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Breast cancer (BC) is the second leading cause of death in developed and developing nations, accounting for 8% of deaths after
lung cancer. Gene mutation, constant pain, size fluctuations, colour (roughness), and breast skin texture are all characteristics of
BC. )e University of Wisconsin Hospital donated the WDBC dataset, which was created via fine-needle aspiration (biopsies) of
the breast. We have implemented multilayer perceptron (MLP), K-nearest neighbor (KNN), genetic programming (GP), and
random forest (RF) on the WBCD dataset to classify the benign and malignant patients. )e results show that RF has a
classification accuracy of 96.24%, which outperforms all the other classifiers.

1. Introduction

Millions of women worldwide are affected by breast cancer.
Family history, hormones, and reproductive factors are all
factors that can lead to breast cancer. Every year, one million
women are diagnosed for the first time with breast cancer.
Unfortunately, according to a study, half of them would die
since doctors would not be able to diagnose cancer until it
was too late. Despite the lack of data about the causes and
treatments of breast cancer, the hypothesis states that any
cancer originates due to uncontrolled cell development [1].
Any normal cell goes through a life cycle in which it divides
to form new cells and then dies when the time comes. Any
disruption in this life cycle raises cancer risk, and breast
cancer is no exception. In addition, breast cancer strikes
women more frequently as they age, regardless of their
family history.

Researchers are concentrating their efforts on the early
detection of breast cancer. It has the potential to boost
diagnosis, treatment, and survival rates. Early detection is
the most effective strategy to lessen the disease’s health and
economic implications, given the high cost of medication
and the disease’s importance. Because self-testing is infre-
quent, cancer is often discovered at an advanced stage.

Automated tools help experts detect specific diseases and
make early diagnosis more feasible. )e concept behind
these systems is to analyse data in parallel in architecture that
resemble the biological nervous system. ANNs can handle
various tasks, including classification, defect detection, voice
analysis, and incorrect input processing [2]. Innovative
disease classification and detection strategies have been
employed in several healthcare sectors. Artificial Neural
Networks (ANNs) are a “hot” study subject in medicine
because of their increased diagnostic accuracy, lower prices,

Hindawi
Computational Intelligence and Neuroscience
Volume 2022, Article ID 6715406, 6 pages
https://doi.org/10.1155/2022/6715406

mailto:wubshet.ibrahim@ambou.edu.et
https://orcid.org/0000-0002-0440-7313
https://orcid.org/0000-0001-9184-5073
https://orcid.org/0000-0003-1556-8937
https://orcid.org/0000-0003-3807-7997
https://orcid.org/0000-0002-3535-5050
https://orcid.org/0000-0003-2281-8842
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/6715406


and reduced human resources. ANNs are complex systems
that are based on biological neuron networks. )ese net-
works estimate functions based on machine learning and
cognitive sciences [3–5].

2. Related Work

Canedo and Marono [6] proposed the most refined 130,
99, and 102 attributes chosen using feature selection al-
gorithms. )e best result was 79% with the C4.5 decision
tree algorithm utilizing the INT attribute selection ap-
proach. When the relief method uses feature removal
methods, the Naive Bayes algorithm produces the best
results (89%), and the SVM-RFE feature selection method
produces the best results (90%). Compared to the ap-
proaches for picking characteristics, the k-S test technique
is integrated with CFS. )en, in the test k-S - CFS, the
selected methods are compared between CFS, MMR,
Relief, and k-S, which are 80.5%, 87.4%, 82.4%, and 78.8%,
respectively.

Amrane et al. [7] explore the Näıve Bayes (NB) and KNN
classifier and use a cross-validation scheme for accuracy
evaluation. In Naı̈ve Bayesian Classifier (NBC), the variables
are conditionally independent. Hence, Bayesian classifiers
are best for compound datasets. On the other hand, in KNN,
we use the Euclidian distance for evaluating the distances
with other points. After comparing the results of both al-
gorithms accurately, it has been found that the KNN al-
gorithm has a greater accuracy of 95.71% than the NB
algorithm, which has an accuracy of 96.19%. Still, if a large
dataset is taken, then the running time taken for the KNN
algorithm will increase in comparison with the NB
algorithm.

