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Abstract: Hypertension is a well-known chronic disease that causes complications such as
cardiovascular diseases or stroke, and thus needs to be continuously managed by using a simple
system for measuring blood pressure. The existing method for measuring blood pressure uses a
wrapping cuff, which makes measuring difficult for patients. To address this problem, cuffless
blood pressure measurement methods that detect the peak pressure via signals measured using
photoplethysmogram (PPG) and electrocardiogram (ECG) sensors and use it to calculate the pulse
transit time (PTT) or pulse wave velocity (PWV) have been studied. However, a drawback of these
methods is that a user must be able to recognize and establish contact with the sensor. Furthermore,
the peak of the PPG or ECG cannot be detected if the signal quality drops, leading to a decrease in
accuracy. In this study, a chair-type system that can monitor blood pressure using polyvinylidene
fluoride (PVDF) films in a nonintrusive manner to users was developed. The proposed method
also uses instantaneous phase difference (IPD) instead of PTT as the feature value for estimating
blood pressure. Experiments were conducted using a blood pressure estimation model created via an
artificial neural network (ANN), which showed that IPD could estimate more accurate readings of
blood pressure compared to PTT, thus demonstrating the possibility of a nonintrusive blood pressure
monitoring system.
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1. Introduction

Hypertension is a well-known chronic disease, which affects approximately 25% of all adults in
the world according to the World Health Organization (WHO) [1]. Unfortunately, most patients do
not know they have hypertension because they do not experience any symptoms until they suffer a
cardiovascular disease or stroke, making hypertension a silent killer. Campaigns to measure blood
pressure are conducted worldwide to alert people about the importance of its management [2].

Since hypertension is a fatal disease that can result in death or disabilities due to cardiovascular
diseases or stroke, it requires an accurate diagnosis and response. A system that can continuously
measure blood pressure to alert patients to the dangers of hypertension is required. However,
the existing method to measure blood pressure uses a cuff wrapped around the arm, making it
cumbersome, and hence, most patients do not measure their blood pressure regularly. Recently,
cuffless blood pressure measurement techniques have been continuously researched to improve
the convenience of measurement [3–5]. The most popular methods for cuffless blood pressure
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measurement involve the use of pulse transit time (PTT), which is calculated using electrocardiogram
(ECG) and photoplethysmogram (PPG) signals.

The PTT has a significantly high correlation with blood pressure [5], and regression analysis
methods for measuring blood pressure using PTT have been researched [6–8]. However, these methods
failed to show sufficient accuracy to be applied in medical devices. Hence, estimation methods using
machine learning and deep learning algorithms have been evaluated to improve the accuracy of blood
pressure estimation [9,10].

However, while estimating blood pressure using PTT, users must consciously make measurements
using ECG and PPG sensors to obtain their blood pressure. To address this issue, techniques for
non-intrusive measuring of biometric signals have been developed, thus improving the convenience
of measurement [11–13]. One of the biometric signals used is the ballistocardiogram (BCG) signal,
which measures the movement of the body during cardiac contraction and relaxation. Studies have
been actively carried out using radar and polyvinylidene fluoride resin (PVDF) films to measure
blood pressure using BCG signals. Further, other studies have estimated blood pressure by calculating
PTT using BCG, PPG, or ECG signals for users seated on a chair [14,15]. However, measuring blood
pressure using PPG cannot be considered as a fully nonintrusive/unrestricted system because the
users must be conscious while measuring their blood pressure, which is inconvenient. This is because
users or patients must attach their finger to PPG sensors in order to enable the measurement of PPG
signals. Therefore, they would be consciously rigid while having their blood pressure measured via
PPG. Moreover, BCG signals are combined with breathing or motion noises, which make it difficult
to capture the maximum peak of BCG, resulting in an error in the calculation of PTT using BCG and
ECG signals.

To solve this problem, this study developed a fully nonintrusive/unrestricted chair-type cuffless
blood pressure monitoring system that utilizes two PVDF films. After measuring two BCG signals from
the two PVDF films, the phase difference between the two signals was calculated using the Hilbert
transform. Blood pressure was estimated via an artificial neural network (ANN) using this phase
difference as a feature value. The applicability of the developed system was verified by comparing the
estimated blood pressure with the results from the existing PTT calculation method.

