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ABSTRACT
Thermally activated delayed fluorescence (TADF) was achieved when electron-rich triphenylene (Tpl)
donors were confined to a cage-based porous metal-organic framework (MOF) host (NKU-111)
composed of electron-deficient 2,4,6-tri(pyridin-4-yl)-1,3,5-triazine (Tpt) acceptor as the ligand.The
spatially separated donor and acceptor molecules in a face-to-face stacking pattern generated strong
through-space charge transfer (CT) interactions with a small energy splitting between the singlet and triplet
excited states (∼0.1 eV), which enabled TADF.The resulting Tpl@NKU-111 exhibited an uncommon
enhanced emission intensity as the temperature increased. Extensive steady-state and time-resolved
spectroscopic measurements and first-principles simulations revealed the chemical and electronic structure
of this compound in both the ground and low-lying excited states. A double-channel (T1, T2) intersystem
crossing mechanism with S1 was found and explained as single-directional CT from the degenerate
HOMO−1/HOMO of the guest donor to the LUMO+1 of one of the nearest acceptors.The rigid
skeleton of the compound and effective through-space CT enhanced the photoluminescence quantum
yield (PLQY). A maximum PLQY of 57.36% was achieved by optimizing the Tpl loading ratio in the host
framework.These results indicate the potential of the MOFs for the targeted construction and optimization
of TADFmaterials.

Keywords: donor–acceptor, through-space charge transfer, thermally activated delayed fluorescence
(TADF), host–guest MOF

INTRODUCTION
Thermally activated delayed fluorescent (TADF)
materials are emerging as an important and rapidly
developing research field due to their broad utility
in light-emitting diodes, security protection, and flu-
orescence probes [1–6]. In TADF materials, triplet
excitons can be efficiently utilized through reverse
intersystem crossing (RISC) from a triplet excited
state (T) to a singlet excited state (S); therefore,
100% internal quantum efficiency can be achieved
[7,8]. From a structural design perspective, spatial
separation of the highest occupiedmolecular orbital
(HOMO) and the lowest unoccupied molecular or-
bital (LUMO) is needed tonarrow the singlet-triplet
energy splitting (�EST) to promote RISC [9]. Ac-
cording to this principle, charge transfer (CT) inter-
actions between donor–acceptor (D–A) molecules
occur, in which the HOMO is mainly located on the

donormoiety, and the LUMO is provided by the ac-
ceptor moiety [10,11]. In this way, minimal orbital
overlap between the HOMO and LUMO can be
achieved, which decreases�EST for effective RISC.

For TADF materials with D–A moieties, CT
interactions between D and A moieties can be
achieved via either through-bond or through-space
mechanisms. Through-bond CT compounds re-
quire highly twisted molecular structures to achieve
loworbital overlap and a small�EST, which requires
complicated organic design and synthesis [12,13].
Alternately, through-space CT interactions based
on spatially separated donors and acceptors can ef-
fectively reduce overlap of the HOMO and LUMO
by appending the orbitals to donor and acceptor
moieties, respectively. Using this strategy, TADF
has been reported in several classes of compounds,
such as exciplexes, polymers, and organic co-crystals
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[14–19]. It should be noted that achieving TADF
in through-space D–A compounds depends on
both the characteristics of the D and Amoieties and
their spatial arrangements, which are related to the
singlet and triplet energies and ultimately control
the effective �EST; therefore, achieving through-
space CT-based TADF in amorphous systems is a
challenging task because it is necessary to precisely
control the spatial arrangements ofD andAmoieties
[20,21]. Another challenge in TADF materials lies
in the trade-off between the small �EST and high
photoluminescence quantum yield (PLQY). The
reduced HOMO and LUMO overlap produces a
small �EST but leads to low oscillator strength,
producing a low PLQY [22–24]. Overall, for TADF
materials based on through-space CT interactions,
controllable spatial arrangements of donors and ac-
ceptors are desired for modulating the CT strength,
decreasing�EST, and enhancing PLQY.