Djebbari et al. [8] explore forecasting the survival time of
breast cancer using machine learning. )eir methodology
exhibits improved precision compared to earlier outcomes
using their breast cancer data.

Liu et al. [9] used decision trees based on unbalanced
data to develop predictive models for 5-year survival rates of
breast cancer. After preprocessing data from SEER breast
cancer datasets, it is clear that the data distribution category
is unbalanced. )e prediction efficacies of combining the
undersampling approach and decision tree are shown to
balance the data after data preparation. )e AUC of the
model is 0.7484, with a 15% undersampling ratio. Model
performance is the highest when the data distribution is
about equal.)e AUC is enhanced to 0.7678 after employing
the bagging procedure.

Delen et al. [10] preclassified 202,932 breast cancer
patient records in two segments: “survived” ones (93,273)
and “did not survive” ones (109,659). )e accuracy of the
prediction of survivorship was in the region of 93%.

Aruna et al. [11] compared C4.5, NB, SVM, and KNN
classifiers in WBC to find the best classifier. )eWEKA tool
was used for experiment conduction. )e SVM is the most
accurate classifier, with an accuracy of 96.99%.

Baboo and Sasikala [12] conducted a data mining survey
using methodologies for gene selection categorization. )is
article focused on four essential emerging subjects, including

the most commonly used machine learning approaches for
gene selection and cancer categorization.

Here, we propose the classification of breast cancer using
a machine learning algorithm, considering that these ma-
chine learning algorithms perform well in most pattern
classification tasks.

3. Methodology

)is section explains the dataset and the classification
methods adopted.

3.1. Dataset. )e tests were conducted with the WDBC
dataset from the UCI repository. Authors frequently utilise
this dataset based on human breast tissues to diagnose breast
cancer diseases. )e collection contains records of 32 tu-
mour features derived from a digital image of a breast FNA
in 569 patients. Cancer is represented by 30 of the 32 fea-
tures. )e topic ID and class label are represented by the
remaining two. )e classification label helps determine
whether the subject is a benign or malignant tumour. In
addition, ten cell nuclei attributes were acquired for each
individual.

3.2. Classification Algorithms. )e literature has a variety of
breast cancer classification methods.)is study classified the
WDBC dataset using the MLP, KNN, GP, and RF algo-
rithms. )e classifiers are described further down.

3.2.1. Multi-Layer Perceptron. A feed-forward artificial
neural network called a multilayer perceptron (MLP) gen-
erates a set of outputs from a collection of inputs. An MLP is
defined by numerous layers of input nodes coupled as a
directed graph between the input and output layers. )e
MLP uses back propagation to train the network.)eMLP is
a method of deep learning. [13, 14].

3.2.2. K-Nearest Neighbor. )e KNN is a commonly used
ML technique. It is a type of learning that occurs in con-
ditions that do not require a learning phase. )e model is
created using the training sample, a distance function, and a
class choice function based on the classes of the nearest
neighbours. First, we must compare a new element to other
elements using a similarity measure before classifying it. )e
element to be classified is then compared to its k-nearest
neighbours, and the class with the most notable appearances
among them is allocated to it. Finally, the neighbours are
weighted based on the distance between them and the new
items to categorise [15, 16].

3.2.3. Genetic Programming. )is paper offers GP as an
evolutionary algorithm and an extension of GA as a
foundation for feature generation. GA provides GP with the
ability to choose features, but it is considerably broader. GP
is beneficial for evaluating the efficiency of features and
determining whether characteristics can survive the evolu-
tionary process [17–21].
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3.2.4. Random Forest. Ho introduced random forest in
1995 to separate nodes for the first time. It is a collection
of many decision trees that uses bootstrapping and
random feature selection. Because it works well on
massive datasets, random forest is a good fit for our
investigation. Furthermore, a random forest is a classifier
that uses a classification tree as its input, a vector of
independently and identically distributed tree votes. As a
result, the accuracy of a decision tree is more consistent
and precise [22].

