
Correlation Analysis of Variables From
the Atherosclerosis Risk in
Communities Study
Meisha Mandal1, Josh Levy2, Cataia Ives1, Stephen Hwang1, Yi-Hui Zhou3,4,
Alison Motsinger-Reif 5, Huaqin Pan1, Wayne Huggins1, Carol Hamilton1, Fred Wright3,4 and
Stephen Edwards1*

1GenOmics, Bioinformatics, and Translational Research Center, RTI International, Research Triangle Park, NC, United States.,
2Levy Informatics, Chapel Hill, NC, United States, 3Department of Statistics, North Carolina State University, Raleigh, NC,
United States, 4Bioinformatics Research Center and Department of Biological Sciences, North Carolina State University, Raleigh,
NC, United States, 5Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences,
Durham, NC, United States

The need to test chemicals in a timely and cost-effective manner has driven the
development of new alternative methods (NAMs) that utilize in silico and in vitro
approaches for toxicity prediction. There is a wealth of existing data from human
studies that can aid in understanding the ability of NAMs to support chemical safety
assessment. This study aims to streamline the integration of data from existing human
cohorts by programmatically identifying related variables within each study. Study
variables from the Atherosclerosis Risk in Communities (ARIC) study were clustered
based on their correlation within the study. The quality of the clusters was evaluated
via a combination of manual review and natural language processing (NLP). We identified
391 clusters including 3,285 variables. Manual review of the clusters containing more than
one variable determined that human reviewers considered 95% of the clusters related to
some degree. To evaluate potential bias in the human reviewers, clusters were also scored
via NLP, which showed a high concordance with the human classification. Clusters were
further consolidated into cluster groups using the Louvain community finding algorithm.
Manual review of the cluster groups confirmed that clusters within a group were more
related than clusters from different groups. Our data-driven approach can facilitate data
harmonization and curation efforts by providing human annotators with groups of related
variables reflecting the themes present in the data. Reviewing groups of related variables
should increase efficiency of the human review, and the number of variables reviewed can
be reduced by focusing curator attention on variable groups whose theme is relevant for
the topic being studied.
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1 INTRODUCTION

The past 2 decades have seen a transition away from toxicity testing using laboratory animals to new
alternative methods (NAMs) that rely on computational predictions or in vitro assays. These new
methods have the advantage of being able to screen many more chemicals at a highly reduced cost
while simultaneously reducing animal suffering. When being used to support human health risk
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assessment, these approaches can have the added benefit of using
human cells or computational models built using human
parameters to avoid the need for species extrapolation
(Krewski et al., 2010). However, these advantages are lost if
the NAMs are evaluated using the traditional animal toxicity
predictions as the gold standard (Interagency Coordinating
Committee on the Validation of Alternative Methods, 2018;
Piersma et al., 2018; Ly Pham et al., 2020). There is a need to
pivot towards an evaluation paradigm that uses data on adverse
outcomes in humans for evaluating toxicity predictions in order
to fully realize the vision of toxicity testing in the twenty first
century (Krewski et al., 2010).

In 2010, the adverse outcome pathway (AOP) was proposed as a
framework for interpreting the outputs from NAMs (Ankley et al.,
2010). With support from the Organisation for Economic Co-
operation and Development (OECD), this framework has
supported a wide array of applications for integrating and
translating toxicity predictions from NAMs (Cote et al., 2016;
Schultz et al., 2016; Wittwehr et al., 2017; Ankley and Edwards,
2018a; Watford et al., 2019a; Spinu et al., 2020; Goyak and Lewis,
2021). While most applications to date have focused on integrating
data from in vitro assays and laboratory animals, the process for
incorporating human data would be equivalent. By incorporating the
human data into the AOP framework, we can then use the human
data as our gold standard. This avoids potential complications that
arise from using data from laboratory animals as the gold standard
when those endpoints are an imperfect indicator of the actual
outcome of interest in the target population.

Over the last few decades, vast amounts of human data have
been collected for clinical and research purposes. Resources
such as the database of Genotypes and Phenotypes (dbGaP)
(Mailman et al., 2007), United Kingdom Biobank (Sudlow
et al., 2015), All of Us (All of Us Research Program
Investigators et al., 2019), and CHEAR/HHEAR databases
(Balshaw et al., 2017) have been developed to archive and
facilitate sharing/distribution of these data. The combination
of large cohorts from these studies offers the potential of data
pooling and meta-analysis possessing sizable statistical power.
Meta-analysis and pooling of data from multiple studies create
value well beyond that of the original research by increasing
data reproducibility and robustness. Additionally, data
pooling increases the sample size, which has a multitude of
benefits including increased statistical power and potential to
support increasingly complex analysis models. However, this
requires significant data harmonization, which can be labor
intensive. Curation of data to adhere to FAIR principles
(Findable, Accessible, Interoperable, Reusable) (Wilkinson
et al., 2016) is also a labor-intensive process which requires
each variable to be reviewed and curated.