2. Materials and Methods

2.1. System Summary

In this study, a sofa-type experimental apparatus was fabricated to ensure the measurement of a
stable biometric signal. The weight was supported by a steel plate on an aluminum frame, and PVDF
films were attached to a urethane foam back and a cushion on the seat, which were then covered with
natural leather to create a structure similar to a sofa. The BCG signals were measured in real time
using the PVDF films attached to the experimental apparatus. To confirm that the BCG signals were
measured accurately, the PPG signals were simultaneously measured as a reference by using a PPG
sensor (RP520, Laxtha). The Atmega256 chip (Atmel Corporation, San Jose, CA, USA) was used as
a microcontroller and the sampling frequency was set at 100 Hz. The raw BCG signals were sent to
a computer system (Core i7, Window 10) via Bluetooth (Parani ESD-200, Sena technologies, Seoul,
Korea). The software developed in this study provides features such as noise processing extraction,
as well as modeling and functions of blood pressure estimation. The software was developed on a
MATLAB base. After the training stage, it can estimate blood pressure at intervals of 10 s through the
signals measured via the chair. The concept of the system is illustrated in Figure 1.
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Figure 1. Conceptual diagram of the chair-type unrestricted/nonintrusive blood pressure 
measurement system. The entire system consists of a sensor interface device and a computational 
unit. Ballistocardiograms (BCGs) are measured through the polyvinylidene fluoride (PVDF) films 
from the chair’s back and seat plates and are sent to the computational unit (as indicated by a fine 
line), which then estimates the blood pressure by extracting the features from the two BCG signals. 

2.2. Experimental Procedure 

This study conducted experiments on 30 adults aged 20–50 years (14 men, 16 women) with 
wide ranging attributes (35.3 ± 12.5 years, height: 166.1 ± 9.4 cm, weight: 63.3 ± 12.8 kg). The 
subjects were selected from a group of people with no hypertension. The study was approved by 
the Public Institution Bioethics Committee designated by the Ministry of Health and Welfare of 
South Korea (IRB P01-201812-12-001). 

In the experiments, the stable blood pressures of the subjects were measured simultaneously 
using the experimental sofa and a cuff-type blood pressure monitor (HEM-7121, Omron, Kyoto, 
Japan) after the subjects were given a sufficient rest. The blood pressure was measured five times at 
intervals of 1 min. 

2.3. BCG Signal Processing Using Empirical Mode Decomposition 

BCG signals consist of various other signals such as breathing signals and motion noises, 
particularly many motion noises that occur at low frequencies. Since heartbeat signals can be 
measured in the bandwidth of 0.5–6 Hz, BCG signals without motion noises were obtained in this 
study by applying a third-order Butterworth band-pass filter with cut-off frequencies of 0.5–6 Hz. 
Figure 2 shows the comparison of PPG signals with the filtered BCG signals from the back and seat 
plates. Although the signals underwent preprocessing through a band-pass filter, it is difficult to 
effectively remove the cardiorespiratory signals from the BCG signals. Empirical mode 
decomposition (EMD) was used to remove the noise signals because EMD is known to be a better 
method when compared to wavelet decomposition [16]. As one of the decomposition methods 
proposed by Huang et al. [17], EMD decomposes the signals via intrinsic mode functions (IMFs) 
depending on the level of local frequencies. The decomposed signals are shown in Figure 3. Only 
the first IMF signal was used in this study. The EMD method performs analysis according to the 
following procedure: 

(1) Identify the local maxima and local minima of the given time-series signals. 
(2) Use interpolation to estimate the upper and lower envelopes by connecting the local maxima 

and minima values, respectively. 
(3) Calculate the mean envelope by averaging the upper and lower envelopes determined in the 

above point. 

Figure 1. Conceptual diagram of the chair-type unrestricted/nonintrusive blood pressure measurement
system. The entire system consists of a sensor interface device and a computational unit.
Ballistocardiograms (BCGs) are measured through the polyvinylidene fluoride (PVDF) films from the
chair’s back and seat plates and are sent to the computational unit (as indicated by a fine line), which
then estimates the blood pressure by extracting the features from the two BCG signals.

