, as we utilize these
knowledge to evaluate and interpret the reconstructed
landscapes and their characteristics.

H-Ras dynamics and function in literature
Figure 3 summarizes current knowledge on H-Ras and
relates the presence of two large basins in the WT
H-Ras energy landscape, one corresponding to the On

Fig. 3 All current biological knowledge on H-Ras is summarized in
this schematic, showing known and putative state-to-state
interconversions

or GTP-activated state and the other to the Off or
GDP-activated state. The known energy barrier separating
these two states is related in the schematic via a pseudo-
saddle point. Prior work on obtaining a sample-based rep-
resentation of the H-Ras WT energy landscape indicates
that GTP-activated basin is larger, and contains many con-
formations reported by different wet laboratories under
PDB entries 1QRA, 1CTQ, 3L8Y, 2RGD, 3K8Y, and more
[12, 18]. The latter three represent known allosteric states
of H-Ras, denoted as Reactive (R) and Tardy (T) in Fig. 3.
Work in [29] reports interconversion between the R- and
T-states and suggests these states to be more important
than the On-to-Off interconversion for dysfunction in
oncogenic variants of H-Ras.

Evaluation of BDR and SDR on the reconstructed landscape
of H-Ras WT
BDR is applied to about 50,000 samples obtained via
SoPriMp on the H-Ras WT sequence and used to
reconstruct the H-Ras WT energy landscape at differ-
ent bandwidth values (from 0.3 to 1.0). Figure 4 shows
the reconstructed landscapes at bandwidth values 0.5
and 0.7. Contour lines indicate the found basins, which
are color-coded via a blue-to-red color-coding scheme
denoting low-to-high energies. Wet-laboratory conforma-
tions are projected onto the same space of PCs to relate
detected local structures to states represented by con-
formations detected in the wet laboratory for different,
known thermodynamically-stable and semi-stable states
of H-Ras.

Juxtaposing the BDR-reconstructed H-Ras WT energy
landscape at two different bandwidth values on the left
panel of Fig. 4 shows the impact of the bandwidth
parameter on the local structures detected on the H-Ras
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Fig. 4 a-d: BDR-reconstructed landscape of H-Ras WT at two bandwidth values, 0.5 in a-b and 0.7 in c-d. The color coding-scheme is based on
Amber ff14SB energy values estimated for every grid point as described in the “Methods” section. Symbols that annotate projections of select
experimentally-known structures are also shown. Local minima detected by SDR at two bandwidth values are shown as black dots in b and d,
respectively

WT landscape. Specifically, at both bandwidth values,
two large basins emerge (in light blue). Based on the
co-location of projections of wet-laboratory-resolved con-
formations, these basins correspond to the known On
and Off states, with the larger one corresponding to the
On state. Moreover, at both bandwidth values, the known
R- and T-states (represented by wet-laboratory-resolved
conformations found under PBD entries 3K8Z, 2RGD, and
3L8Y) reside within the On basin.

The left panel of Fig. 4 shows that the higher bandwidth
value allows identifying the R- and T-states as smaller
basins within the GTP-activated basin, directly validat-
ing prior work that reports interconversions of these
states [29]. Figure 4a-b highlights that lower bandwidth
values provide more detail and expose narrow basins,

such as the one populated by known GTP-activated
conformations (PDB entries 1QRA and 1CTQ) within the
larger On basin. The On basin is “smoothed away” at the
higher bandwidth value, as seen in Fig. 4c-d. In particular,
the hydrolyzed T-state (represented by the conforma-
tion under PDB entry 3L8Y) sits within the larger, GTP-
activated state at the lower bandwidth value but moves
just outside at the higher bandwidth value. The impact
of the bandwidth is also observed on the local structures
detected by SDR. The right panel of Fig. 4 shows the local
minima (as black dots) on the reconstructed landscapes at
bandwidth 0.5 and 0.7, respectively.

Taken together, the results suggest that bandwidth val-
ues ≥ 0.8 remove too many important local structures of
the landscape, whereas the high level of detail obtained
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at bandwidth values ≤ 0.5 makes visualization difficult.
Moreover, it is well understood that in bounded-support
kernels, small support size leads to overfitting. There-
fore, the rest of the results related are obtained with a
bandwidth value of 0.7.

