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Abstract
In the past few years, two-dimensional (2D) layered nanomaterials have greatly attracted the scientific community. Among 
2D nanomaterials, the porphyrin-based Naphtalenic nanosheets have been the subject of intense research due to their utili-
zation in photo-dynamic therapy and nanodevices. New technologies based on nanomaterials or Naphtalenic nanosheet are 
advantageous in overcoming the problems in conventional drug delivery like poor solubility, toxicity and poor release pattern 
of drugs. In chemical network theory, various molecular descriptors are used to predict the chemical properties of molecules; 
these molecular descriptors are found to be very useful for Quantitative Structure–Activity/ Quantitative Structure–Property 
(QSAR/QSPR) relationship analysis in materials engineering, chemical and pharmaceutical industries. Researchers have 
computed the molecular descriptors for various nanostructures; however, despite intense research, the topology of nano-
structures is not yet well understood. Specially, to our knowledge, the computation of topological indices for the line graph 
of subdivision graph of H-Naphtalenic nanosheet has not been discussed so far, which may open new perspectives for a more 
accurate and reliable topological characterization of this nanosheet.
In this article, we employed some important degree-based topological indices to study the chemical structure of Naphtalenic 
nanosheet as a chemical network for QSAR/QSPR analysis. We have computed these degree-based topological indices for 
the line graph of subdivision graph of H-Naphtalenic nanosheet and derived formulas for them. Based on the derived formu-
las, numerical results are obtained and the physical and chemical properties of the under study nanosheet are investigated.
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Introduction

The popular 2D nanomaterial graphene, the thinnest 2D 
material (0.34 nm) in the world [1–3] containing of a single 
layer of carbon atoms with hexagonal lattice, is currently the 
subject of intense research. Inspired by graphene, there is a 
rising interest in new 2D inorganic, organic and hybrid nano-
materials development. Since their invention [4, 5], carbon 
nanotubes have gained much attention. Carbon nanotubes 

(CNTs) are made of carbon with nanometer-sized diameters. 
These are often refer to single-wall carbon nanotubes with 
diameter in the range of nanometer and were discovered by 
Lijima and Ichihashi [4], and Bethune et al. [5] indepen-
dently. Nanosheets are 2D nanostructures with a thickness 
ranging from 1 to 100 nm (nanometer) [6–9]. These 2D 
nanosheets exhibit interesting physical, electronic, biologi-
cal and chemical properties which are very important for 
catalysis, storage, biomaterials, nano (bio)-technology, sens-
ing, electronics, optical and dielectric-related applications. 
Therefore, it is very important to predict these nanostruc-
tures in order to gain insight into the topology and enhance 
their physical properties.

Mathematical chemistry techniques are used to model 
and characterize molecules in order to better understand the 
physical properties of chemical compounds [10]. Graphs are 
mathematical structures which are used to model pairwise 
relation between objects. Chemical graphs are simple finite 
graphs in which the vertices represent atoms while the edges 
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represent chemical bonds in underlying chemical/ molecular 
structures. Line graph is one of the well-known and most 
studied graphs linked with a graph. Let H be a non-empty 
graph, then its line graph L(H) has the set of edges in H as 
its vertex set and two vertices of L(H) are adjacent if the 
corresponding edges of G are adjacent. Alexandru Balaban, 
Ante Graovac, Ivan Gutmabn, Harao Hosoya, Milan Randic 
and Nenad Trinajstic [11] laid foundations of chemical graph 
theory. Due to its vast applications in different fields of life 
such as materials science, drug design, chemistry, biological 
networks, electrical networks and computer science, chemi-
cal graph theory has currently attracted much attention of 
researchers [12, 13]. Recently, a blend field of mathemat-
ics, chemistry and information science has been introduced, 
namely chem-informatics.