Metal-organic frameworks (MOFs) have
become one of the most attractive platforms for ma-
terials development due to their highly flexible com-
ponents and structural modularity [25–28]. Due
to these advantages, we have previously developed
a crystalline host–guest MOF for the rational con-
struction and engineering of D–Amaterials [29,30].
2,4,6-Tri(pyridin-4-yl)-1,3,5-triazine (Tpt) ligands
with 1,3,5-triazine as the A moiety were interlinked
by relatively strong coordination bonds with Cd2+

ions to form a porous host framework, NKU-111.
Then, guest polyaromatic hydrocarbons as D
components were incorporated into the host frame-
work by the confined space and D–A interactions.
Through-space CT interactions can be accessed
using these D–A moieties. Considering the con-
struction principle, host–guestMOFsbasedonD–A
moieties are promising platforms for through-space
CT to obtain TADF materials. First, the confined
space of the host MOF framework and relatively
strong coordination can fix the position and ori-
entation of D and A molecules. Spatially separated
D and A molecules can then be obtained, which
leads to a small overlap of HOMO and LUMO and
small �EST. Proper spatial CT interactions can
also be obtained, through which D and A electron
clouds can interact with each other, which will
enhance radiative transition processes and increase
PLQY [31]. Second, the relatively rigid framework
can suppress non-radiative relaxation induced
by rotational and vibrational motion to further
increase PLQY. In addition, the crystalline nature
of MOFs allows for the straightforward structural
modulation of D/A components, which is beneficial
for investigating structure–property relationships.

In this regard, here, we report achieving
TADF in Tpl@NKU-111 via through-space CT

(Scheme 1). By introducing electron-rich tripheny-
lene (Tpl) molecules into the cages of NKU-111,
face-to-face π–π stacking of Tpl and the electron-
deficient Tpt ligand was achieved. The resulting
Tpl@NKU-111 displayed enhanced emission in-
tensity upon increasing the temperature, which fits
the characteristics of TADF.Detailed photophysical
characterization of Tpl@NKU-111 confirmed the
presence of TADF, which was further supported
by first-principles calculations. The results show
that Tpl@NKU-111 had a separated LUMO and
HOMO, which led to a small �EST (0.11 eV),
making it an ideal platform for triplet excitation
state harvesting. In addition to achieving TADF,
the PLQY of Tpl@NKU-111 could be optimized
by tuning the Tpl loading in the host framework.
A maximum PLQY of 57.36% was achieved under
an air atmosphere and room temperature when the
ratio of Tpl loaded in the cages was 24.0%. These
results suggest that utilizing crystalline host–guest
MOFs is an effective and flexible strategy for the
constructionofTADFmaterialswith intermolecular
through-space CT interactions.

RESULTS AND DISCUSSION
Tpl@NKU-111 was obtained by the solvothermal
assembly of Cd2+ ions, H2BDC, Tpt, and Tpl
(Supplementary Fig. S1). The Tpt ligand is ben-
eficial for enhancing D–A interactions due to its
good electron-accepting ability and planar skeleton
[32,33]. Conversely, electron-rich Tpl is often used
as a triplet-generatingmaterial that canbe assembled
to display phosphorescence [34,35]. Single-crystal
X-ray analysis (crystallographic data listed in Sup-
plementary Table S1) revealed that the structure
of the host framework was similar to that of pris-
tine NKU-111, which we have reported earlier [29].
Tpl resides in the cages of the host framework in
a disordered manner (only Tpl molecules at one
position are shown for clarification). As shown in
Fig. 1a and b, the framework was composed of three
interpenetrating networks. A triangular prism cage
is formed by two Tpt ligands and three BDC2– lig-
ands in the individual network. Hexagonal prism
cages can then be formed by interlocking two trian-
gular prism cages from two distinct networks. The
height of the cage is about 4 Å (considering the
van der Waals radius), which allows only one Tpl
molecule into each cage. The confined interspace of
the cage causes Tpt and Tpl to adopt a face-to-face
π–π stacking mode. This guarantees that the ac-
ceptor and donor are completely spatially separated
and confined in close proximity for through-space
CT interactions. For the whole framework, Tpl-Tpt
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Scheme 1. (a) Design strategy for through-space charge transfer TADF and correspond-
ing chemical structures in the host–guest MOF Tpl@NKU-111 (M: metal center; A:
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Figure 1. The structure of Tpl@NKU-111. (a) The three interpenetrating networks.
(b) The hexagonal prism cages containing the Tpl molecules. (c) The stacking of Tpt
(A) and Tpl (D).

shows a stacking arrangement along the c-axis, with a
DAADAApackingmode (Fig. 1c).Thedistances be-
tween the centers of the donors and acceptors are in
the range of 3.46 to 3.58 Å (Supplementary Fig. S2),
which indicates strongD–A interactions. Hexagonal
prism-shaped crystals of Tpl@NKU-111 were ob-
tained, with the preferred growth direction along the
D–A stacking direction (Supplementary Fig. S3).

