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High-throughput screening (HTS) represents the

dominant technique for the identification of new lead

compounds in current drug discovery. It consists of

physical screening (PS) of large libraries of chemicals

against one or more specific biological targets. Virtual

screening (VS) is a strategy for in silico evaluation of

chemical libraries for a given target, and can be inte-

grated to focus the PS process. The present work

addresses the integration of both PS and VS, respec-

tively.
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Virtual versus physical (high-throughput) screening

The random physical screening (PS) of compound collec-

tions, that is the in-house database of a pharmaceutical

company, or the catalogs of various chemicals’ vendors,

represented a long-range strategy and was regarded as a

substitute for serendipity [1].

Automated compound handling and assaying facilities

currently enable tasks such as compound retrieval from sto-

rage, dilution and plating of samples; therefore, PS is reaching

its potential to identify hits on a timely basis. While random

screening has enabled some successes, it has not fulfilled

initial expectations. A gross increase in the number of assayed

compounds does not guarantee better productivity per se [2].
Also, PS results are not free from errors and different assay

formats for the same target can give different results [3,4].

The in silico screening of (virtual) libraries of compounds is

conceptually and economically attractive, as it makes pos-

sible the evaluation of an almost unlimited number of che-

mical structures, only a subset of which will be selected and

subsequently assayed in a PS experiment. Typical virtual

screening (VS) methods involve, for example, filtering of

libraries for compounds containing toxic, reactive, or other-

wise undesirable groups, or, by contrast, the search for

molecules with preferred lead- or drug-like properties and

desired activity [5]. In fact, VS is emerging as a key strategy to

help filter out those compounds with poor potency, and

biological or pharmacological properties [6–8]. Recent

reviews suggest that while VS is often presented as an

alternative to PS, both strategies are highly complementary

[5,9].

Integrating virtual and physical screening

The current trend in the pharmaceutical industry is to inte-

grate computational and experimental technologies early in

the drug discovery process [10–13]. For instance, it is con-

sidered that a better and earlier utilization of information,
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Figure 1. Integration of virtual chemistry and screening. A general scheme that shows how a continuous information exchange between different areas

could lead to chemical libraries with more desirable chemical and biological properties. Abbreviation: ADMETox: absorption, distribution, metabolism,

excretion and toxicity evaluation.
that is (i) genomic, (ii) chemical, (iii) biological, (iv) struc-

tural, and (v) molecular property data, would lead to chemi-

cal libraries with more desirable chemical and biological

properties [14,15]. This can be done by integrating informa-

tion from different areas that include: (i) analysis of the gene

or protein family for target selection; (ii) absorption, distribu-

tion, metabolism, excretion and toxicity evaluation (ADME/

Tox); (iii) structural biology; (iv) VS; and (v) medicinal chem-

istry with parallel synthesis (Fig. 1).

Literature reports from 2005 to 2006 show an increased

dependence on the integration VS and PS for identifying

leads in the drug discovery process. Twenty-three represen-

tative studies are summarized in Table 1, which lists (i) the

target studied, (ii) the strategy applied for both VS and PS

methods, (iii) the size of the library evaluated, and (iv) the

results achieved in each project. The last column indicates the

original references.

Table 1 reveals the VS workflow used in most of the studies:

(i) preliminary filtering of a virtual library (tens to hundreds

of thousands of compounds) using various criteria (e.g.

Lipinski’s rule of five); (ii) homology and pharmacophore

modeling; combined with (iii) docking and scoring of the

protein–ligand complexes. For PS methods, assays that are

particular to each specific target were applied, most of them

being based on fluorescence detection. The outcome of these

studies indicates that preliminary VS not only drastically

reduces the number of chemicals that are physically screened,

but also increases the hit rates.
378 www.drugdiscoverytoday.com
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Target selection

VS is a knowledge-driven approach that depends on the

amount and quality of information available about the sys-

tem under investigation. Knowing the structure of the bio-

logical target macromolecule offers many advantages in

comparison with the situation where only information about

the geometry of a bioactive (reference) ligand is available.