A numeric or arithmetic value that characterizes the 
entire chemical or molecular structure is called a topologi-
cal index. Topological index describes some salient features 
(melting point, boiling point, stability and connectivity) of 
molecular graphs of some chemical compounds. These 
descriptors play a vital role in biological, chemical, materi-
als sciences and drug design. In QSAR modeling, the pre-
dictors consist of physico-chemical properties or theoretical 
molecular descriptor [14–16], while the term QSPR mod-
els as response variable [17–20]. Wiener [21] introduced 
the concept of topological index while working on boiling 
point of paraffin and named it as path number. It is the first 
and most studied topological index both from application 
and theoretical point of view. It is defined as the sum of 
distance between all pairs of vertices in a graph G; further 
details can be found in ref. [22]. Degree-based topologi-
cal indices are commonly used and play a significant role 
in chemical graph theory, especially in chemistry. Gutman 
and Trinajstic established the earliest topological indices, the 
Zagreb indices [23–26], which have been utilized to inves-
tigate molecular difficulty, boiling point and chirality. The 
degree-based concept has recently been transformed into Ev-
degree, Ve-degree, degree-based entropy, M-polynomial and 
NM-polynomials [27].

In the present study, we have represented the degree of 
u and v as �

u
 and �

v
 , respectively, where uv ∈ E(G) . The 

topological indices based on vertex degree are as follows:
For any graph G, the first Zagreb index M1 (G) and sec-

ond Zagreb index M2 (G) are given as:

(1)M1(G) =
∑

uv∈(G)

[
�
u
+ �

v

]

(2)M2(G) =
∑

uv∈(G)

[
�
u
+ �

v

]

Shirdel, Rez and Sayadi [27] presented the idea of a new 
degree-based index, and it was termed as “hyper-Zagreb 
index” which is defined as:

Ghorbani and Azimi formulated two new versions of 
degree-based indices for any graph G [28] and named as 
the first multiple Zagreb index PM1(G) and second multiple 
Zagreb index PM2(G) which are formulated as:

The first Zagreb polynomial M1(G,x) and second Zagreb 
polynomial M2 (G, x) are formulated as:

Augmented Zagreb Index is defined as [29]

ABC (atom-bond connectivity) index is proposed by 
Estrada et al. [30]. It is the widely used connectivity index. 
The mathematical formula for ABC is as follows:

Sum connectivity index is almost associated variant of the 
Randic index. It is formulated by Zhou [31] and is defined 
as:

Vukičević and Furtula suggested a geometric–arithmetic 
index [29] and is defined as:

Harmonic index is formulated by [32],

(3)HM(G) =
∑

uv∈E(G)

[
�
u
+ �

v

]2

(4)PM1(G) =
∏

uv∈E(G)

[
�
u
+ �

v

]

(5)PM2(G) =
∏

uv∈E(G)

[
�
u
+ �

v

]

(6)M1(G, x) =
∑

uv∈E(G)

x[�u+�v]

(7)M2(G, x) =
∑

uv∈E(G)

x[�u+�v]

(8)A(G) =
∑

uv∈E(G)

[
�
u
�
v

�
u
+ �

v
− 2

]3

(9)ABC(G) =
∑

uv∈E(G)

√
�
u
+ �

v
− 2

�
u
�
v

(10)SCI(G) =
�

uv∈E(G)

1√
�
u
+ �

v

(11)GA(G) =
�

uv∈E(G)

2
√
�
u
�
v

�
u
+ �

v
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Randic [32] suggested a structural descriptor, known as 
the branching index. Later on, it was termed as famous Ran-
dic index. It is one of the most favorable molecular descrip-
tors in QSPR and QSAR analysis. It is satisfactory to meas-
ure the level of branching of carbon atom sketch of saturated 
hydrocarbon. Randic index is defined as:

V. S. Shigehalli and Rachanna Kanabur proposed the fol-
lowing new degree-based indices, namely arithmetic–geo-
metric (AG1) index, SK, SK1, SK2 indices and are defined 
as, respectively [33],

Kalli introduced the below listed indices [34]:

In addition to above, Kalli has also introduced the fol-
lowing indices [35]:

Among 2D nanomaterials, the porphyrin-based Naphtal-
enic nanosheets have been the subject of intense research 
due to their utilization in photo-dynamic therapy and nan-
odevices. New technologies based on nanomaterials or 
Naphtalenic nanosheet are good in overcoming the problems 
in conventional drug delivery like poor solubility, toxicity 
and poor release pattern of drugs. The physical and chemi-
cal properties of these nanosheets depend on their structure.