Previous harmonization efforts, such as the mapping of PhenX
variables to the dbGaP and LOINC vocabulary (Pan et al., 2012),
the establishment of a shared measurement framework for ECHO
(Blackwell et al., 2018), the development of the Semantic Data
Dictionary (Rashid et al., 2020), the phenotype harmonization
system developed by the TOPMed program (Stilp et al., 2021),
and the HHEAR resource model (Viet et al., 2021) have been
successful and increased the potential for cross-study and

transdisciplinary analysis. However, as acknowledged by the
authors of many of these studies, manual data harmonization
is a laborious, time-consuming, and not easily scalable process. As
this is a problem common to many data harmonization and
curation efforts, developing an automated method to assist in this
process would reduce the amount of labor involved and thereby
encourage researchers to undertake these valuable efforts. For
example, consider the impact of automation on the Cure Sickle
Cell Initiative (CureSCi) MetaData Catalog (MDC) (Pan et al.,
2021). The CureSCi MDC is an effort to make Sickle Cell Disease
(SCD) study datasets more Findable in accordance with FAIR
principles. The development of the CureSCi MDC involved
manual curation of data into a three-tiered conceptual
framework consisting of category, subcategory, and data
elements. Having variables programmatically grouped into
multiple tiers of related variables would significantly expedite
this manual curation process.

The objective of this study is to develop a data-driven
method to cluster related variables and further assemble
those clusters into higher-order groups and topics, which
can support data harmonization and curation efforts. This
would provide a tiered organizational structure analogous to
the one used in development of the CureSCi MDC with
variables serving as potential data elements, clusters as
potential subcategories, and cluster groups as potential
categories, which could then be used as the starting point
for the manual curation. To accomplish this, we performed a
large-scale correlation analysis and arranged variables into a
multi-tier organizational structure consisting of variables,
variable clusters, cluster groups and topics. Our analysis
focused on assembling the variables from a single study to
demonstrate that biologically meaningful groups of variables
can be assembled programmatically. The next logical step
would be to apply this method across multiple studies and
demonstrate the value for supporting data harmonization.

2 MATERIALS AND METHODS

2.1 ARIC Variable Correlation, Filtering, and
Clustering
2.1.1 Correlation Analysis
The Atherosclerosis Risk in Communities (ARIC) Study (N =
15,792) (The Atherosclerosis Risk in Communities Study, 1989)
is a large-scale, prospective study investigating cardiovascular
health in African Americans that has been tracking participants
since 1987 and is still ongoing. The goal of the ARIC study is to
investigate the causes and risk factors of cardiovascular disease
(CVD), atherosclerosis, and stroke as well as the connections
between cardiovascular and cognitive health. Data from the ARIC
study were obtained through the BioLINCC data repository
(Giffen et al., 2015).

A correlation analysis was done on 14,425 phenotype-
associated variables from the ARIC study (Figure 1). For this
proof-of-concept study, the Pearson correlation was used for all
variables. Future work will evaluate additional correlation
methods and goodness of fit tests to account for variables with

Frontiers in Pharmacology | www.frontiersin.org July 2022 | Volume 13 | Article 8834332

Mandal et al. ARIC Variable Correlation Analysis

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


skewed distributions and non-linear relationships between
variables. The analysis included the following: 1) calculating
pairwise partial correlations using age and sex as covariates; 2)
removing pairs where the absolute value of correlation was less
than 0.5 3) merging redundant variables (e.g., equivalent variables
measured at different time points); 4) employing a simple
empirical Bayes shrinkage model to account for varying effect
sizes and to estimate the “true” trait-trait correlations (see Section
2.1.2); 5) removing variables with prolific correlations (mean
number of correlations per variable = 164) and age-related
variables; 7) limiting correlations to those based on a sample
size of at least 500 subjects. We removed variables with prolific
correlations, such as age, because they are not useful for
extracting meaningful relationships among variables due to
their high number of correlations. This process resulted in
19,174 correlations including 3,285 variables. The resulting
filtered correlation matrix was converted to a network graph
with edge weights between two variables given by the absolute
value of the partial correlation between the variables. Clusters of
variables were defined by removing edges with a weight of less
than 0.7 and identifying the connected subgraphs within the
resulting network. This resulted in 391 variable clusters. Clusters
corresponding to the connected subgraphs within the network
were then evaluated as described below.

2.1.2 An Empirical Bayes Shrinkage Correlation
Estimate
A common feature in the data is that correlation estimates for
different pairs of variables may be based on substantially different
sample sizes, creating difficulties in comparisons across variable
pairs. One solution is to use the variability in estimated
correlations to devise appropriate shrinkage factors, which
would aggressively shrink correlations based on few
observations. For the ith Pearson correlation ri based on an
observed (non-missing) sample size ni, an estimate of the
sampling variance is vi=(1-ri

2)2/ ni, and r and v the vectors of
these values across all variable pairs. The quantity τ2 = max
(0,var(r)-mean(v)) is an estimate of the underlying variance of
true correlations ρ, and μ = mean(r) an estimate of the true
average ρ. For each pairwise correlation, the quantity rshrunk,i=(τ2/
(τ2 + vi))(ri-μ)+μ is the best linear predictor (McCulloch and
Searle, 2004) for the true correlation ρi, shrinking correlations
based on small samples more than those based on large samples.