2.2. Experimental Procedure

This study conducted experiments on 30 adults aged 20–50 years (14 men, 16 women) with wide
ranging attributes (35.3 ± 12.5 years, height: 166.1 ± 9.4 cm, weight: 63.3 ± 12.8 kg). The subjects
were selected from a group of people with no hypertension. The study was approved by the Public
Institution Bioethics Committee designated by the Ministry of Health and Welfare of South Korea
(IRB P01-201812-12-001).

In the experiments, the stable blood pressures of the subjects were measured simultaneously
using the experimental sofa and a cuff-type blood pressure monitor (HEM-7121, Omron, Kyoto, Japan)
after the subjects were given a sufficient rest. The blood pressure was measured five times at intervals
of 1 min.

2.3. BCG Signal Processing Using Empirical Mode Decomposition

BCG signals consist of various other signals such as breathing signals and motion noises,
particularly many motion noises that occur at low frequencies. Since heartbeat signals can be measured
in the bandwidth of 0.5–6 Hz, BCG signals without motion noises were obtained in this study by
applying a third-order Butterworth band-pass filter with cut-off frequencies of 0.5–6 Hz. Figure 2
shows the comparison of PPG signals with the filtered BCG signals from the back and seat plates.
Although the signals underwent preprocessing through a band-pass filter, it is difficult to effectively
remove the cardiorespiratory signals from the BCG signals. Empirical mode decomposition (EMD)
was used to remove the noise signals because EMD is known to be a better method when compared
to wavelet decomposition [16]. As one of the decomposition methods proposed by Huang et al. [17],
EMD decomposes the signals via intrinsic mode functions (IMFs) depending on the level of local
frequencies. The decomposed signals are shown in Figure 3. Only the first IMF signal was used in this
study. The EMD method performs analysis according to the following procedure:

(1) Identify the local maxima and local minima of the given time-series signals.
(2) Use interpolation to estimate the upper and lower envelopes by connecting the local maxima and

minima values, respectively.
(3) Calculate the mean envelope by averaging the upper and lower envelopes determined in the

above point.
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(4) Extract new time-series signals by subtracting the mean envelope determined in the above point
from the original signals. These extracted signals are defined as IMF.

(5) Set the time-series signals from which the extracted IMF is removed as new original signals
and repeat steps (1) to (4). Define the new IMF until the newly designated original signals are
expressed as a monotone function or have only one extreme value and no more new time-series
signals can be extracted.
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2.4. BCG Data Analysis and Feature Extraction

The estimation of blood pressure using PTT is greatly affected by the accuracy of finding the
peak i.e., the blood pressure cannot be estimated correctly if the peak is missed from signals. Hence,
while the peak was not sought, the same features as PTT were extracted from the BCG signals by
using the instantaneous phase difference (IPD) method. Many researchers have used this method to
estimate blood pressure from PPG signals, demonstrating its significant correlation with PTT [18,19].
The instantaneous phase was obtained from the first IMF of the two BCG signals using Hilbert
transform, and then deducted to determine the IPD (see Figure 4). As shown in Figure 4, we extracted
features from the part between the two BCG signals with less phase difference. To determine the PTT
for comparison with IPD, the peak was found by using adaptive threshold detection [20].
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2.5. ANN

To create a blood pressure estimation model, a regression analysis model was created using
an ANN. An ANN is a mathematical model consisting of numerous processing elements with a
hierarchical structure in which the relationships between inputs and outputs are studied by adjusting
the weighted values repeatedly across previous input data and the corresponding output data. It can
be used to estimate a very complex nonlinear function. In fact, a multilayer feed-forward back
propagation ANN with one hidden layer is sufficient for fitting a continuous function. The median
of the IPD value of two BCG signals and personal information (height, weight, age) was entered in
the ANN input layer as the feature values, and 25 neurons of the hidden layer were used. The SBP
and DBP values were estimated from the two output neurons in the output layer. The ANN was
trained using the Levenberg–Marquardt algorithm with 70% of the sample data as training set, 15% as
validation set, and the remaining 15% as testing set. The model was then trained and evaluated via
10-fold cross validation to obtain the optimum model.