(12)H(G) =
∑

uv∈E(G)

2

�
u
+ �

v

(13)R�(G) =
∑

uv∈E(L(H))

(
�
u
�
v

)�

(14)AG1(G) =
�

uv∈E(G)

�
u
+ �

v

2
√
�
u
�
v

(15)SK(G) =
∑

uv∈E(G)

�
u
+ �

v

2

(16)SK1(G) =
∑

uv∈E(G)

�
u
× �

v

2

(17)SK2(G) =
∑

uv∈E(G)

(
�
u
+ �

v

2

)2

(18)(i) GO1(G) =
∑

uv∈E(G)

��
�
u
+ �

v

�
+
�
�
u
�
v

��

(19)(ii) GO2(G) =
∑

uv∈E(G)

��
�
u
+ �

v

�
+
�
�
u
�
v

��

(20)(i) HGO1(G) =
∑

uv∈E(G)

��
�
u
+ �

v

�
+
�
�
u
�
v

��2

(21)(ii) HGO2(G) =
∑

uv∈E(G)

��
�
u
+ �

v

�
+
�
�
u
�
v

��2

Researchers have computed the molecular descriptors 
for various nanostructures. Deng et  al. investigated the 
molecular descriptors of pent-heptagonal nanosheets [36]. 
Szeged and PI Indices of VC5C7[p, q] and HC5C7[p, q] are 
discussed in [37]. In [38–42], the topological properties 
of H-Naphtalenic nanosheets are studied. Jane Olive Sha-
ron et al. investigated the transmission of every vertex in 
H-Naphtalenic nanosheet [43]. In [13, 44], scientists investi-
gated the topological modeling and characterization of anti-
viral medications used for the COVID-19 treatment, such as 
bevacizumab, hydroxy chloroquine, umifenovir, ritonavir, 
remdesivir, nafamostat, theaflavin, lopinavir and camostat. 
Further details on the topological characterization of nano- 
and microstructures can be found in refs. [45–54]. However, 
despite intense research, the topology of nanostructures is 

Fig. 1   H-Naphtalenic nanosheet H(m, n)

Fig. 2   Subdivision graph of H-Naphtalenic nanosheet S(H(m, n))
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not yet well understood. Specially, the computation of topo-
logical indices for the line graph of subdivision graph of 
H-Naphtalenic nanosheet has not been discussed so far. This 
investigation focuses on the computation of the above-men-
tioned degree-based topological indices for the line graph 
of H-Naphtalenic nanosheet in order to better predict the 
nanostructure for QSAR/QSPR analysis.

H‑Naphtalenic nanosheet

H-Naphtalenic nanosheet is formed by alternating hexagons 
C6, C4 and Octagons C8. H-Naphtalenic nanosheet H(m, n) 
contains 10 nm number of vertices, m represents the number 
of paired hexagons in each alternate row with C4 cycle, and 
n represents the number of rows consisting C4. Topological 
indices of H-Naphtalenic nanosheet are studied in [38].

In the present calculations, we employed edge parti-
tion and vertex partition tools of graph theory. The graph 
of H-Naphtalenic nanosheet is denoted by H(m, n), and its 
subdivision graph is denoted by S(H(m, n)), whereas line 
graph of subdivision graph is denoted by L(S(H(m, n))). The 
respective graphs are shown in Figs. 1, 2, 3, respectively. 
There are a total of 30 mn-4 m-4n vertices in L(S(H(m, 
n))), out of which 8(m + n) vertices are having degree 2 
and 30 mn-12 m-12n are having degree 3. Also the sum of 
degrees of all vertices in L(S(H(m, n))) is 90 mn-20 m-20n. 
It is easy to observe from Handshaking lemma that the total 
number of edges in L(S(H(m, n))) is 45 mn-10 m-10n. The 
edge set E(L(S(H(m, n)))) is split up into three edge parti-
tions E1, E2 and E3, based on degree of end vertices. The 
details of these partitions are shown in Table 1.

Main results

In this section, we have computed some important degree-
based topological indices for L(S(H(m, n))); the graph is 
shown in Fig. 3. The computational results are as follows:

Theorem 3.1: Let the line graph of subdivision graph of 
H-Naphtalenic nanosheet be L(S(H(m,n))), then.

Proof: Together with Eq. 1 and Table 1, we have.

Theorem 3.2: Let L(S(H(m, n))) denote the line graph 
of subdivision graph of H-Naphtalenic nanosheet, then its 
second Zagreb index is as follows.

Proof: Together with Eq. 2 and Table 1, we have.