2.2 Cluster Evaluation
Clusters were manually evaluated by a team of 3 reviewers and
categorized as “exact,” “highly related,” “related,” and
“unrelated”. Following the initial review, a single independent
reviewer evaluated all clusters and adjusted categories in

FIGURE 1 | (A) Depicts the correlation, filtering, and clustering process applied to the 14,425 variables in the ARIC study. The variable correlations were calculated
and then multiple filtering steps were performed including filtering by cutoff and N values, correcting for multiple testing, and excluding specific categories of variables.
The variables were organized into clusters of interconnected nodes based on the filtered correlation values, resulting in 391 variable clusters. The average distance
between variable clusters was calculated and clusters were grouped using community finding algorithms. The cluster groups were manually sorted into categories
based on the main goals of the ARIC study. (B) Visual representations of the different levels of organization used in this study. (C) A chart showing definitions and
examples for the different levels of organization used in this study.
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consultation with the initial reviewers to increase consistency.
Ratings were based on the degree of correlation expected among
the variables, as determined by the human reviewers (Table 1).

Clusters were also scored programmatically for relatedness
using Natural language processing (NLP) tools available in
the Python Natural Language Toolkit package (Bird et al.,
2009). We processed the variable text using lemmatization,
customized stop word removal, and regular expression
(regex) substitution to increase standardization. We then
mapped the processed variables to the MESH (Coletti and
Bleich, 2001), STO (Habibi-Koolaee et al., 2021), and
SNOMED (Stearns et al., 2001) biomedical ontologies and
controlled vocabularies using Bioportal (Whetzel et al.,
2011). The mapping included obtaining direct annotations
and ancestors up to 3 levels above. Next, we processed the
variable text and annotation results using NLP tokenization

and stemming to facilitate comparison between variables.
This resulted in a list of processed variable terms (variable
term list) and a list of processed annotation terms
(annotation term list) for each variable. We performed a
pairwise comparison of variables, calculating the
percentage overlap (number of common words/total
number of words) between terms on the variable term list
and terms on the annotation term list for each pair of
variables. The overall score for a cluster was the mean
overlap of variable terms and annotation terms for all
variable pairs in the cluster.

2.3 Cluster Grouping and Sorting
A graphical representation considering variable clusters as nodes
and inter-cluster distances as edges was used to group clusters.
The overall distance between two clusters was defined as the

TABLE 1 | Examples of human and programmatic evaluation of variable clusters. The table includes the relatedness category from manual review (Category), working
definition of the category used by reviewers (Definition), examples of types of relationships in the category (General Examples), examples of ARIC variables that fit each
relationship type (Study Variables), a cluster identifier (Cluster Number), and calculated relatedness score from the NLP analysis (Score). The scoring process is described in
further detail in the methods section. Examples were selected to demonstrate different types of variable relationships that exist among ARIC variables and the associated
relatedness category. See Supplemental Table S1 for all clusters.

Category Definition General examples Study variables Cluster
Number

Score

Unrelated Clusters where a human reviewer
would not expect correlation
between the variables in the cluster.

Clusters related to a topic, such as MRI
exclusion criteria, but are disparate and would
not be expected to correlate

“Do you have a cardiac pacemaker or a heart
valve prosthesis?” and “Do you have metal
fragments in your eyes, brain, or spinal
cord?”

269 8.5

“Enter code and specify brand and form
below” and “What kind of fat do you usually
use for baking?”

213 7.9

Related Clusters where the variables would
be expected to be correlated but not
as highly would be “related”.

Clusters where the variables all relate to the
same broad topic, such as history of
cardiovascular disease

“Medications which secondarily affect
cholesterol,” “Average mean arterial blood
pressure,” and “Carotid Distensibility”

1 10.5

Clusters relating dietary intake of a nutrient
and blood level of that nutrient

“In the past year, how often on average did
you consume... Dark meat fish, such as
salmon, mackerel, swordfish, sardines,
bluefish” and “Omega fatty acid W20:5 and
W22:6 [g]”

383 11.6

Highly
Related

Clusters where a human reviewer
would expect a high degree of
correlation between the variables.

Clusters where one variable depends on the
other

“Ever had emphysema” and “Age
emphysema started”

16 35.1

Clusters where the variables all relate to the
same narrow topic such as consumption of
alcoholic beverages, or a history of wheezing

“How many drinks of hard liquor do you
usually have per week?,” “How many days in
a week do you usually drink beer?” and
“Alcohol intake [g] per day”

46 17.7

“[Wheezing]. Ever have to stop for breath
when walking at our own pace on the level?”
and “[Wheezing]. Ever stop for breath after
walking about 100 yards (or after a few
minutes) on the level?”

248 40.5

Exact Clusters where a human reviewer
would expect almost complete
correlation between the variables.

Clusters with variables that are repeat
measurements during the same exam

First, second and third sitting blood pressure
measurement at exam 2

58 44.2

Clusters with variables that ask the same
question, potentially in different ways

“I have a fiery temper,” “I am hotheaded,”,
and “I am quick tempered”

86 32.2

“Have you ever been diagnosed by a doctor
as having a polyp or noncancerous tumor of
the colon or rectum?” and “Has a doctor ever
told you that you had adenoma or polyp of
the colon (large intestine)?”

175 32.2

Clusters with variables that are the same
measurement at different time points

White blood cell count at exams 3 and white
blood cell count at exam 4

226 47.2
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mean value of the inter-cluster edges between all variables in the
two clusters. When feasible, each cluster was labeled with a
common theme, such as “cough” or “maternal health history.”