4. Experimental Results

)is section describes the accuracy findings of the MLP,
KNN, GP, and RF classifiers for breast cancer classification.
Our dataset is partitioned into many partition schemes, with
569 samples. Figures 1–4 represent the MLP, KNN, GP, and
RF classifier classification accuracy, respectively. )e results
show that the RF classifier outperforms the MLP, KNN,
and GP classifiers. For example, for a 10-fold partition, the
RF classifier’s minimum, average, and maximum
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classification accuracy are 94.32%, 95.54%, and 96.24%,
respectively. )e performance measures of our imple-
mented classifiers such as sensitivity, precision, specific-
ity, and F1-score are compared in Table 1 on 50–50, 60–40,
70–30, and 10-fold partition schemes. )e sensitivity,
precision, specificity, and F1-score of the MLP classifier
10-fold partition schemes are 72.46%, 71.38, 70.62, and
71.58, respectively. )e sensitivity, precision, specificity,
and F1-score of the KNN classifier 10-fold partition
schemes are 78.62%, 79.34%, 78.62%, and 79.28%, re-
spectively. )e sensitivity, precision, specificity, and F1-
score of the GP classifier 10-fold partition schemes are

90.22%, 89.62%, 88.72%, and 89.48%, respectively. )e
sensitivity, precision, specificity, and F1-score of the RF
classifier 10-fold partition schemes are 96.29%, 95.45%,
94.48%, and 95.56%, respectively. Table 2 represents the
performance comparison of our implemented classifiers
with other state-of-the-art classifiers.

5. Conclusions

)e WDBC dataset, which was obtained from the UCI
repository, and the classification algorithms such as MLP,
KNN, GP, and RF were used in this study. )e random
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Table 1: Comparison of sensitivity, precision, specificity, and F1-score of MLP, KNN, GP, and RF classifiers.

Classifier Partition scheme Sensitivity (%) Precision (%) Specificity (%) F1 score (%)

MLP

50–50 66.73 65.42 64.58 65.36
60–40 68.51 67.35 66.34 67.48
70–30 70.36 69.63 68.21 69.52
10-fold 72.46 71.38 70.62 71.58

KNN

50–50 74.63 73.26 72.37 73.34
60–40 76.39 75.57 74.18 75.68
70–30 78.82 77.26 76.43 77.34
10-fold 78.62 79.34 78.62 79.28

GP

50–50 84.73 83.62 82.15 83.46
60–40 86.93 85.76 84.83 85.62
70–30 88.46 87.25 86.53 87.44
10-fold 90.22 89.62 88.72 89.48

RF

50–50 90.86 89.49 88.51 89.36
60–40 92.63 91.38 90.68 91.52
70–30 94.27 93.67 92.64 93.74
10-fold 96.29 95.45 94.48 95.56

Table 2: Performance comparison with other works from the literature.

Author Year Classifier Accuracy (%)
Quinlan [23] 1996 C4.5 94.74
Hamilton et al. [24] 1996 RAIC 95
Nauck and Kruse [25] 1999 Neuro-fuzzy 95.06
Abonyi and Szeifert [26] 2003 Supervised fuzzy clustering 95.57
Lavanya and Rani [27] 2011 Decision tree algorithms 92.97
Xue et al. [28] 2014 Particle swarm optimization 94.74
Our study 2022 Random forest 96.24
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forest classifier had the greatest accuracy of 96.24% for
breast cancer classification among the four classifiers.
)erefore, we conclude that the recommended technique
results in classifying probable breast cancer based on the
findings.

)e limitation of this study is that machine learning is
applied to the numeric dataset only. In the future, we try to
work on images directly to apply various feature extraction
techniques. In addition, we will also try to use deep learning
algorithms on the dataset and try to get better classification
results.

Data Availability

)e data are available on request from the corresponding
author.
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