We showcase the additional capabilities of SDR in com-
puting saddles and reduced gradient curves over BDR.
Specifically, Fig. 5a shows the local minima and the sad-
dles found by SDR at bandwidth 0.7. Figure 5b addition-
ally plots the reduced gradient curves that SDR tracks
to find saddles from local minima, effectively showing
SDR in action. We note that not all local minima lead
to saddles in implementation (as can be observed in
Fig. 5 for two local minima). Local minima with no
close neighbors among samples are effectively in under-
or poorly-sampled regions of the conformation space.
Rather than expand the neighborhood radius on a per-
point basis, we elect not to advance computations from
such points.

We now relate results on visual and quantitative com-
parison of landscapes reconstructed with a bandwidth
value of 0.7 to draw insight into how mutations alter

landscape features and via those function in pathogenic
variants of a protein.

Visual comparison of reconstructed landscapes of variants
Important insights can be obtained via visual comparison
of reconstructed landscapes. Fifteen sets of data (each set
consisting of about 50,000 samples computed by SoPriMp
on a different H-Ras variant/sequence) are subjected to
BDR to obtain corresponding reconstructed landscapes.
Visual comparison of landscapes shows that mutations
impact the size of the main (On and Off) basins, the
appearance or disappearance of smaller basins within
larger basins, the heights of barriers separating basins,
and/or the split/separation of basins. Figure 6 relates rep-
resentative results by showing reconstructed landscapes
of representative oncogenic (on the left panel) and non-
oncogenic but syndrome-causing (on the right panel) vari-
ants of H-Ras. These landscapes are visually compared to
the WT landscape (shown in Fig. 4).

The comparison (including more landscapes not shown
here) allows making the following summary observations.
The barrier separating the On and Off basins is higher in

Fig. 5 a SDR-obtained local minima and saddles are shown superimposed over the WT landscape at bandwidth 0.7. Local minima are drawn as
black dots, and saddles are drawn as yellow dots. b Reduced gradient curves are additionally plotted from local minima that lead to saddles. The
reduced gradient curves tracked by following the first column of the Hessian matrix are colored in green, and the curves tracked by following the
second column of the Hessian matrix are colored in blue
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Fig. 6 Landscapes of oncogenic (left) and syndrome-causing (right) variants (right) are shown. The color-coding scheme and the symbols
annotating projections of select known structures are as in Fig. 4

the oncogenic variants than in the WT; the landscape of
the Q61L variant (where Q at position 61 in the H-RAs
WT has been replaced with L in this oncogenic variant)
is a representative of this mechanism employed by onco-
genic mutations. Moreover, in oncogenic variants the Off
basin shrinks or disappears entirely (Q61L and F28L illus-
trate this mechanism). In addition, the On basin splits,
separating the R- and T-states (see Q61L).

The elevation of the barrier between the On and Off
states or the disappearance or shrinkage of the Off basin
rigidify H-Ras (making interconversions between the On
and Off states energetically costly and so slowing the diffu-
sion between the two states). This rigidification has been
reported and is so validated by prior work [13]. Com-
parison of the reconstructed landscapes exposes a novel
feature that has not been captured by prior work, namely,
the separation of the R- and T-states in the oncogenic vari-
ants of H-Ras (due to basin splitting). Prior wet-laboratory
work suggests that the R-to-T interconversion in H-Ras is
central to function. The separation of the R- and T-states
observed in the oncogenic landscapes indeed provides
further evidence of an interesting mechanism via which

oncogenic mutations percolate to dysfunction, namely, by
disrupting the allosteric switch.

The right panel of Fig. 6 shows representative recon-
structed landscapes of syndrome-causing H-Ras variants.
Degeneracy is observed: the Off basin leaks into other
regions, merges with the On basin, or spills over the
landscape (Q22R illustrates this degeneracy). In summary,
on the syndrome-causing variants, more regions become
energetically-favorable, including a smaller third basin
(see Q22R) that corresponds to a semi-stable state off the
pathway that connects the On and Off basins. The degen-
eracy observed in syndrome-causing variants suggests an
interesting complementary mechanism for dysfunction
via delay of the On-to-Off diffusion (by diffusions within
the Off basin).