Variable clusters were then split into cluster groups using
community finding algorithms. In order to select the algorithm
that best fit our task, we tried several different community-finding
algorithms from Python 3.9’s python-louvain package (v0.14)
and NetworkX package (v2.4) using default parameters except
when it is stated. This includes the Louvain, Asynchronous label-
propagation (LPA), Asynchronous Fluid Communities (number
of communities = 15), Greedy Modularity Communities, Girvan-
Newman, and K-clique (minimum clique size = 3) algorithms.
Prior to running the algorithm, the graph edges connecting
clusters were pruned based on the edge weights to a threshold
of 0.08–0.25 to facilitate the community finding process. Clusters
related to retinal exams or sleep studies, as well as Minnesota code
data, administrative data, insurance data, specimen collection and
processing data, and quality data were excluded from the
community finding process as they were unlikely to be
informative regarding mechanisms of disease and were prolific
correlators due to the nature of the variables. We ultimately
selected the Louvain algorithm as our community-finding
algorithm because it formed the largest number of highly
coherent cluster groups. The final cluster groups in
Supplemental Table S2 were defined based on python-louvain’s
best_partition () function (default parameters) which uses the
Louvain community finding algorithm. Given the proof-of-
concept nature of this work, we only tested a limited subset of
existing community finding algorithms. Future work could focus on
fine-tuning the community finding component of our workflow.

When plotting a single cluster group, edges below a set viewing
threshold value ranging from 0.03–0.15 were removed to enhance
the plot’s readability (Figure 4). When plotting multiple cluster
groups together such as in Figure 5, the threshold used to create
the cluster groups (ranging from 0.08–0.25) became the lower-
limit for intra-cluster edges and the threshold for inter-cluster
edges was set at 0.05 (Figure 5). Edges with weights below the
relevant threshold were removed prior to plotting.

Lastly, to summarize the study data, we manually assigned
theme-based labels and organized cluster groups into topics based
on the ARIC study goals (lifestyle/environmental risk factors,
genetic risk factors, medical care, clinical outcomes, and co-
morbidities).

3 RESULTS

3.1 Atherosclerosis Risk in Communities
Variable Clusters
Clustering ARIC variables based on the partial correlations
resulted in 3,285 variables organized into 391 clusters, referred
to as variable clusters, containing between 2 and 634 ARIC
variables with 385/391 (98.5%) containing <100 variables
(Figure 1). Out of the original 3,285 variables, 28 (0.85%) did
not cluster with any other variables. We were able to ascribe a
central topic to 384/391 (98.2%) clusters. The degree of
relatedness varied widely as discussed below; however,

reviewers ascribed some degree of relatedness to 95.1% of
applicable clusters in a manual scoring process.

The correlation analysis successfully grouped variables with
common themes together. Variable cluster themes included
varying aspects of personal health history, family health
history, substance use history, dietary intake, and clinical test
results. Health history clusters often pertained to specific
symptoms or disorders such as history of asthma, history of
cardiac surgery, history of high blood pressure. Family health
history had similar topics focused on maternal or paternal history
(e.g., paternal history of high blood pressure, maternal history of
heart attack, and family history of diabetes). Clinical clusters
included blood pressure, lipid panel results, and cardiac
ultrasound. The cluster themes had varying degrees of breadth.
Some were narrow, such as multiple variables capturing marital
status, and some were broader, such as a cardiovascular theme
that included stroke, heart attack and coronary heart disease.

Inspection of the correlations within the identified clusters
reaffirmed known relationships. For example, cluster 7 linked
education level, occupation, and level of physical activity at work,
and cluster 59 linked a history of stroke with quintessential stroke
symptoms (speech/vision problems, dizziness) (Supplemental
Table S1). The clustering also matched survey questions
focused on human behavior with the corresponding clinical
measurements from the subjects. For example, cluster 33
included dietary intake and measured nutrient levels such as
variables related to carrot consumption, Vitamin A levels, and
carotenoid levels (Supplemental Table S1).While the connection
is driven by an underlying biological process (uptake of vitamin A
and carotenoids), the variables themselves are dissimilar. Two are
measurements of the blood level of nutrients and the third is a
dietary intake survey. This was also observed with fish
consumption combined with omega3 fatty acid levels and
calcium consumption, selenium consumption, and vitamin C
consumption linked to their respective blood level measurements.

In Figure 2A, a strong positive correlation (0.99) was observed
between “Did your natural mother ever have any of the following
diseases? Heart attack?” and “New maternal history of heart
disease,” as anticipated. Respondents answering yes to having
a maternal history of heart disease have a considerably higher
chance of having a mother who has had a heart attack than
respondents answering no. A strong negative correlation between
the former variables (−0.86 and −0.78 respectively) and “How old
was she [your mother] when she was first told she had: heart
attack”was also observed as expected. In fact, this was the case for
all categorical variables connected to the continuous age variable
in Figure 2A. This is likely because a heart attack at a young age is
more prevalent in families with a history of heart disease. This
example highlights why the absolute value of the correlation was
used during the correlation and clustering process. Strong negative
correlations are equally likely to show a meaningful association
between two variables as are strong positive correlations.