Sensors 2019, 19, 595 6 of 9

3. Results

3.1. IPD

To examine the relationship between IPD and blood pressure, the relationship between the median
of the IPD and the systolic blood pressure was observed [19]. As shown in Figure 5, the IPD was
correlated with the blood pressure i.e., the higher the blood pressure, the greater the difference of IPD.
The correlation coefficient between PTT and the systolic blood pressure also suggests that the blood
pressure correlates more with IPD compared to PTT.
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3.2. BP Estimation Model

Table 1 shows the mean error (ME) and standard deviation (STD) calculated using the
results of the BP estimation model created using ANN and the BP results measured with a
commercial cuff-based blood pressure monitor. In this table, the ME and STD values are evaluated
according to the American National Standards Institute/Association for the Advancement of Medical
Instrumentation/International Organization for Standardization (ANSI/AAMI/ISO) 2013 protocol
(ME < 5 mmHg, STD < 8 mmHg) [21]. As shown in Table 1, the mean deviations of the systolic and
diastolic blood pressures are 0.01 mmHg and 0.05 mmHg respectively, and the standard deviations are
6.7 mmHg and 5.8 mmHg respectively, which are within the recommended criteria. These values were
also within the recommended criteria when the BP estimation model was created with PTT as input
values. However, the BP estimation model that used IPD as input values showed a higher accuracy for
the systolic blood pressure, whereas for the diastolic pressure, the model created using PTT obtained
from two BCGs showed a higher accuracy. Figure 6 shows the Bland-Altman plot and the regression
plot of the estimation model using IPD, which display high accuracy.

Table 1. Mean error (ME) and standard deviation (STD) values of systolic and diastolic blood pressures
estimated via pulse transit time (PTT) and instantaneous phase difference (IPD).

Systolic Diastolic

ME STD ME STD

PTT (PPG-BCG1) 0.9805 7.6471 −0.1467 5.5148
PTT (BCG1-BCG2) −0.7616 7.5696 0.0341 4.0625

IPD 0.0123 6.7452 0.0532 5.8317
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4. Discussion and Conclusions

In this study, a chair-type system that can measure blood pressure in a nonintrusive manner
using PVDF films and two BCG sensors was developed. While chair-type blood pressure monitoring
systems have been developed in the past [14,15], most of them had low utility because they require
users to be conscious during measurement. However, the system developed in this study can measure
blood pressure even if the user simply sits on a chair via BCG sensors installed on the back and seat
plates, thus improving convenience. BCG signals have a limitation toward increasing the accuracy of
blood pressure estimation because they are mixed with various noises, and hence cannot accurately
detect peak positions and often fail to capture the PTT. However, the system proposed in this study
could accurately estimate blood pressure (as shown in Table 1) even if it did not capture the location
of the peak because it uses IPD, which is highly correlated with blood pressure as shown in Figure 4.
The system developed in this study also has certain limitations. The number of test subjects is smaller
than the number of subjects (a minimum of 85) recommended for evaluating blood pressure monitors
by the AAMI, and the accuracy for detection of hypertension and hypotension is sometimes low.
This may likely be due to the small sample size, which leads to the belief that the performance can be
improved if more data are collected.

The experimental results of this study showed the possibility of a nonintrusive/unrestricted
blood pressure estimation system, which utilizes IPD. This system can continuously monitor blood
pressure in a nonintrusive manner while the user is simply sitting on a chair. Since this study only
estimated blood pressure in a state of rest, further research is needed in the future to determine whether
the proposed system can accurately measure blood pressure for varying situations, such as a blood
pressure that has returned to a normal level after having been increased during exercise. It should also
be verified for applicability to use for both home and hospital living.
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The following abbreviations are used in this manuscript:

WHO World Health Organization
PTT Pulse Transit Time
ECG Electrocardiogram
PPG Photoplethysmogram
BCG Ballistocardiogram
PVDF Polyvinylidene fluoride resin
ANN Artificial Neural Network
EMD Empirical mode decomposition
IMF Intrinsic mode function
IPD Instantaneous phase difference
ME Mean error
STD Standard deviation
ANSI American National Standards Institute
AAMI Association for the Advancement of Medical Instrumentation
ISO International Organization for Standardization
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