When structural information about the target is available

from either fact or inference, we consider this target-based,

or structure-based, virtual screening (TBVS). All other cases

represent ligand-based virtual screening (LBVS), where the

reference compound(s) are known substrates, inhibitors, ago-

nists or antagonists, among others. An important issue in

target selection is the druggability of the molecule under

consideration, and whether the target is amenable to ther-

apeutic intervention via small molecules. One approach is to

assess whether members from the same gene family show

similar binding affinity towards drug-like ligands with related

physicochemical properties [16]; the other approach is some-

times referred as ‘target fishing’ (see J. L. Jenkins, this issue).

With the advent of structural genomics and homology

modeling initiatives [17], the number of potential targets is

expected to grow. For instance, over the last year (2005–

2006), 26 new targets were screened at the NIH Molecular

Libraries Initiative (formerly the Molecular Libraries Screen-

ing Center Network) (http://mli.nih.gov/); more are expected

to be screened within next 2 years.

http://mli.nih.gov/
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Table 1. Overview of recent publications that integrate virtual and physical screening (VS and PS)

Nos. Target Strategy Data set (molecules) Outcome Refs

VS PS VS PS

1 FPRa Homology modeling +

docking + pharmacophore

selection

HypercytTM – high-throughput

flow cytometry

�480,000 4324 30 potential lead cpds (Ki
b = 1 � 32 mM);

4 partial agonists; 26 antagonists;

VS improved the PS hit rate by fourfold

[18]

2 GPR30c 2D + shape + field similarity HypercytTM – high-throughput

flow cytometry

9283 100 1 low nanomolar GPR30 selective agonist [19]

3 Caspase-3 Self-organizing Kohonen

maps

Fluorescence + microtitration 18,073 1233 6 quinoline derivatives as inhibitors;

IC50
d = 4 � 30 nM

[31]

4 b-Amyloid Peptide Docking + scoring ThTe fluorescence �278,000 125 1 potent inhibitor of Ab1-42 fibrillation

(concentration-dependent manner);

IC50 = 35.6 mM

[32]

5 fSARS-CoV Mpro Docking + scoring +

analogue searching

Fluorescence resonance

energy transfer (FRETg)

58,855 50 21 inhibitors; IC50 = 0.3 � 50 mM [33]

6 P-12-LOXh Homology modeling +

docking + scoring

Direct measurement of the

12(S)-HETEi formation

80 10 4 synthetic curcuminoids as

inhibitors; IC50 = 1.7 � 66 mM

[34]

7 FAAHj, MGLk-like in rat

cerebellar membranes

Homology modeling +

docking + scoring

Radiolabeled ligand (FAAH) +

HPLC analysis (MGL)

2376 62 9 FAAH inhibitors; IC50 = 0.52 �
44 mM; 1 MGL-like

inhibitor; IC50 = 31 mM

[35]

8 MDM2l-p53m interaction Druglike filtering +

pharmacophore

searching + docking +

scoring

Fluorescence � polarization-based

(FP-based)

150,000 67 10 inhibitors (Ki < 10 mM);

the most potent has Ki = 120 nM

[36]

9 11b-HSD1n, 11b-HSD2o Pharmacophore

modeling + data

mining + docking

Radiolabeled ligand in (i) lysates

of HEK-293 cellsp, and (ii) intact

transfected HEK-293 cells

1,776,579 30 7 cpds inhibited more than

70% of the activity of

11b-HSD1 (IC50 < 10 mM); 5 out

of those 7 cpds

showed significant inhibition

of 11b-HSD2 (IC50 < 10 mM)

[37]

10 CypAq Focused combinatorial

library design +

docking + scoring

Surface plasmon resonance (SPRr) 85,000 40 4 potent inhibitors of CypA;

IC50 = 2.5 � 6.2 mM

[38]

11 CypA Pharmacophore selection +

docking + scoring

Chymotrypsin-coupled

colorimetric assay

296,387 (3129) 31 5 cpds inhibited more

than 80% of the isomerase

activity of CypA; IC50 = 0.3 � 5 mM

[39]