The cluster represented in Figure 2B consists of 7 highly
correlated variables related to the nature and severity of the
subject’s cough. A set of 3 variables related to frequency are
tightly linked, having edge values from 0.68–0.70. A second set of
3 variables evaluating cough-associated phlegm production were
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also tightly linked with edge values from 0.53—0.68. An
additional variable related to duration was also tightly
connected to the group with an edge value of 0.61.

3.2 Evaluation of Variable Clusters
We evaluated the clusters using both manual review and NLP of
the variable text. Both metrics indicated that the correlation
analysis was successful at clustering related variables
(Figure 3). The manual evaluation process involved human

reviewers categorizing the clusters as Exact, Highly Related,
Related, Unrelated or NA (Table 1). In addition to the 391
clusters, 28 out of the 3,285 ARIC variables didn’t cluster with
any other variables. Of the 391 clusters, 95.1% were determined
by the reviewer to have some degree of relatedness and were
classified as Exact, Highly Related, or Related. Only 4.6% were
classified as Unrelated (Figure 3B). Examples of clusters in the
different relatedness categories can be seen in Table 1. Related
clusters contained variables that are loosely related such as variables

FIGURE 2 | Clusters selected to demonstrate successful clustering by the variable correlation analysis. (A) A cluster of variables related to maternal history of heart
disease. (B) A cluster of variables related to coughing symptoms, frequency, and duration.

FIGURE 3 | (A) A depiction of the NLP-based cluster scoring process. (B) Pie chart of the manual scoring of the 391 variable clusters (C) Plot of cluster scores for
clusters in the different relatedness categories.
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related to cholesterol, blood pressure, and atherosclerosis. Highly
related clusters typically contain orthogonal assays or survey
questions that focus on a single endpoint such as how many
drinks a person consumes per day or per week combined with
howmany days a week does the person drink. Exact clusters contain
variables such as the same measurement at different time points or
survey questions that differ mainly in the terminology used such as
being hotheaded vs. having a fiery temper.

Clusters were scored programmatically for relatedness using
NLP to compare the text description of the variables. The average
score for each category increased by approximately 10 points with
increasing relatedness (Figure 3C), corroborating the results
from the manual evaluation. A Kruskal-Wallis test found a

significant difference in mean between scores for clusters in
the different relatedness categories (pvalue = 1.80e-18) further
supporting the hypothesis that the calculated relatedness scores
reflect the reviewer-assigned categories. Most major discrepancies
between the automated scores and human categories occur due to
variation in the terminology or phrasing used to convey the same
concept. Subtle differences in terminology between variable
descriptions which don’t impact a human reviewer’s
interpretation (e.g, the presence of a hyphen) can lead to
disparate ontology annotations in certain cases.

Clusters 67, 14, and 341 (Table 2) which are related to chronic
lung diseases, asthma, and coughing/wheezing respectively, have
scores which are congruous with their manual classification.

TABLE 2 | Examples of clusters which both reflect (67, 14, 341, 213) and do not reflect (70, 49, 403) their programmatically generated scores. The table includes a cluster
identifier (Cluster Number), calculated relatedness score from the NLP analysis (Score), relatedness category from manual review (Category), description of the
overarching theme of the cluster (Description), and the ARIC variables in the cluster (Variables). Clusters were selected to highlight cases of agreement and disagreement
between programmatic scoring and reviewer category assignment. See Supplemental Table S1 for all clusters.

Cluster
Number

Score Category Description Variables

67 42.0 Exact lung health history (lung disease) Has a doctor ever said that you had any of the following: chronic lung disease, such as
chronic bronchitis, or emphysema? Q10g [Home Interview, exam 1]
[Medical care]. Has a doctor ever said you had any of the following: (read each disease
name and code N if No or Never Tested). Q5. Chronic lung disease, such as chronic
bronchitis, or emphysema. Q5E [Health/Medical History, exam 2]

14 24.7 Highly
Related

lung health history (asthma) [Asthma]. Ever had asthma? Q35 [Respiratory Symptoms and Physical Activity Form,
exam 1]
[Asthma]. Age asthma started Q37 [Respiratory Symptoms and Physical Activity Form,
exam 1]
[Asthma]. Age asthma stopped. Q39 [Respiratory Symptoms and Physical Activity Form,
exam 1]
[Wheezing]. Age at first attack. Q18 [Respiratory Symptoms and Physical Activity Form,
exam 1]
Has a doctor ever said that you had any of the following: asthma? Q10h [Home Interview,
exam 1]
[Medical care]. Has a doctor ever said you had any of the following: (read each disease
name and code N if No or Never Tested). Q5. Asthma. Q5F [Health/Medical History,
exam 2]
[Medical care]. Has a doctor ever said you had any of the following? Asthma. Q6e
[Personal History form, exam 4]
[Asthma]. Still have asthma? Q38 [Respiratory Symptoms and Physical Activity Form,
exam 1]
[Wheezing]. Short Of BreathWheezing Attack? Q17 [Respiratory Symptoms and Physical
Activity Form, exam 1]

341 16.4 Related lung health history (cough/wheezing) [Wheezing]. Number years this wheezy or whistling sound been present. Q16 [Respiratory
Symptoms and Physical Activity Form, exam 1]
[Cough]. Number years had trouble with phlegm. Q12 [Respiratory Symptoms and
Physical Activity Form, exam 1]