The absorption and photoluminescence (PL)
spectra of Tpl@NKU-111 were recorded to verify
the occurrence of CT interactions (Supplemen-
tary Figs S4 and S5). Compared with Tpl and
pristine NKU-111, the absorption spectrum of
Tpl@NKU-111 shows new intense bands in the
long-wavelength region around 398 nm, which
is related to intermolecular CT between Tpt and
Tpl molecules [36–40]. Different PL spectra
were also found among the three compounds
and Tpl@NKU-111 exhibited a broad, feature-
less emission band with peaks around 492 nm.
Additionally, the large Stokes shift between the
absorption and PL spectra of Tpl@NKU-111
also indicates the intermolecular CT transition

(Fig. 2a). Theoretical calculations (see below)
were used to simulate the absorption spectrum,
and the maximum peak corresponding to S0–S1
is 394.30 nm, which is consistent with the exper-
imental results. The maximum fluorescent peak
corresponding to S1–S0 was 519.66 nm, similar to
the experimental value of 492 nm. In a word, the
new absorption and PL spectra were attributed
to intermolecular through-space CT interactions,
which can be considered as the main radiative
transitions to and from S1.

Steady-state PL spectra of Tpl@NKU-111 at dif-
ferent temperatures were recorded at an excitation
wavelength of 365 nm (Supplementary Fig. S6).
From Fig. 2b and c, as the temperature increased
from77K to 297K, the PL intensity showed a nearly
20-fold increase, which is rarely observed in MOFs.
At low temperatures, both TADF and phosphores-
cence channels are, in principle, possible. One could
determine their ratios from accurate spectral simu-
lations, for instance, in a molecular co-crystal sys-
tem with a relatively simple structure [16]. While
this is more challenging in a complex MOF sys-
tem, we could argue the major channel is as follows.
The 77 K spectrum shows double peaks, which are
standard 0–0 (492 nm) and 0–1 (515 nm) vibra-
tional transitions. The 0–0 peak coincides with the
room-temperature peak; thus, it can be reasonably
deduced that themajor channel at low temperatures
was TADF.

Thermogravimetric analysis revealed that
Tpl@NKU-111 has good thermal stability, with
a decomposition temperature at about 325◦C,
which indicates the integrity of the framework
at high temperatures (Supplementary Fig. S7).
Variable-temperature powder X-ray diffraction
showed its non-deformable nature due to the
lack of a shift or the absence of diffraction peaks
(Supplementary Fig. S8). In consideration of the
CT interactions responsible for emission, the
uncommon positive correlation between the PL
intensity and temperature might be attributed to
the occurrence of TADF, in which triplet excitons
were utilized by the RISC process from T1 to S1 to
increase the emission intensity. To further verify
the TADF feature, the PL decay curve at 492 nm
was measured at room temperature. As shown in
Fig. 2d and Supplementary Fig. S9, the PL decay
profile exhibits a nanosecond-scale prompt com-
ponent with a lifetime (τ) of 17.47 ns. Meanwhile,
two microsecond-scale delayed components with
τ = 1.29 μs and 4.21 μs were also observed,
which indicates the co-existence of one radiative
channel and two delayed radiative channels at room
temperature. The temperature-dependent PL decay
curves were obtained from 77 K to 297 K (Fig. 2e),
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Figure 2. Photophysical properties of Tpl@NKU-111. (a) The absorption and PL spectra at room temperature. (b) Steady-
state PL spectra at different temperatures. (c) The relationship between the PL intensity around 492 nm and temperature.
(d) The PL decay curve at 492 nm and room temperature. (e) Temperature-dependent PL decay curves at 492 nm. (f) The
delayed PL spectrum at 77 K and steady-state PL spectrum at 298 K.

and the ratio of the delayed components increased
obviously upon increasing the temperature, indicat-
ing the presence of a thermally activated PL process,
which is typical of TADFmaterials.

To determine the �EST of the system, which is
a critical factor for verifying TADF, the delayed PL
spectrum at 77 K and steady-state PL spectrum at
298 K were measured and compared (Fig. 2f). The
former showed themaximumemissionnear 515nm,
and the corresponding lifetimes were 3.23 s and
0.18 s, which were attributed to phosphorescence
emission originating from the lowest triplet excited
state T1 (Supplementary Fig. S10).The steady-state
PL spectrum at 298 K showed the maximum emis-
sion around 492 nm, which was assigned to fluores-
cence emission originating from the lowest singlet
excited state S1. By comparing the maximum emis-
sion wavelengths of the spectra, the �EST was esti-
mated to be 0.11 eV (S1, 2.52 eV; T1, 2.41 eV).