Hence, it is proved.
Theorem 3.3: Denote the line graph of subdivision 

graph of H-Naphtalenic nanosheet by L(S(H(m, n))), then 
its hyper-Zagreb index is as follows.

M1(L(S(H))) = 270mn − 76m − 76n

=
∑

uv∈E1(�(�(�)))

[
�
u
+ �

v

]
+

∑
uv∈E2(�(�(�)))

[
�
u
+ �

v

]
+

∑
uv∈E3(�(�(�)))

[
�
u
+ �

v

]

= (2 + 2)||E1(�(�(�)))|| + (2 + 3)||E2(�(�(�)))|| + (3 + 3)||E3(�(�(�)))||

= 4(6n + 4m + 4) + 5(4n + 8m − 8) + 6(45mn − 20n − 22m + 4)

= 24n + 16m + 16 + 20n + 40m − 40 + 230mn − 120n − 132m + 24

M1(�(�(�))) = 270 − 76m − 76n

M2(�(�(�))) = 405mn − 134m − 132n + 4

=
∑

uv∈E1(�(�(�)))

[
�
u
+ �

v

]
+

∑
uv∈E2(�(�(�)))

[
�
u
+ �

v

]
+

∑
uv∈E3(�(�(�)))

[
�
u
+ �

v

]

= (2 × 2)||E1(�(�(�)))|| + (2 × 3)||E2(�(�(�)))|| + (3 × 3)||E3(�(�(�)))||

= 4(6n + 4m + 4) + 6(4n + 8m − 8) + 9(45mn − 20n − 22m + 4)

= 24n + 16m + 16 + 24n + 48m − 48 + 405mn − 180n − 198m + 36

M1(�(�(�))) = 405mn − 134m − 132n + 4

Fig. 3   Line graph of subdivision graph of H-Naphtalenic nanosheet 
L(S(H(m, n)))

Table 1   Edge partition of nanosheet L (S(H (m, n))) on the degree of 
end vertices of each edge

Types of edges E1(2, 2) E2(2, 3) E3(3, 3)

(
�
u
, �

v

)
, uv ∈ E(L(S(H))) (2, 2) (2, 3) (3, 3)

Number of edges 6n + 4m + 4 4n + 8m − 8
45mn − 20n

− 22m + 4
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Proof: Together with Eq. 3 and Table 1, we have.

Theorem 3.4: Assume L(S(H(m, n))) denotes the line 
graph of subdivision graph of H-Naphtalenic nanosheet, 
then its first multiple Zagreb index is as follows.

Proof: From Eq. 4 and Table 1, we have.

Theorem 3.5: Let L(S(H(m, n))) denote the line graph 
of subdivision graph of H-Naphtalenic nanosheet, then its 
second multiple Zagreb index is as follows.

Proof: Using Eq. 5 and Table 1, we have.

Theorem 3.6: Assume L(S(H(m, n))) denotes the line 
graph of subdivision graph of H-Naphtalenic nanosheet, 
then its first Zagreb polynomial is as follows.

Proof: Together with Eq. 6 and Table 1, we have.

HM(�(�(�))) = 1620mn − 528m − 524n + 8

=
∑

uv∈E1(�(�(�)))

[
�
u
+ �

v

]2
+

∑
uv∈E2(�(�(�)))

[
�
u
+ �

v

]2
+

∑
uv∈E3(�(�(�)))

[
�
u
+ �

v

]2

= (2 + 2)2||E1(�(�(�)))|| + (2 + 3)2||E2(�(�(�)))|| + (3 + 3)2||E3(�(�(�)))||

= 16(6n + 4m + 4) + 25(4n + 8m − 8) + 36(45mn − 20n − 22m + 4)

HM(�(�(�))) = 1620mn − 528m − 524n + 8

PM1(�(�(�))) = 4(6n+4m+4) × 5(4n+8m−8) × 6(45mn−20n−22m+4)

=
∏

uv∈E1(�(�(�)))

[
�
u
+ �

v

]
×

∏
uv∈E2(�(�(�)))

[
�
u
+ �

v

]
×

∏
uv∈E3(�(�(�)))

[
�
u
+ �

v

]

= (2 + 2)
E1(�(�(�))) × (2 + 3)

E2(�(�(�))) × (3 + 3)
E3(�(�(�)))