213 7.8 Unrelated diet [Other dietary items]. Enter code and specify brand and form below. Q78 [Dietary Intake
Form (DTIC), exam 3]
[Other dietary items]. What kind of fat do you usually use for baking? Q77 [Dietary Intake
Form (DTIC), exam 3]

70 6.0 Exact medication (cholesterol lowering) Cholesterol lowering medication W/in 2 weeks.: using 2004 Med. code, visit 2 [Cohort,
Exam 2]
Used statin (at visit 2) last 2 weeks (0 = no, 1 = yes) based on 2004 Med. code [Cohort,
Exam 2]

49 5.7 Exact blood pressure measurements
(ankle brachial)

Ankle Brachial Index, visit 1, definition 4 [Ankle Brachial Index Data, exam 1]
Ankle-Brachial index return [Ankle Brachial BP (Blood Pressure—ultrasound work
station), exam 1]

403 50.0 Related medication [Medication records]. Medication code number. Q12B [Medication Survey Form, exam 2]
[Medication records]. Medication code number. Q11B [Medication Survey Form, exam 2]
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Cluster 67 variables are the same question on different intake
forms, cluster 14 variables pertain to different aspects (ever had,
age started/stopped, etc.) of the same diagnosis (asthma). Cluster
341 variables encompass symptoms (wheezing/coughing) which
are clearly, albeit more loosely, related. Cluster 213 variables are
related to diet, specifically baking, but would not be expected to
correlate, and thus the cluster was ranked as unrelated.

There are also instances where a cluster’s classification and
score are incongruous (Table 2). For example, although the
cluster 70 variables ask the same question, the scoring
algorithm does not recognize the close relationship as the
specific wording differs. The phrase “cholesterol lowering
medication” does not annotate as a single concept, it is split
up into 3 separate concepts whereas “statin” encompasses the
entire concept and annotates as “antihyperlipidemic agent”with a
parent concept of “Treatment of ischemic stroke” resulting in
minimal overlap in the ontology annotations, even including
ancestors. Similarly, the discordance between the score (low) and
category (Exact) for cluster 49 is likely also due to wording as
“ankle brachial index” and “ankle-brachial index” annotate
differently. There are also cases where the wording is similar,
but the answers would not necessarily be highly related. For
example, cluster 403 contains codes for different medications
taken by the subject and is ranked as Related. Although the
medications may be prescribed for the same or related health
issues, they may also be completely unrelated. The wording of the
variable, however, is identical except for the question number
(“Medication code number. Q12B” and “Medication code
number. Q11B”), resulting in a high score.

3.3 Grouping Clusters
Communities within the network of clusters were identified and
defined as cluster groups. The Louvain algorithm was run after
removing edges with weights below a threshold ranging from 0.08
to 0.25. Depending on the threshold, a total of 9–30 cluster groups
containing 2 ormore clusters were assembled. In addition to these
cluster groups the algorithm result in 3–175 clusters that did not
group with any other clusters (Supplemental Table S2). The
cluster groups ranged in size from 2–44 clusters and the average
group size for each pruning threshold ranged from 1.2 to 5.5. This
difference in size and number of clusters is expected. Pruning at a
lower threshold increases the interconnectivity of the graph,
which leads to larger communities. As the threshold goes up,
small groups of clusters and single clusters break off from the larger
groups, resulting in smaller cluster groups and increasing the
number of singleton clusters. The grouping algorithm organized
clusters into related groups in many cases although not with the
same degree of success as the variable clustering process. There was
a mix of cohesive groups with a single overarching theme, larger
more disparate groups, and groups consisting of a single cluster.
Examples of cluster group themes included general paternal health
history, lung health (including emphysema, bronchitis, lung
disease clusters), and mental well-being (including clusters
related to intrapersonal support and life satisfaction).

Figure 4 highlights two cases of the successful grouping of
variable clusters into cluster groups. The cluster group shown in
Figure 4A consists of 7 clusters all of which are related to

maternal health history. Of these, 4 pertain to maternal
history of heart disease or health conditions directly related to
cardiovascular disease (stroke, heart attack, and blood pressure).
One cluster pertains to diabetes which is associated with an
increased risk of heart disease. The remaining two clusters are
more generic, containing variables related to general maternal
health history and mother’s age at death. This cluster group
exemplifies a cohesive group of clusters that is unified by an
overarching theme, maternal health history.

The cluster group shown in Figure 4B is composed of 12
variables. Of these, 5 variables were related to smoking history,
with some specific to certain aspects of smoking history such as
secondhand smoke exposure or cigarettes per day. All the other
clusters were related to health conditions caused by smoking
(lung diseases, emphysema, bronchitis, cough) or factors
impacted by smoking (platelets, hematology). This illustrates a
grouping of clusters based on underlying biology. The clusters are
related to several biologically interdependent themes (smoking,
lung health, hematology) as opposed to a single theme as in most
of the cluster groups.

Cluster groups with related themes were more tightly linked
and had more inter-group connections than more disparate
groups. The interconnectivity of related cluster groups can be
seen by plotting multiple cluster groups simultaneously
(Figure 5). Figure 5A illustrates the high level of connectivity
between nodes in cluster groups related to paternal health history,
maternal health history, and family health history. This is driven
by connections between family health history and maternal
health history as well as family health history and paternal
health history. Paternal and maternal health history have a
much lower level of interconnectivity and are linked together
primarily through each of their close connections with family
health history.