The photophysical properties of the physical
mixture of Tpl and NKU-111 (prepared according
to the component of Tpl@NKU-111), as a control,
were compared. The steady-state PL spectrum
at 297 K showed a series of peaks in the range
of 350–450 nm, which were assigned to Tpl in
consideration of the similarity of the spectrum to
that of the Tpl crystals (Supplementary Fig. S12).
No emission band originating from NKU-111 was
found, which was attributed to the relatively low
emission intensity compared with that of Tpl. The
distinct emission spectrum of themixture compared
with that of Tpl@NKU-111 indicated the absence

of CT interactions in the mixture, which was due
to the absence of Tpl-Tpt D–A alignment. The
PL decay of the mixture measured at 376 nm and
room temperature was fitted by a bi-exponential
function, with the main component of 0.99 ns (Sup-
plementary Fig. S13). Meanwhile, the intensities
in the decay curves decreased as the temperature
increased from 77 K to 297 K (Supplementary Fig.
S14). These are typical characteristics of fluores-
cence. In sharp contrast, new emission peaks were
observed at longer wavelengths (ca. 500–600 nm)
in the spectra of themixture at 77K (Supplementary
Fig. S12).The delayed PL spectra exhibited that the
intensity of the peaks decreased upon increasing
the temperature, and the lifetime was determined
to be 3.20 s at 496 nm and 77 K (Supplementary
Figs S15 and S16). According to these results, the
peaks were assigned to the phosphorescence of
Tpl. These results indicated that the host–guest
structure of Tpl@NKU-111 plays an important
role in generating intermolecular through-space CT
interactions and the corresponding TADF.

To gain deeper insights into the structure,
spectra, and underlying photophysical mechanism,
theoretical calculations were performed by the
ONIOM (QM/MM) method with electronic
embedding based on a truncated cluster model of
seven hexagonal cells (2184 atoms, Supplementary
Fig. S17). An A1-D-A2 fragment of one Tpl sand-
wiched between two Tpt moieties (with six Cd2+

ions bonded to them) was chosen as the high layer
(108 atoms). Density functional theory (DFT)
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and time-dependent DFT with the Tamm-Dancoff
approximation (TDDFT/TDA) were used for
geometry optimizations of the ground (S0) and
excited (S1, T1) states, respectively. The M06-2X
functional was used. Extensive validations were
performed for different functionals and basis sets,
and stable results were achieved (Supplementary
Tables S4 and S5). The low layer was modeled with
a general AMBER force field.

Fig. 3a displays the simulated absorption
spectrum in the optimized ground-state structure
(min S0), which shows good agreement with
the experimental spectrum. To understand the
excited-state features of Tpl@NKU-111, we
analyzed all singlet excited states within the ex-
perimental energy range in terms of the natural
transition orbitals (NTOs) [41]. NTOs provide

Table 1. A comparison of the transition energies and
wavelengths for absorption (S0→S1), fluorescence
(S1→S0), and phosphorescence (T1→S0) predicted from
the experimental spectra and from QM/MM simulations.
Spectrum Exp. Theory

Abs. (S0→S1) 398 nm (3.12 eV) 394.30 nm (3.14 eV)
Fluo. (S1→S0) 492 nm (2.52 eV) 519.66 nm (2.39 eV)
Phos. (T1→S0) 515 nm (2.41 eV) 531.29 nm (2.33 eV)

a simple single-electron picture to understand
multi-electron transitions. We found that most
states have evident CT features (from donor to
acceptor), and only a few states at ca. 300 nm
have local excitation (LE) features (localized
on the donor) (Supplementary Fig. S21 and
Fig. 3b).The broad peak at 398 nm (3.12 eV) in the
experimental spectrum was thus characterized as a
CT peak. The resolved theoretical peak was located
near 380 nm (3.26 eV), which verifies the accuracy
of our simulations.

The gap �EST was computed as the S1–T1 en-
ergy difference , both vertically (at min S0) and adi-
abatically (at two respectively optimized geometries
min S1 and min T1). The vertical and adiabatic gaps
were 0.05 eV and 0.06 eV, respectively (Fig. 3b).
The theoretical adiabatic gap 0.06 eV (S1, 2.39 eV,
519.66 nm; T1, 2.33 eV, 531.29 nm) is consistent
with the 0.11 eV (S1, 2.52 eV, 492 nm; T1, 2.41 eV,
515 nm) estimated from the emission experiments
(summarized in Table 1). Validations with more
functionals and basis sets showed similar gaps (Sup-
plementary Table S5).