12 Cysteine protease from

P. falciparum (falcipain-2,

falcipain-3) and L. donovani

Filtering + docking + scoring +

pharmacophore modeling

Fluorescence + flow cytometry 355,000 100 18 cpds active against falcipain-2

(IC50 = 1.4 � 54.3 mM

and falcipain-3

(IC50 = 11.4 � >50 mM); 4 cpds active

against Leishmania donovani

cysteine protease (IC50 = 23.5 � 43.0 mM)

[40]

13 12-hLOs, 15-hLOt Homology modeling +

docking + scoring

Measurement of the rate of

formation of the conjugated

diene products at 234 nm

50,000 20 3 low molar inhibitors of 15-hLO

(IC50 = 6.8 � 18.8 mM) and 2 out of 3

are low molar inhibitors of 12-hLO

(IC50 = 12.3 � 30.7 mM)

[41]

14 ALKu Pharmacophore selection +

docking + scoring +

homology modeling

Amplified luminescent

proximity homogeneous assay

60,000 2677 5-Aryl-pyridone-3-carboxamide

derivatives as novel ALK

inhibitors; IC50 = 0.4 � 19.5 mM

[42]

724 24

15 ACE2v Pharmacophore modeling +

docking + scoring

Fluorescence 63,307 17 6 cpds showed an inhibitory

effect on ACE2; IC50 = 62 �
179 mM

[43]

16 GSK-3bw Docking + scoring +

pharmacophore selection

Kinase-GloTM luminescent

kinase assay + ATPx titration

16,299 (only 5904

were docked)

16,299 90 validated hits (6 clusters) by

PS; VS identified 25–33% of

actives in clusters 1–4 and

failed to pick up any

hit from clusters 5 to 6

[44]

17 DPP-IVy Filtering + pharmacophore

selection + docking + scoring

Fluorescence 800,000 4000 51 active compounds (%inhibition

ranges from 30 to 81.9 at 30 mM);

the hit rate for the actives is

1.28% (VS) and 0.012% (PS)

[45]

www.drugdiscoverytoday.com 379
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Table 1 (Continued )

Nos. Target Strategy Data set (molecules) Outcome Refs

VS PS VS PS

18 COX-2z Pharmacophore modeling +

support vector machine

classification + docking

ELISAaa + monoclonal

antibody + microtitration

�2,7 millions 22 (13 cherry

picked)

3 cpds exhibited an inhibitory

effect in the activity

assay (the most potent

had IC50 = 0.2 � 0.3 mM)

[46]

19 AChEbb Pharmacophore modeling +

docking + scoring

Extract screening (LC-MScc) +

Modified Ellman’s method

47 5 2 cpds were confirmed as weak

actives: (i) 8-deoxylactucin

(IC50 = 308.1 mM), and

(ii) lactucopicrin

(IC50 = 150.3 mM)

[47]

20 HRVdd coat protein Pharmacophore modeling +

docking + scoring +

PCAee-based clustering

Multiple-cycle CPEff inhibition +

microscopic +

spectrophotometric

�60,000 6 6 promising inhibitors;
ggEC50 = 7.3 � 247.1

mmol/L (microscopic),

EC50 = 4.3 � 245.5 mmol/L

(spectrophotometric)

[48]

21 Stat3hh Filtering + docking + scoring Stat3-dependent luciferase

reporter + gel EMSAii

�429,000 100 1 natural product, a deoxytetrangomycin, an

angucycline antibiotic, showed remarkable

inhibition of Stat3 dimerization, DNA

binding, and nucleus translocation as

well as the Stat3-regulated genes

such as Bcl-XL
jj and cyclin D1

[49]

22 EphB2kk Filtering + docking + scoring +

pharmacophore modeling

Frontal affinity chromatography with

mass spectrometry

detection (FAC-MSll)

50,452 468 12 potential inhibitors; IC50 = 5.2 � 250 mM [50]