Figure 5B illustrates how lung health history and physical
ability are connected through three cluster groups with numerous
inter-group connections. Similar to the cluster shown in
Figure 5A it shows the high level of interconnectivity between
cluster groups with themes that are biologically interdependent.
Lung health and physical ability are closely linked with each
having a direct and robust impact on the other. Notably, the
physical ability cluster groups are connected to the lung disease
health cluster groups through wheezing and breathlessness, two
symptoms of lung disease expected to strongly impact physical
ability.

4 DISCUSSION

In this study we distilled 14,425 variables from the ARIC study
into 391 clusters representing 3,285 variables using a network
built from partial correlations among the variables. The clusters
were then grouped by calculating inter-cluster distances and
using a community finding algorithm on the resultant graph.
Hence, the original 14,425 variables were reduced to 9–30 cluster
groups (depending on the pruning threshold applied). Whereas
14,425 unordered variables are too numerous for a human
reviewer, 3,285 variables grouped into biologically meaningful
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subsets make human curation feasible. In fact, the manual
curation of the 3,285 variables in this study was performed
before the programmatic grouping of the clusters suggesting
that future iterations of this procedure could be more efficient.

Manual curation of the data-driven cluster groups across
thresholds identified 5 major topics related to the central goals
of the ARIC study, creating a succinct set of topics and cluster
groups that captures the fundamental goals of the study
(Figure 6). For example, the 3 clusters shown in Figure 5A,
would be grouped together in the “Genetic Risk Factors” category.

The maternal health history, paternal health history, and family
health history cluster groups are all related to family health
history and represent the role genetics plays in an individual’s
risk of developing cardiovascular disease. If this is the nature
component of CVD risk, the nurture component would be the
Lifestyle/Environmental Risk Factors topic containing physical
activity, smoking, and diet related cluster groups among others.
There is some structure to study variables inherent in the study
design, so a human curator would never be faced with tens of
thousands of unstructured variables. However, many topics are

FIGURE4 | Plots of single cluster groups demonstrating cluster cohesiveness around a central theme. Each node is a variable cluster that is amember of the cluster
group, and the group of interconnected nodes is one cluster group. (A) An example of a cluster group with clusters relating to maternal health history using a threshold of
0.12 for pruning prior to community finding and 0.07 for viewing. (B) An example of a cluster group with clusters relating to cigarette smoking and lung health using a
threshold of 0.18 for pruning prior to community finding and 0.12 for viewing.

FIGURE 5 | Plots of multiple cluster groups demonstrating interconnectivity between cluster groups. Each node is a variable cluster with cluster groups being
identified by node color. Black lines are intra-cluster edges and red lines are inter-cluster edges. The threshold for intra-cluster edges is 0.12 and for inter-cluster edges is
0.05. (A) Three interconnected cluster groups related to health history. The green (paternal health history-PHH) and blue (maternal health history-MHH) clusters are linked
through the red clusters (family health history-FHH). (B) Three interconnected cluster groups. The green (physical activity) and blue (history of lung diseases), cluster
groups are linked through the red cluster group (history of wheezing and breathlessness) but not directly connected to each other.
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addressed on different surveys, and the laboratory measurements
that correspond to certain survey topics are necessarily captured
in a different segment of the study data. Our data-driven
approach consolidates these variables to make it feasible for a
human reviewer to easily capture the key concepts from an
epidemiological study. In our proof-of-concept study, fewer
than 30 cluster groups with less than 400 clusters were
considered. Providing descriptive labels for these groups and
clusters can be done by a subject matter expert in a matter of
hours compared with weeks to assemble over 10,000 variables
de novo.

While many important variables are lost when focusing on the
3,285 variables matching our stringent filtering criteria, the
themes from the cluster groups support the conclusion that
our selection criteria is enriching for highly relevant variables.
In fact, the data-driven approach is extracting the variables that
are empirically related and may even improve performance by
eliminating variables that aren’t performing as expected. In the
case where a key variable is missed by our approach, that variable
can easily be reincorporated during the human review stage. As
shown in Figure 6, the high-level categories identified when
reviewing the cluster groups are consistent with the focus of
the ARIC study. We see lifestyle, environmental and genetic
factors that influence cardiovascular disease. When focusing

on the clinical outcomes, we see both phenotypes that lead to
atherosclerosis such as high cholesterol as well as diseases
resulting from atherosclerosis such as heart failure and stroke.
This suggests our approach can facilitate human curation efforts
to map variables from one study to another by extracting and
organizing the most relevant variables from each study.

Although the variable clusters were cohesive, indicating
successful clustering, we did not note any novel correlations
among the clusters. This is not surprising because the variables
used for this analysis were all selected for a specific purpose as
part of the experimental design of the original study in contrast
with a more discovery-oriented omics study. The fact that both
the original clusters and the subsequent groups of those
clusters revealed known associations could be considered a
strength of this approach as highlighted above. By grouping
similar variables and thereby facilitating the mapping of those
variables between studies, our work can enable pooled analyses
of larger datasets thereby increasing the power to detect novel
GWAS associations. In this manner, the work can indirectly
impact novel discoveries. For cohorts that include an omics
component such as RNAseq, the correlations between the
omics measurements and clusters of related phenotypic
variables could be used to guide discovery efforts within a
single cohort as well.