In the energy level diagram (Fig. 3b), we found
that the lowest two triplets, T1 and T2, have very
similar energies, differing by 0.01 eV and 0.35 eV at
vertical and relaxed geometries. The energy differ-
ence between T2 and S1 was also very small (0.04
and 0.29 eV, respectively); thus, besides the S1–T1
ISC/ISRC channel in normal TADF materials, we
identified another channel via S1–T2. This is con-
sistent with the two lifetimes (1.29 and 4.21 μs)
obtained from experiments. NTO analysis showed
that the triplets are also CT states. Although the Tpl
donor has two nearest-neighbor acceptors, our anal-
ysis illustrates that only one donor (A1) is responsi-
ble for the ISC/ISRC mechanism. Structurally, this
is because the two acceptors are spatially nonsym-
metric relative to the donor in the vertical direc-
tion.The distances of D-A1 and D-A2 are 3.460 and
3.571 Å, respectively (Supplementary Fig. S2). In a
word, the spatial difference promoted a unique CT
direction within the ISC/RISCmechanism.

To better illustrate the D-A1 through-space CT,
the top view of the NTOs is provided in Fig. 4a to
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better display in-plane features of the orbitals. The
four excited states fall into two groups according
to their characteristics: π 1→π∗ (S1 and T1) and
π 2→π∗ (S2 and T2). Additional DFT calculations
were performed for isolated donor and acceptor
molecules, and their frontier MOs are shown
in Fig. 4b. Both molecules have D3h symmetry
in the gas phase and have degenerate HOMO/
HOMO–1 and LUMO/LUMO+1 orbital,
with similar HOMO−LUMO gaps (D, 7.1 eV;
A, 6.9 eV). We found that π 1 and π 2 are
very similar to HOMO−1 and HOMO of

the donor, respectively, and π∗ shows sim-
ilar character to LUMO+1 of the acceptor
(Fig. 4c). Thus, the double ISC/RISC channel
is better explained as arising from degenerate
HOMO-1/HOMO in the donor. ISC/RISC was
realized via CT from these two orbitals in the donor
to the LUMO+1 orbital of the acceptor. The se-
lectivity of LUMO+1 over LUMO in the acceptor
was simply because the molecular symmetry was
broken in Tpl@NKU-111, which led to energy
separation. Internally, the molecule deformed from
a planar structure. Externally, they are influenced
by environmental groups in the cages of the host
framework. For the same reason, HOMO−1
and HOMO in the donor were also separated,
which led to a small energy gap between S1 and
S2 (0.05 eV) and between T1 and T2 (0.01 eV). It
was noticed that double-channel (T1−S1, T2−S1)
intersystem crossing mechanisms were also found
in single [42] or two-component [16] molecular
crystals but for different reasons. The degenerate
HOMO−1/HOMO in the symmetric guest donor
molecule may provide a guideline for designing new
MOF-type TADF materials with double-channel
efficiency. The disordered Tpl in NKU-111 did not
influence our analysis of the photophysical mech-
anisms based on our computational procedures
(Supplementary Figs S18–S20); thus, our com-
bined theoretical and experimental study validates
that a good TADF material with small �EST was
synthesized. These results demonstrated that the
host–guest MOF is an efficient platform for TADF
materials, which opens a door to TADF material
design by tuning versatile D and A components in
the host–guest MOF.

Besides achieving TADF, PLQY should also
be considered in Tpl@NKU-111 (0.05 mmol Tpl
added), which was determined to be 36.07% un-
der an air atmosphere at room temperature. Com-
paredwith pristineNKU-111with aPLQYof 2.41%,
the higher value of Tpl@NKU-111 was attributed
to the rigid skeleton of the compound, as well as
proper through-space CT interactions, which stabi-
lized triplet excitons and suppressed non-radiative
transitions arising from vibrations and rotations.