Quantitative comparison and mining of reconstructed
landscapes of variants
The reconstructed landscapes can be summarized via
quantitative descriptors as follows. An experimentally-
known state (On, Off, R-, etc.) can be mapped to the global
minimum of the basin containing it or can be represented
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by the location and energy of the experimentally-known
conformation representing it. The spatial distance d(State,
Saddle) is measured via the Euclidean distance in PC1-
PC2 space between the conformation representing this
state, with State ∈ {On, Off, T−, R−, T ∗ −} and the sad-
dle separating the On and Off states (the saddle can
be obtained via BDR or SDR). Since results are similar,
we relate results with the choice of an experimentally-
known conformation representing the state and the sad-
dle reported by BDR. Similarly, an energetic distance
dE(State, Saddle) can be defined, measuring the height
of the barrier (E(Saddle) - E(State)). Since we track 5
known states of H-Ras, each reconstructed landscape is
now summarized with 10 quantitative descriptors and can
be represented as a vector of 10 descriptors.

Due to the fact that H-Ras and its mutations are cen-
tral to human biology and disease, this enzyme of many
of its diseased variants have been characterized in wet
laboratories. For instance, work in [30, 31] reports bio-
chemical parameters (measured in the wet laboratory) of
several catalytic activities in which H-Ras participates,
such as GTP activation, GAP sensitivity, (MEK, ERK) acti-
vation of the RAF-kinase pathway and AKT activation
of the PI3K-kinase pathway, GTP/GDP dissociation, GEF
activity of SOS1, intrinsic GTP hydrolysis, GAP-regulated
hydrolysis, and RAF1-RBD binding affinity. We number
them as P0-P9 (P2-P4 for the three kinase pathways).
Work in [30, 31] reports these biochemical parameters for
15 variants of H-Ras (the same variants which we study
in this paper): the WT, 2 oncogenic variants (G12V and
F28L) and 12 non-oncogenic but syndrome-causing vari-
ants (K5N, V14I, Q22E, Q22R, P34L, P34R, T58I, G60R,
Y71H, K147E, E153V, F156L).

Leveraging wet-laboratory characterizations of activi-
ties of H-Ras variants, we now conduct the following
analysis. We compare the extracted landscape descriptors
(from the reconstructed landscape of each variant) to the
biochemical parameters reported in [30, 31]. Specifically,
each of the 10 wet-laboratory biochemical parameters
(P0–9) across the variants is compared to each of the
10 landscape descriptors (extracted from reconstructed
landscapes as detailed above) across these same variants.
Values are normalized as in [ x − min(x)] /[ x − max(x)]
to permit a correlation-based analysis. Figure 7 shows two
(normalized) landscape descriptors and one biochemical
parameter across all 15 variants. Table 1 then lists all land-
scape descriptor - biochemical parameter comparisons
that result in Pearson correlations ≥ 0.5.

Figure 7 and Table 1 allow drawing several insights. As
work in [30, 31] reveals, intrinsic hydrolysis is higher in the
oncogenic variants over the WT (lower values of P7 cor-
respond to higher intrinsic hydrolysis). The correlation-
based analysis provides a possible explanation. Table 1
shows that this occurs due to elevated barriers (positive

Fig. 7 Values of two landscape descriptors and one biochemical
parameter are shown across all variants

correlations), movement of the Off state away from the
saddle point (positive correlation), and movement of all
other states towards saddle point (negative correlations).
The correlation-based analysis suggests that equilibrium
diffusions from the various states within the On basin to
the Off basin directly relate to intrinsic hydrolysis, as this
activity is perturbed in pathogenic variants via changes to
landscape features.