PM1(�(�(�))) = 4(6n+4m+4) × 5(4n+8m−8) × 6(45mn−20n−22m+4)

PM2(�(�(�))) = 4(6n+4m+4) × 6(4n+8m−8) × 9(45mn−20n−22m+4)

=
∏

uv∈E1(�(�(�)))

[
�u + �v

]
×

∏
uv∈E2(�(�(�)))

[
�u + �v

]
×

∏
uv∈E3(�(�(�)))

[
�u + �v

]

= (2 × 2)
E1(�(�(�))) × (2 × 3)

E2(�(�(�))) × (3 × 3)
E3(�(�(�)))

PM2(�(�(�))) = 4(6n+4m+4) × 6(4n+8m−8) × 9(45mn−20n−22m+4)

M1(�(�(�), x)) = (6n + 4m + 4)x4 + (4n + 8m − 8)x5

+ (45mn − 20n − 22m + 4)x6

=
∑

uv∈E1(�(�(�)))

x[�u+�v] +
∑

uv∈E2(�(�(�)))

x[�u+�v] +
∑

uv∈E3(�(�(�)))

x[�u+�v]

Theorem 3.7: Let L(S(H(m, n))) denote the line graph 
of subdivision graph of H-Naphtalenic nanosheet, then its 
second Zagreb polynomial is equal to.

Proof: Together with Eq. 7 and Table 1, we have.

Theorem 3.8: Let L(S(H(m, n))) denote the line graph 
of subdivision graph of H-Naphtalenic nanosheet, then its 
augumented Zagreb index is as follows.

Proof: From Eq. 8 and Table 1, we have.

=
∑

uvE1(�(�(�)))

x
2+2 +

∑
uvE2(�(�(�)))

x
2+3 +

∑
uvE3(�(�(�)))

x
3+3

=
∑

uvE1(�(�(�)))

x
4 +

∑
uvE2(�(�(�)))

x
5 +

∑
uvE3(�(�(�)))

x
6

= ||E1(�(�(�)))||x4 + ||E2(�(�(�)))||x5 + ||E3(�(�(�)))||x6

M1(�(�(�), x)) = (6n + 4m + 4)x4 + (4n + 8m − 8)x5

+ (45mn − 20n − 22m + 4)x6

M2(�(�(�), x)) = (6n + 4m + 4)x4 + (4n + 8m − 8)x6

+ (45mn − 20n − 22m + 4)x9

=
∑

uv∈E1(�(�(�)))

x[�u×�v] +
∑

uv∈E2(�(�(�)))

x[�u×�v] +
∑

uv∈E3(�(�(�)))

x[�u×�v]

=
∑

uvE1(�(�(�)))

x
2×2 +

∑
uvE2(�(�(�)))

x
2×3 +

∑
uvE3(�(�(�)))

x
3×3

=
∑

uvE1(�(�(�)))

x
4 +

∑
uvE2(�(�(�)))

x
6 +

∑
uvE3(�(�(�)))

x
9

M2(�(�(�), x)) = (6n + 4m + 4)x4 + (4n + 8m − 8)x6

+ (45mn − 20n − 22m + 4)x9

A(�(�(�))) =
32805

64
mn −

4947

32
m −

2365

16
n +

217

16

=
∑

uv∈E1(�(�(�)))

[
�u�v

�u + �v − 2

]3
+

∑
uv∈E2(�(�(�)))

[
�u�v

�u + �v − 2

]3

+
∑

uv∈E3(�(�(�)))

[
�u�v

�u + �v − 2

]3

= ||E1(�(�(�)))||
[

2 × 2

2 + 2 − 2

]3
+ ||E2(�(�(�)))||

[
2 × 3

2 + 3 − 2

]3

+ ||E3(�(�(�)))||
[

3 × 3

3 + 3 − 2

]3
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Theorem 3.9: Consider L(S(H(m, n))) for the line graph 
of subdivision graph of H-Naphtalenic nanosheet, then its 
ABC (atom-bond connectivity) index is as follows.

Proof: Using Eq. 9 and Table 1, we have.

Theorem 3.10: Assume that L(S(H(m, n))) denotes the 
line graph of subdivision graph of H-Naphtalenic nanosheet, 
then its sum connectivity index (SCI) is as follows.