FIGURE 6 | Cluster groups organized into topics based on the goals of the ARIC study. The outer black and white boxes are topics (e.g., Clinical Outcome and
Medical Care) and each topic contains multiple cluster groups (e.g., Stroke and Lung Diseases) which are the blue boxes. Listed under the manually assigned label for
each cluster groups are bullets representing the clusters which are members of that group. If there are multiple clusters within a group with the same name, after the
cluster name they have an “x” and the number of times that cluster appears. For example, Anger x3 means there are three clusters in that group with the name
Anger. Abbreviations: MMH, Maternal Health History; PHH, Paternal Health History; MH, Medical History.
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This workflow could easily be incorporated into variable
mapping efforts like Pan et al. (2012). Each study could be
pre-processed to extract the most relevant variables and
group those variables thematically. This could also be done
in combination with text-based, machine learning
approaches that cluster variables based on the similarities
in the description of those variables. Text-based approaches
have an added advantage of being applicable across studies
whereas our workflow is restricted to the measured variables
within a single study. However, the two sources of
information are orthogonal, as seen when comparing the
manual review and NLP scoring of our results, which
should make the combination of the two approaches more
accurate than either approach individually. In addition,
knowledge of the correlation between two variables in one
or more studies, could be informative when attempting to
estimate a missing variable based on other related variables
within a new study.

Limitations with the correlation-based approach are mainly
due to the underlying data quality and challenges associated
with performing a uniform analysis of all variables from a
single study. Data quality issues will also be a problem for
downstream analyses, and they are most likely to manifest as
unrelated clusters or the presence of an unrelated variable
within an otherwise coherent cluster. In both cases, the
variables in question can probably be safely discarded from
future analyses. Future improvements of our workflow would
focus on addressing the latter issue. For example, the
distribution of data for certain variables violates the
assumptions of the Pearson correlation as do non-linear
relationships among the variables. Ideally, each edge weight
would be based upon the appropriate association metric, but
establishing a fully automated workflow to determine the
appropriate metric for each variable pair is a non-trivial
exercise. Similarly, a comprehensive review of community
finding algorithms for defining the cluster groups was
beyond the scope of the current study, but this could
potentially improve performance in the future.

Limitations with the NLP methods are primarily driven by the
imprecision inherent in written language. The representation of
biological concepts via ontologies is maturing, which will greatly
improve the results from NLP approaches. In fact, several recent
efforts at using NLP and machine learning to predict variable
relationships have shown great promise. For example, earlier this
year a semantic search tool designed to query biomedical datasets
on the variable level using NLP and ontological knowledge graphs
(Waldrop et al., 2022), was successfully deployed in the NHLBI’s
BioData Catalyst Ecosystem (National Heart, 2020). NLP
approaches are also more appropriate to support data
harmonization than for applications like AOPs where separate
variables related to a common biological event are jointly
considered. For example, cluster 33 included both carrot
consumption along with Vitamin A and carotenoid levels.
While these would never be combined as a pooled study
variable, they could all be used a surrogate measures for a key
event that includes Vitamin A levels as either a measurable
phenotype or a modulating factor.

Using these methods, we have been able to identify
biologically meaningful relationships using the underlying
data. The resulting variable clusters can then be mapped
into knowledge-based systems that model the biological
processes underlying disease (Wittwehr et al., 2015; Ankley
and Edwards, 2018b; Martens et al., 2018; Slenter et al., 2018;
Biomedical Data Translator Consortium, 2019; Watford et al.,
2019b; Davis et al., 2019, 2020; Morton et al., 2019; Mortensen
et al., 2021). Once mapped to potential disease mechanisms,
the data from these existing studies can be modeled in novel
ways to create new insights. In cases where the original studies
contain an omics component, the variable clusters could be
used to assist in discovery-driven analyses of the omics data.
As new systems-based models of human disease are
developed, these variable clusters should be easily mapped
onto those models creating a wealth of data to support those
analyses.

Finally, the variable clusters can be mapped onto key events
within AOPs describing mechanisms of toxicity. The variables
captured in this study would correspond to later events within
the AOPs and would include adverse outcomes directly
measured in human populations. By mapping NAMs to
early key events within the same AOPs, the human data
could be used to evaluate the ability of those NAMs to
predict toxicity in order to support human health risk
assessment decisions. Traditional toxicity data from
laboratory animals can be incorporated into the same AOP-
based model and help inform the toxicity predictions, but the
animal data in this scenario is not intended to take the place of
the real-world adverse outcomes that are the target of the risk
assessment.

5 CONCLUSION

In conclusion, we present a novel workflow for extracting key
variables from a large clinical study and summarizing those
variables to enable reuse. This workflow could be
incorporated into data harmonization efforts to reduce the
human effort required for the initial variable mapping and
provide important quantitative information to assist with the
harmonization itself. It can also be incorporated into projects
focused on organizing knowledge about human disease and
the systems biology models built upon those knowledgebases.
AOP-based systems models can, in turn, be used to evaluate
the predictive value of individual NAMs and to develop
integrated models that incorporate data from multiple
NAMs as well as traditional animal studies to improve the
toxicity predictions.
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