GAP-catalyzed hydrolysis (P8) is another biological
activity of H-Ras on which our analysis provides further
insight as to how it is impacted by mutations. Table 1
shows correlations of 0.50 and 0.53 between P8 and
Off-to-saddle and hydrolyzed T-to-saddle barrier height
variations. These suggest a specific role of the On and
hydrolyzed T states in GAP-catalyzed hydrolysis. We note
that a prior study relating FoldX energies (FoldX is a
protein design method) of specific conformations to bio-
chemical parameters in [30, 31] could only obtain two
correlations, 0.65 for intrinsic hydrolysis and 0.43 for
GAP-activated hydrolysis [32]. The highest correlations
we obtain are −0.85 and 0.58, respectively.

Finally, Table 1 also shows that spatial and energetic
distances of states from the On-to-Off saddle point cor-
relate well with parameters that measure GTP activation

Table 1 Measured landscape descriptors and biochemical
parameters (reported in [30, 31]) with correlations ≥ 0.5. T-*
indicates the hydrolyzed T-state

State d(State, Saddle) dE(State, Saddle)

On P7(-0.84), P3(0.53) –

Off P7(0.83) P7(0.58), P0(0.54), P8(0.50)

T- P7(-0.79) P0(0.62)

R- P7(-0.85), P3(0.51) P7(0.61), P0(0.51)

T*- P7(-0.82) P7(0.62), P0(0.54), P8(0.53)
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(P0) and ERK activation of the RAF-kinase pathway (P3).
These results suggest that the On and R-states are impor-
tant for activation of this pathway, and that the increased
barrier heights between the GTP-activated states and the
saddle point delay activation, thus increasing the amount
of unbound GTP in pathogenic H-Ras variants.

Discussion
As this paper shows, the described methods can be uti-
lized to reveal basins and saddles in an underlying energy
landscape. If the focus is on expediently capturing and
analyzing saddles, the SDR method is more appropriate,
as it employs a rigorous definition of a saddle point. In
contrast, the BDR method employs a working definition
of saddles and identifies them after extracting the hierar-
chical organization of basins in the landscape. Doing so
is more computationally demanding, and the majority of
the computational budget is devoted to identifying basin
boundaries via the alpha convex hull. The specific char-
acteristics of basins in a landscape impact performance.
For instance, if the landscape is very rugged and contains
many basins within basins, the BDR method will spend
significant time in extracting this organization. Parame-
ters (such as δ2, m, and n0) can be leveraged and tuned to
control the computational demands at the expense of pos-
sibly missing small basins. If the landscape has a shallow
hierarchical organization, the computational demands of
the BDR method will be low.

Summarizing a protein energy landscape via its basins
and saddles, as proposed in this paper, is an interesting
venue via which one can pursue relating protein energy
landscapes and mutation-driven alterations of landscapes
to protein function and dysfunction. Specifically, the anal-
ysis presented in this paper allows relating over a dozen
mutations of an enzyme key to human biology and health
to biological activities via dynamics, validating prior dry-
and wet-lab work and revealing novel mechanisms via
which mutations percolate to dysfunction. The results
presented here are promising and suggest the approach of
an exciting stage of landscape-driven enquiry of the rela-
tionship between dynamics and function, where one can
compute and mine landscapes of protein variants to learn
in-silico models of how mutations impact function, as well
as elucidate the role of specific conformational states and
state-to-state interconversions in key biological activities.

Conclusion
This paper has presented two novel methods that auto-
mate the reconstruction and analysis of energy land-
scapes. In particular, the proposed methods organize the
information hidden in evaluated samples and reveal cen-
tral local structures of a landscape, such as basins and
saddles that underly the spatio-temporal dynamics. Our
focus on such local landscape structures is due to the role

that they play in regulating the equilibrium dynamics of a
protein and the insight that they confer on how mutations
alter function via altering dynamics.

Finally, it is worth noting that the proposed methods
are general and applicable to any set of evaluated sam-
ples that populate the state space of a dynamic system.
In the strict context of molecular modeling research, the
proposed methods can be valuable in analysis of results
obtained by tertiary or quaternary structure generation
methods, such as template-free protein structure pre-
diction methods, as well as protein-ligand binding and
protein-protein docking methods. Analysis of the under-
lying landscapes populated by decoys representing com-
puted tertiary or quaternary structures can be leveraged
to identify thermodynamically-stable and/or semi-stable
structural states and possibly advance research in recog-
nition of the native unbound or bound state of a molecule.
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