23 Alpha1Amm Filtering + pharmacophore

modeling + docking + scoring

Radioligand displacement assay 23,000 80 37 hits confirmed (Ki < 10 mM) of

which 3 cpds showed affinity

between 1 and 10 nM

[51]

a Formyl peptide receptor.
b Inhibition constant.
c G protein-coupled receptor 30.
d The half maximal inhibitory concentration, represents the concentration of an inhibitor that is required for 50% inhibition.
e Thioflavin T.
f Severe acute respiratory syndrome coronavirus main protease.
g Fluorescence resonance energy transfer.
h Platelet 12-lipoxygenase.
i 12(S)-hydroxyeicosatetraenoic acid.
j Fatty acid amide hydrolase.
k Monoglyceride lipase.
l Murine double minute 2.
m Tumor protein 53.
n 11b-hydroxysteroid dehydrogenase type 1.
o 11b-hydroxysteroid dehydrogenase type 2.
p Human embryonic kidney epithelial cell line.
q Cyclophilin A.
r Surface plasmon resonance.
s Human platelet-type 12-lipoxygenase.
t Human reticulocyte 15-lipoxygenase-l.
u Anaplastic lymphoma kinase.
v Angiotensin converting enzyme 2.
w Glycogen synthase kinase-3b.
x Adenosine triphosphate.
y Dipeptidyl peptidase IV.
z Cyclooxygenase 2.
aa Enzyme-linked immunosorbent assay.
bb Acetylcholinesterase.
cc Liquid chromatography–mass spectrometry.
dd Human rhinovirus.
ee Principal components analysis.
ff Cytopathic effect.
gg The concentration of a compound where 50% of its maximal effect is observed.
hh Signal transducers and activators of transcription 3.
ii Electrophoretic mobility shift assay.
jj An anti-apoptotic protein of the Bcl-2 (B-cell lymphoma 2) gene family.
kk Erythropoietin-producing hepatocellular B2.
ll Frontal affinity chromatography with mass spectrometry detection.
mm Adrenergic receptor subtype A.
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Table 2. Screening of various class and target focused libraries: brief comparison

Library Library type Compounds Confirmed hits <30 mM Best hit (mM) % Hits

PCLa Specialty set (marketed drugs) 880 1 24 0.11

MLSCN 10Kb Diverse (85% DCc, 10% TLd, 5% SSe) 9993 17 4 0.17

GPCRf Class focused 4959 12 3 0.24

FPRg Target focused (pharmacophore) 4324 30 1 0.70

a A library from the Prestwick Chemical Library.
b A library from the NIH small molecule repository.
c Diverse collection.
e Specialty sets.
d Targeted libraries.
f Library focused for G protein-coupled receptors.
g Library focused for formyl peptide receptor.
Our Center (New Mexico Molecular Libraries Screening

Center: http://screening.health.unm.edu/) has undertaken

projects on several classes of receptors, which include two

GPCRs listed in Table 1 and an integrin, LFA-1. For the formyl

peptide receptor, we compared several strategies including

screening of class-focused (GPCR) and target-focused (FPR)

libraries (Table 2). In the latter case, we used a homology

model with pharmacophore docking to select a compound

library [18]. We recorded active molecules at the rate of 1/880

from the Prestwick Chemical Library (http://www.prestwick-

chemical.com/chem_lib.htm), 17/9993 in a diverse set from

the NIH Small Molecule Repository (http://mlsmr.glpg.com/

MLSMR_HomePage/), 12/4959 in a GPCR class focused

library from ChemDiv (http://www.chemdiv.com/en/pro-

ducts/screening/), and 30/4324 in a target focused library

[18].

In the case of GPR30, where no Target-specific ligand was

known, we performed LBVS on the latter two libraries, using

17b-estradiol as the reference ligand. We ranked the top 100

structures for PS, finding one selective nM affinity agonist

for GPR30 [19] and two ERa/ERb that do not bind to GPR30

(C.G. Bologa, unpublished).

