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Objective: To study the expression and DNA methylation of the Glial cell line-derived

neurotrophic factor (GDNF) gene in the development of depression-like behaviors in rats

experiencing maternal deprivation stress in early life.

Methods: Newborn SD rats were randomly assigned to a normal control group (NOR)

or maternal deprivation group (MD). An open field test (OPT), sucrose preference test

(SPT), and a forced swimming test (FST) were used to evaluate rats’ behaviors. Protein,

mRNA, and methylation levels were measured by ELISA/Western blot, real-time PCR,

and BiSulfte Amplicon sequencing PCR, respectively.

Results: MD rats had significantly shorter total distance and more fecal pellets in OPT, a

lower sucrose preference rate in SPT, and a longer immobility time in FST than NOR rats.

Compared with NOR rats, MD rats showed a significantly higher plasma corticosterone

(CORT) level. The levels of plasma dopamine (DA) and the GDNF were significantly lower

in the MD rats than in NOR rats. In the ventral tegmental area (VTA) tissues, MD rats

had a significantly higher level of methylation at the GDNF gene promoter than NOR rats.

The expression of the GDNF mRNA and protein were significantly lower in MD rats than

in NOR rats. The total distance was significantly correlated with plasma DA and GDNF,

the DNA methylation level at the GDNF promoter and the GDNF mRNA level in the VTA.

Fecal pellets showed a significant correlation with plasma CORT. The sucrose preference

rate was significantly correlated with plasma DA, the DNA methylation level at the GDNF

promoter and the GDNF mRNA level in the VTA. Immobility time showed a significant

correlation with the plasma DA, the plasma GDNF and the GDNF mRNA level in the VTA.

Conclusion: up-regulation of DNA methylation at the GDNF gene promotor and the

subsequent down-regulation of the GDNF gene expression in the VTA, may be involved

in the development of depression-like behaviors in rats experiencing MD in early life.
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INTRODUCTION

Major depressive disorder (MDD) is a common psychiatric
disorder with a lifetime prevalence of 3–17% (1). MDD
is characterized by anhedonia, a depressive mood, and
psychomotor retardation. Previous studies on the etiology,
suggest that MDD is multifactorial and involves both genetic and
environmental factors. Epidemiological studies demonstrated
that early life stress is associated with the stress-related
psychopathologies in later life, including depression (2, 3).
However, the effect of early life adversity on depression is poorly
understood, particularly, the influences of both the genetic and
environmental factors.

The monoamine hypothesis proposes that MDD
may be caused by the dysregulation of monoaminergic
neurotransmitters in the central nervous system (CNS) including
serotonin, dopamine (DA), and norepinephrine. Among them,
dopamine is most abundant in the CNS and the body of
dopaminergic neurons is mainly located in the ventral tegmental
area (VTA) and projected to almost the entire brain (4), involved
in the regulation of cognition, motivation, reward, reinforcement
behavior, and emotions (5–7). Numerous studies have observed
the deficiency of the dopaminergic system in patients with
MDD (8–10). In addition, early life adversity influences the
development of the dopaminergic system, followed by an
impairment of its structures and functions (11–13).

The accumulated evidence revealed that the glial cell line-
derived neurotrophic factor (GDNF) can promote the survival
of dopamine neurons (14, 15). Kumar et al. (16) found that
the GDNF can regulate the postnatal developments and adult
functions of the dopamine system. It has been demonstrated
that an exogenous increase of the GDNF level in the CNS,
could increase the number of adult dopamine neurons or its
terminals in the dorsal striatum. In addition, the GDNF can
increase dopamine levels and augment dopamine release and re-
uptake in the striatum (15). Moreover, the epigenetic status of
the GDNF in the nucleus accumbens, is thought to be associated
with the susceptibility and adaptation to chronic stressful events,
and DNA hypermethylation in the promoter of the GDNF gene,
which reduces the expression of the GDNF, and has been revealed
to determine the behavioral responses to chronic stress (17).

To further investigate the epigenetic mechanisms of early life
stress induced depression and to better characterize the role of
the GDNF, maternal deprivation (MD), a well-known paradigm
reflecting early life stress, was employed in this study to establish
an animal model. The sucrose preference, open field, and forced
swimming test were adopted to obtain behavioral data. The levels
of CORT, DA, and the GDNF in plasma were measured, while
the DNA methylation and expression of the GDNF gene in the
VTA, were monitored to determine the relationship between
biomarkers and the behavioral consequences.

Abbreviations: CNS, central nervous system; CORT, corticosterone; DA,

dopamine; ELISA, Enzyme-linked immunosorbent assay; FST, forced swimming

test; GDNF, glial cell line-derived neurotrophic factor; HPA, hypothalamic-

pituitary-adrenal; MDD, major depressive disorder; MD, maternal deprivation

group; OFT, open Field Test; PND, postnatal day; SD, Sprague-Dawley; SPT,

sucrose preference test; VTA, ventral tegmental area.