= (6n + 4m + 4)8 + (4n + 8m − 8)8 + (45mn − 20n − 22m + 4)
729

64

=
(6n + 4m + 4)512 + (4n + 8m − 8)512 + (45mn − 20n − 22m + 4)729

64

=
3072n + 256m + 256 + 2048n + 4096m − 4096 + 32805mn − 14580n − 16038 + 2916

64

=
32805

64
mn −

9894

64
m −

9460

64
n +

868

64

A(�(�(�))) =
32805

64
mn −

4947

32
m −

2365

16
n +

217

16

ABC(�(�(�))) = 30mn + m

�
36 − 44

√
2

3
√
2

�
+ n

�
30 − 40

√
2

3
√
2

�
+

�
8
√
2 − 12

3
√
2

�

=
∑

uv∈E1(�(�(�)))

√
�
u
+ �

v
− 2

�
u
�
v

+
∑

uv∈E2(�(�(�)))

√
�
u
+ �

v
− 2

�
u
�
v

+
∑

uv∈E3(�(�(�)))

√
�
u
+ �

v
− 2

�
u
�
v

= ||E1(�(�(�)))||
√

2 + 2 − 2

2 × 2
+ ||E2(�(�(�)))||

√
2 + 3 − 2

2 × 3

+ ||E3(�(�(�)))||
√

3 + 3 − 2

3 × 3

= (6n + 4m + 4)
1√
2

+ (4n + 8m − 8)
1√
2

+ (45mn − 20n − 22m + 4)
2

3

=
6n√
2

+
4m√
2

+
4√
2

+
4n√
2

+
8m√
2

−
8√
2

+
90mn

3
−

40n

3
−

44m

3
+

8

3
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Proof: Together with Eq. 10 and Table 1, we have.

Theorem 3.11: Let L(S(H(m, n))) denote the line graph 
of subdivision graph of H-Naphtalenic nanosheet, then its 
geometric–arithmetic index is as follows.

Proof: From Eq. 11 and Table 1, we have.
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Theorem 3.12: Let L(S(H(m, n))) denote the line graph 
of subdivision graph of H-Naphtalenic nanosheet, then its 
harmonic index is as follows.

Proof: Together with Eq. 12 and Table 1, we have.

Theorem 3.13: Let L(S(H(m, n))) denote the line graph 
of subdivision graph of H-Naphtalenic nanosheet, then its 
Randic index is as follows.

Proof: Together with Eq. 13 and Table 1, for � =
1
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 we 

have.
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Now for � = −
1

2
 , we have

Hence,

Theorem 3.14: Let L(S(H(m, n))) denote the line graph 
of subdivision graph of H-Naphtalenic nanosheet, then its 
arithmetic–geometric (AG1)  index is equal to.

Proof: From Eq. 14 and Table 1, we have.
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Theorem 3.15: Let L(S(H(m, n))) denote the line graph 
of subdivision graph of H-Naphtalenic nanosheet, then its 
SK index is equal to.

Proof: Together with Eq. 15 and Table 1, we have.

Theorem 3.16: Consider L(S(H(m, n))) denotes the line 
graph of subdivision graph of H-Naphtalenic nanosheet, 
then its SK1 index is equal to.

Proof: Together with Eq. 16 and Table 1, we have.
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Theorem 6.17: Assume L(S(H(m, n))) denotes the line 
graph of subdivision graph of H-Naphtalenic nanosheet, 
then its SK2 index is equal to.

Proof: Together with Eq. 17 and Table 1, we have.

Theorem 3.18: Assume L(S(H(m, n))) denotes the line 
graph of subdivision graph of H-Naphtalenic nanosheet, 
then its first Gourava index is equal to.

Proof: Using Eq. 18 and Table 1, we have.

Theorem 3.19: Let L(S(H(m, n))) denote the line graph 
of subdivision graph of H-Naphtalenic nanosheet, then its 
second Gourava index is equal to.
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Proof: From Eq. 19 and Table 1, we have.

Theorem 3.20: Let L(S(H(m, n))) denote the line graph 
of subdivision graph of H-Naphtalenic nanosheet, then its 
first hyper-Gourava index is equal to.

Proof: Together with Eq. 20 and Table 1, we have.
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Theorem 3.21: Let L(S(H(m, n))) denote the line graph 
of subdivision graph of H-Naphtalenic nanosheet, then its 
second hyper-Gourava index is equal to.