Workflow

The generic workflow shown in Fig. 2 is currently implemen-

ted at the New Mexico Molecular Libraries Screening Center,

and follows the general template presented in Fig. 1. The core

of the system is represented by the ‘screening database’ where

complete information related to the (i) chemical structure

data of the compounds, that is existing in-house or purchased

from different vendors, and (ii) bioactivity data, that is plate

format information and biological screening outcome, is

recorded. The workflow steps are well defined. The biological

team provides the target and the corresponding assay to the

screening team, which is responsible for the PS. Once com-

pounds are registered into the database by the cheminfor-

matics team, plates are created and recorded in the database.

The medicinal chemistry team provides chemistry follow-up

and property optimization.
There is a continuous information exchange between the

screening, cheminformatics, and medicinal chemistry teams.

Based on the outcome from the screening team, the chemin-

formatics team applies VS and post-high-throughput screen-

ing (HTS) analyses to further identify and prioritize

compounds (or chemotypes) for further evaluation. The

medicinal chemistry team verifies the chemical qualitative

chemistry (QC) of the proposed hits and gives feedback to

both the screening and cheminformatics teams. The final

result is represented by the so-called ‘chemical probe’, which

can be an inhibitor, activator or modulator of the studied

target.

VS methods have been comprehensively reviewed [20] (see

I. Muegge, this issue). Therefore, only a brief description is

given here. Our VS workflow is shown in Fig. 3. There are two

main types of VS: (i) target or structure-based virtual screen-

ing (TBVS, or SBVS); and (ii) LBVS.

TBVS is applied when the target (protein, enzyme)

structure is (i) known, based on the crystallographic or

other structural methods, or (ii) built, using homology mod-

eling. The procedure consists of docking a large number

of molecules into the active site of the target, then scoring

the binding affinity. The limiting step in this strategy

is accurate scoring. There are four categories of scoring

functions:
(i) K
nowledge-based methods [21] based on Boltzmann-

weighted Potentials of Mean Force (PMF) derived

from statistical analyses of ligand–receptor interatomic

contacts from Protein Data Bank (PDB: http://www.

rcsb.org/) complexes.
(ii) ‘M
aster equation’ approaches [22] estimate the energetic

contributions of various interaction types in a semi-

quantitative manner.
(iii) R
egression-based methods [23,24] train on bioactives

with known binding mode using sets of ligand–receptor

complexes from the PDB.
(iv) Z
AP is a Poisson-Boltzmann equation solver [25] that

scores ligands while incorporating solvent effects.
www.drugdiscoverytoday.com 381
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Figure 2. Workflow. The strategy implemented at the New Mexico Molecular Libraries Screening Center for the integration of virtual and physical

screening. Abbreviations: QC: qualitative chemistry; SAR, structure–activity relationships.

Figure 3. Virtual library. An example of virtual screening (VS) workflow as implemented at the University of New Mexico, Department of Biochemistry

and Molecular Biology, Division of Biocomputing (http://biocomp.health.unm.edu/).

382 www.drugdiscoverytoday.com
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Box 1. Evaluation criteria to select molecules for chem-
istry follow-up

(i) Chemotype evaluation: This criterion gives higher priority (a) to

chemotypes that occur more in active compounds, compared to the

overall number of tested chemotypes; (b) to chemotypes that are absent

or less present in patents, disclosures and medicinal chemistry (for

intellectual property reasons); and (c) to chemotypes that are generally

regarded as safe, or are less frequent in toxicity databases.

Chemotype evaluation is used to rank families of HTS hits, and is further

applied to (ii) Individual molecule evaluation: Our scheme gives

higher priority (a) to molecules that are in the desired physico-chemical

property range (using methods to compute, e.g. solubility and perme-

ability); (b) to molecules that have high(er) activity, compared to those

that are less active. To the above, (c) we add the chemotype score

computed earlier, for a final composite score that ranks all confirmed or

presumed actives.
Because none of the above schemes has been shown to be

general, it is preferable to use consensus-scoring methods

[26].

LBVS methods start from known bioactives, which can be

inhibitors or activators. Similarity search [27] and classifica-

tion [28] methods can be used to select novel scaffolds (see K.