MATERIALS AND METHODS

Animal and Design
Pregnant Sprague-Dawley rats (SLAC Laboratory Animal Inc.,
Shanghai, China) were housed individually and checked daily
until delivery. The date of birth of the litter was labeled as
postnatal day 0 (PND 0). On PND 1, newborn males were
randomly assigned into two groups: (1) the maternally deprived
stress group (MD,N = 20): these rats were exposed tomaternally
deprived manipulation from PND1 to PND14; (2) the normal
control group (NOR, N = 20): these rats were not exposed to
any stress conditions. The behavior of rats was measured on
the 10th week by a sucrose preference, open field, and forced
swimming test. The experiment schedule is shown in Figure 1.
The experimental animal protocol was approved by the Animal
Ethics Committee of Central South University. All rats were
housed with water and food available ad libitum on a 12 h
light/dark cycle (lights on 7:00–19:00 h).

Maternal Deprivation (MD)
The MD paradigm was designed as previously described (18).
Briefly, litters were deprived from dams for 6 h daily from
PND 1 to PND 14 (the deprivations assigned at 9:00–15:00).
To block communication among littermates, pups were placed
individually in a single cell (8 × 8 × 14 cm for each cell) and
covered with dry sawdust. At the end of the deprivation period,
litters were returned to their maternal cages. All experiments
were carried out in a temperature-controlled room (30◦C).

Open Field Test (OFT)
The open-field test was conducted within a rectangular area
(50 × 83 × 56 cm) as previously described (18). At the start
of the test, animals were placed at the center of the arena
and were allowed to crawl freely. The behavior of rodents
was monitored for 5min, by a video camera mounted on
the ceiling above the center of the arena (Ethovision 1.50,
Noldus IT, Wageningen, Netherlands). The total distance,
vertical counts, percentage of central distance, and fecal pellets
were recorded by the computerized tracking system to assess
locomotor activity, exploration, and anxiety levels, respectively.
After each trial, the box was thoroughly cleaned with 75%
ethanol.

Sucrose Preference Test (SPT)
The SPT was conducted as previously described (18). Rats
were kept individually and given free access to two bobbles of
water. On the first day, two bottles of tap water were placed
in every cage. One bottle of tap water was replaced with a
1.5% sucrose solution on the second day. On the third day,
rats were deprived of water for 23-h, and then a bottle of
1.5% sucrose water and a bottle of tap water were given to
the rats at a random location in the cage for the last 1-h.
The consumption amount of total water and a 1.5% sucrose
agent were determined in the last 1-h. The sucrose preference
rate was calculated according to the following equation: sucrose
preference rate = sucrose intake (g)/[(sucrose intake (g) + tap
water intake (g)].
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FIGURE 1 | Experiment schedule. OFT, open-field test; SPT, sucrose preference test; FST, forced swimming test; PND, postnatal day; SD rats were assigned to two

groups: the normal control group (NOR) and the maternal deprivation stress group (MD).

Forced Swimming Test (FST)
Rats were placed in an open cylindrical container (35 × 32 cm)
with water of 29 cm depth and a temperature of 24± 1◦C, and the
experiment was conducted as previously described (18). There
was a 15-min practice round before the day of the test. At the
same time on the following day, rats were placed in the swimming
container individually for a 6-min test. The activities of rats were
record by a video camera.When the rat floated without struggling
and kept its head above the water, the time spent was defined as
the immobility time. The immobility time was recorded in the
last 5min in a 6-min test to assess behavioral despair.

Enzyme-Linked Immunosorbent Assay
(ELISA)
Animals were euthanized with an overdose of pentobarbital
on the next day of the behavioral test. Blood was collected
into EDTA (ethylenediaminetetraacetic acid) tubes via cardiac
puncture under deep anesthesia. The plasma was collected by
centrifugation of the blood at 1,500 rpm for 5min at 4◦C and
kept at−80◦C until testing. The concentration of CORT, DA, and
the GDNF in plasma was detected using a Corticosterone EIA
Kit (Cayman, Germany), Rat dopamine, DA ELISA kit (R&D,
USA) and a Rat GDNF ELISA kit (Sigma, USA) following the
manufacturers manual instructions, respectively.

Real-Time Reverse Transcription
Quantitative PCR (qRT-PCR)
According to the rat brain in stereotaxic coordinates, the
whole ventral tegmental area (VTA) tissue was immediately
collected after blood collection. The total RNA was isolated
from the dissected brain tissue according to the standard
Trizol (Life Technologies) protocol. qRT-PCR was performed
as previously described (18). The sequencing primers were
ttcaagccaccatcaaaagac and gtagcccaaacccaagtcagt for the GDNF,
cacccgcgagtacaaccttc (Forward) and cccatacccaccatcacacc
(reverse) for β-actin. The data analysis was performed using
the comparative 11CT method. β-actin mRNAs were used as
internal control.

Western Blot
The VTA tissues were homogenized in ice-cold homogenization
buffer containing protein and phosphatase inhibitors and a
Western blot was performed as previously described (18).
Antibodies for the GDNF protein were purchased from Abcam
(Cambridge, MA, USA). To control for loading efficiency, the

blots were stripped and reprobed with a β-actin antibody.
Proteins were normalized to β-actin.