Proof: Together with Eq. 21 and Table 1, we have.

Numerical results and discussion

In this section, all indices for different values of m, n for 
the structure L(S(H(m, n))) are computed. Bear in mind 
Table 2, it is easy to see that all the considered indices are 
raising with an increase in the amount of m, n. The structural 
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Table 2   Numerical table associated with the structure of L(S(H(m, n))) of H-Naphtalenic nanosheet

[m, n] M1 M2 HM PM1 PM2 M1(G, x) M2(G, x) A ABC SCI

[1, 1] 118 143 2258 46,965 70,955 1095 955 715 1002 1955
[2, 2] 776 1092 11,618 58,053 85,054 3055 1054 890 1123 2054
[3, 3] 1974 2851 28,268 88,113 89,110 4911 2110 980 1457 2310
[4, 4] 3712 5420 52,208 98,724 99,904 9944 3904 1151 1679 2990

[m, n] GA H Rα AG1 SK SK1 SK2 GO1 GO2 HGO1 HGO2

[1, 1] 109 955 965 6965 469 965 1450 19,965 66,960 1276 32,167
[2, 2] 254 1054 1053 8053 580 1053 23,618 28,054 78,052 1783 42,678
[3, 3] 310 1110 1113 8113 881 2113 32,261 37,112 88,114 2384 55,678
[4, 4] 504 1904 1724 9724 987 3724 41,205 56,721 98,726 3300 92,174
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interpretations of all topological indices of L(S(H(m, n))) are 
shown in Fig. 4(a-h) for different amount of m, n. Similarly, 
by considering Table 2, the comparison of all topological 
indices for different values of m, n is presented in Fig. 5.

The Zagreb type indices as well as the Zagreb type poly-
nomial indices are beneficial for the calculation of total �
-electron energy of molecules. Thus, it is easy to see from 
Table 2 and Fig. 4(a-e) that in case of L(S(H(m, n))) the 

(a)    (b)    (c)  

(d)    (e)    (f)   

(g)                (h)

Fig. 4   Comparison of indices (a) M1 and M2, (b) HM and A, (c) PM1 and PM2, (d) PM1 and PM2 (e) ABC, SCI and GA, (f) H, Rα and AG1, (g) 
SK, SK1 and SK2, (h) GO1, GO2, HGO1 and HGO2
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total �-electron energy increases for higher values of m, 
n. Hence, we deduce that, to obtain the higher value of �
-electron energy in L(S(H(m, n))), we need to increase the 
amount of m, n.

Since the augmented Zagreb index (AZI) demon-
strates an excellent correlation with the formation heat 
of octane and heptanes, our computation for AZI index 
plays an important role for formation heat of octane and 
heptanes, as its values are in increasing order. The sum 
connectivity index is helpful for testing the pharmaco-
logical properties and substance of drug nuclear struc-
tures. So in the case of L(S(H(m, n))), its increasing 
value is useful for quick action during chemical reaction 
for drugs.

Since the arithmetic–geometric (AG) index is well cor-
related with a range of physicochemical properties of mol-
ecule, in the case of L(S(H(m, n))), the AG index well corre-
lates with a range of physicochemical properties. Harmonic 
and Randic indices are important parameters to assess the 
operation of a power system. So in the case of L(S(H(m, 
n))), its increasing values are helpful to make the system 
more powerful.

Conclusion

In this paper, we have computed certain important 
degree-based topological indices, such as first Zagreb 
index, second Zagreb index, hyper-Zagreb index, first 
multiple Zagreb index, second multiple Zagreb index, 

first Zagreb polynomial, second Zagreb polynomial, 
augmented Zagreb index, ABC (atom-bond connectivity) 
index, sum connectivity index (SCI), geometric–arith-
metic index, harmonic index, Randic indices R�  (L(H)) 
where �  is the real number, arithmetic–geometric (AG1) 
index, SK, SK1, SK2 indices, first and second Gourava 
indices, first and second hyper-Gourava indices for 
the line graph of subdivision graph of H-Naphtalenic 
nanosheet, and derived formulas for them. Based on the 
derived formulas, numerical results are obtained, and 
the physical and chemical properties of the under study 
nanosheet are investigated. These topological indices 
proved to be very helpful in predicting the nanostructure 
for QSAR/QSPR analysis.
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