Furthermore, the unique advantages of MOFs
for component tuningmake furtherPLQYoptimiza-
tion possible by precisely modulating the guest con-
tent. From a structural perspective, since the con-
fined interspaceof the cages inNKU-111 allowsonly
one Tpl to be encapsulated in each cage, the load-
ing ratio of Tpl inTpl@NKU-111 could be tuned by
adjusting the feed amount of Tpl during synthesis.
To illustrate the correlation between the guest feed
amount, guest loading ratio, and PLQY of the re-
sultant compound, a series of samples was prepared
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Figure 5. (a) Correlation between the Tpl feed amount and loading ratio in the cages of the framework (blue circle) as well
as the PLQY (red square). (b) The photographs of crystal samples under daylight (top) and 365 nm UV irradiation (bottom) with
different Tpl loading ratios.

with a fixed Tpt feed amount (0.05 mmol) and dif-
ferent Tpl feed amounts (0.5 μmol to 0.05 mmol).
Powder X-ray diffraction showed the consistency
of their structures (Supplementary Fig. S22). The
1H NMR spectra of the digested samples were ob-
tained to determine the actual ratio of the Tpl and
Tpt ligands in the different samples (Supplementary
Figs S23 and S24). According to the results, the pro-
portion of Tpl loaded in the cages in Tpl@NKU-
111 could be tuned from 2.8% to 100% by chang-
ing the feed amount. A detailed analysis of the re-
sults (Fig. 5a, blue circle; Supplementary Table S2)
showed a linear correlation between the Tpl feed
amount and the initial cage loading. Fully-loaded
cages in the framework were obtained when the Tpl
feed ratio was 1.0 (0.05 mmol). The absorption and
PL spectra of Tpl@NKU-111 samples with different
guest feed amounts were obtained (Supplementary
Figs S25 and S26). Upon increasing the guest feed
amount (corresponding to increasing guest loading
ratio), the absorption band near 398 nm was greatly
enhanced due to intermolecular through-space CT
interactions. These results fit well with the visible
color change of samples upon increasing the guest
loading ratio (Fig. 5b, top). In contrast, the PL spec-
tra of the samples did not significantly change as the
guest feed amount varied, which suggests that inter-
molecular CT was the dominant radiative channel.

The PLQY of samples with different guest con-
tents (corresponding to the guest loading ratio)
were measured at room temperature (Fig. 5a, red
square) to illustrate the correlation between PLQY
and guest content. At low contents, the PLQY in-
creased to a maximum of 57.36% when increasing
the guest loading ratio to 24.0%. The PLQY then
decreased upon further increasing the Tpl content,
which may be assigned to concentration quenching
pathways [43]. A high PL intensity was achieved in
the sample with a guest loading of 87.2% due to its

relatively high guest content and medium PLQY.
A lower PL intensity was achieved with a guest
loading ratio of 100% because the PLQY decreased
(Fig. 5b, bottom). Since the PL intensity of the
crystalline sample was positively correlated with the
guest content × PLQY, the relative PL intensity of
the samples could be readily predicted (Supplemen-
tary Fig. S27). This finding is favorable for explor-
ing the relationship between the guest content and
PLQY to optimize the PL properties of this system.

CONCLUSIONS
In summary, we have proposed a host–guest MOF
strategy for through-space CT to achieve TADF
with modular PLQY. This is the first time that
through-space CT TADF has been achieved in
MOFs. Experimental and theoretical analysis con-
firmed that the TADF properties arose from strong
through-space intermolecular CT interactions from
each donor to one of its two nearest acceptors. A
double-channel (T1 and T2) intersystem crossing
mechanism with S1 was proposed, which was at-
tributed to CT from the degenerate HOMO−1/
HOMO of the guest donor to LUMO+1 of the lig-
and acceptor. Based on the unique structural charac-
teristics, the PLQY and PL intensity were precisely
modulated by controlling the guest loading ratio in
the cages of the MOF host structure.

Since MOFs have an ordered crystalline struc-
ture with long pathways, they provide a potential
platform for investigating the structure–property
relationships of TADF materials. By combining
our host–guest MOF strategy and theoretical
calculations, a large set of D–A components can be
expected to be obtained for screening andmanaging
the strength of D–A interactions. Subsequent
optimization strategies will be disclosed, and the
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customization of TADF materials will be hopefully
reported. We envision that this will be a significant
step toward developing novel TADF materials.
Multi-functionality is another important research
direction, which will allow these materials to be
applied in electroluminescent devices, modulable
emission, organic UV photodetectors, fluorescence
probes, and photocatalysis [44,45].Wewill focus on
developing our host–guest MOF compounds into
thin-film materials to investigate the performance
and the operating stability of electroluminescent
devices.

METHODS
Thedetailed preparation and characteristicmethods
of materials are available as Supplementary data.

SUPPLEMENTARY DATA
Supplementary data are available atNSR online.
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