V. Balakin, this issue). Filtering can be applied (i) forward or

(ii) backward to the hits obtained in the VS campaign. In

forward filtering [29], the selection criteria are used to reduce

the size of the initial library, that is from several millions to

several hundreds or hundreds of test compounds further to be

docked. The backward procedure uses filtering criteria to

prioritize candidates for PS during post-HTS analysis [30].

Testing strategies for the selected compounds can include

does–response characterization and cytotoxicity of the

selected compounds. In our Center, many of the assays are

being set up as high throughput multiplexes so that selectiv-

ity and specificity information against families of targets is

available for individual compounds. The physical properties

of the components to be tested contribute to the screening

strategy because the presence of molecules which are inso-

luble, are aggregators, or are fluorescent, can interfere with

the identification of their activities in the assays.

When screening 100,000 to more than 1,000,000 com-

pound libraries, it is paramount that the assay be optimized

for complexity/simplicity (minimal additions, no wash steps,

simple detection schemes), volume (typically no more than

10 mL, permitting use of 384 or 1536 well plates) and repro-

ducibility (because the library is only screened once or twice).

However, if VS technologies can reduce the library size to 10’s

or 100’s of compounds, many of these constraints are lifted

allowing the use of more physiologically relevant or complex

assays, potentially including whole animal-based assays,

which are recognized as a viable alternative in today’s search

for novel pharmaceuticals. Another issue related to assay

implementation is the selection of in vitro vs. in vivo assays.

Many of the initial hits in enzyme/protein-based in vitro

assays may fail at the cellular or animal level due to stability

or metabolism issues. However, with the development of VS

and post-HTS analysis methods, this can be minimized.

Finally, assay selection has a strong influence on the outcome

of the physical screen. For example, the use of a simple

binding assay screen can yield both agonists and antagonists

of target activity. If only agonists are desired, a functional

assay based on target activity might be preferentially selected.

Post-HTS analysis

The results of both VS and PS can yield a large number (often

in the order of 100–1000) of interesting hits that warrant

further attention. The issue of what molecules to select for

dose–response confirmation is often left with the medicinal

chemist or the biologist, and requires cheminformatics

support. In our center, we apply the following post-HTS
prioritization scheme [30] for chemotype as well as individual

molecule evaluation (See Box 1).

Thus, post-HTS analysis is essentially a practical step

designed to assist the decision-makers to evaluate com-

pounds for further experiments. It should be applied only

to confirmed hits, both at the structure and purity, as well as

at the dose–response level. The final score captures informa-

tion related not only to actives, but also inactives from the

same chemical family, while the intellectual property and

toxicity evaluation schemes are aimed at encoding informa-

tion related to individual chemotypes. At the individual

molecule level, the use of estimated physico-chemical proper-

ties can assist the final prioritization score.

Summary and outlook

The integration of VS and PS technologies is attractive for

both scientific and economic reasons. Scientifically, one can

reduce the search space to rapidly find a solution; economic-

ally, one is no longer required to screen millions of com-

pounds physically, before identifying hits. Negative aspects

of this integration effort are of theoretical and practical

nature. Theoretically, the streamlining of PS may result in

testing the wrong library subset. This relates to both the

limitation of theoretical methods, and to the inappropriate

use of VS technologies. Practically speaking, it is possible

that the entire effort leads to naught; in this case, doubt is

typically cast over in silico approaches, although experi-

mental techniques are not without flaw either. Continuous

information exchange and effective team communication, as

illustrated in Fig. 2, will avoid such negative situations.

Integration of these technologies is further supported by

the increasing amount of valuable information being depos-

ited in target and bioactivity databases (see T.I. Oprea, this

issue). Conceivably, one can apply existing information to

improve the success rate by using, for example, machine

learning techniques to develop target-specific libraries; or

to include target-specific or ligand-specific information in
www.drugdiscoverytoday.com 383
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the post-HTS analysis process, to give higher priority to high-

quality probes; or perhaps to download the entire matrix of

target/bioactivity data and use it to profile compounds.
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