DNA Isolation and DNA Methylation
Analysis
Genomic DNA was isolated from the VTA tissues using
a proteinase K/phenol-chloroform extraction method and
dissolved in TE buffer. CpG islands in the promoter of the
GDNF gene were selected: (1) 200 bp minimum in length; (2)
50% or higher GC content; and (3) 0.60 or higher ratio of
observed/expected dinucleotides. Two regions including CpG
islands were finally selected and sequenced. Both CpG islands are
highly conserved in mice, rats, and humans. BiSulfte Amplicon
sequencing PCR was used for quantitative methylation analysis.
The methylation level at each CpG site was calculated as the
percentage of the methylated cytosines over the total tested
cytosines. The average methylation level was calculated.

Statistical Analysis
Data were analyzed using the statistical software SPSS 17.0 and
expressed as mean ± S.D. The Students’ t-test was used to
detect a statistical significance between two groups. Correlations
between biomarkers and behavioral indexes were analyzed using
the Pearson correlation. A p< 0.05 was considered as significant.

RESULTS

The Long-Term Effect of Maternal
Deprivation on Rats’ Behaviors in
Adulthood
In open field test, the total distance was significantly shorter in
MD rats than in NOR rats (t = −3.75, p = 0.001; Figure 2A).
The number of fecal pellets in MD rats was significantly more
than in NOR rats (t= 2.34, p= 0.03; Figure 2B). While there was
no significant difference of vertical counts (t = −0.63, p = 0.54;
Figure 2C) and the percentage of central distance (t = −1.42,
p= 0.17; Figure 2D) between theMD group and the NOR group.

In the sucrose preference test, the sucrose preference rate was
significantly lower in MD rats than in NOR rats (t = −3.45,
p= 0.002; Figure 2E).

In the forced swimming test, MD rats showed significantly
longer immobility time than NOR rats (t = 2.53, p = 0.02;
Figure 2F).

Frontiers in Psychiatry | www.frontiersin.org 3 January 2019 | Volume 9 | Article 732

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Zhang et al. GDNF and Maternal Deprivation

FIGURE 2 | Maternal deprivation (MD)-induced behavioral changes in adult rats. (A) Total Distance in the open field test. (B) The number of fecal pellets in the open

field test. (C) Vertical counts in the open field test. (D) The percentage of central distance in the open field test. (E) Sucrose preference rate in the sucrose preference

test. (F) Immobility time in the forced swimming test. *p < 0.05 vs. the normal control (NOR) group.

The Long-Term Effect of Maternal
Deprivation on CORT, DA, and GDNF Level
in Plasma of Adult Rats
The concentration of the plasma CORT in MD rats was
significantly higher than that in NOR rats (t = 3.17, p = 0.01;
Figure 3A). While compared with the NOR group, there were
significantly lower levels of DA (t=−3.45, p= 0.006; Figure 3B)
and the GDNF (t = −2.27, p = 0.047; Figure 3C) in the plasma
of the MD group rats.

The Long-Term Effect of Maternal
Deprivation on DNA Methylation of the
GDNF Gene Promotor, the GDNF mRNA,
and Protein in the VTA of Adult Rats
The methylation levels of CpG sites within the GDNF promoter
were measured and the results revealed a significantly higher

percentage ofmethylated clones in the VTA ofMD rats compared
with NOR rats (t = 6.55, p < 0.001; Figure 3D) Concomitantly,
The expression of the GDNF mRNA (t = −3.81, p = 0.003;
Figure 3E) and protein (t = −2.61, p = 0.026; Figure 3F) in the
VTA of MD rats were both significantly lower than that in NOR
rats. Furthermore, the GDNF mRNA expression is negatively
correlated with the methylation at the gene promoter (r=−0.64,
p < 0.05).

The Correlation Between Behavior Indexes
and Biomarkers
The total distance significantly correlated with the plasma DA
level (r = 0.74, p < 0.01), the plasma GDNF level (r = 0.61,
p < 0.05), the DNA methylation level at the GDNF promoter
(r=−0.66, p< 0.05) and the GDNFmRNA level (r= 0.769, p<

0.01) in the VTA. The number of fecal pellets showed a significant
correlation with the plasma CORT (r = −0.75, p < 0.01). The
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FIGURE 3 | Corticosterone (CORT), Dopamine (DA), and the Glial cell line-derived neurotrophic factor (GDNF) gene expression and methylation. (A) Plasma CORT

concentration. (B) Plasma DA concentration. (D) Plasma GDNF concentration. (D) The total methylation level at the GDNF promoter in the ventral tegmental area

(VTA) tissue. (E) The GDNF mRNA level in the VTA tissue. (F) Western blot of the GDNF expression in the VTA tissues. *p < 0.05 vs. the NOR group.

sucrose preference rate was significantly correlated with the
plasma DA level (r = 0.65, p < 0.05), the DNA methylation
level at the GDNF promoter (r = −0.67, p < 0.05) and the
GDNF mRNA level (r = 0.71, p < 0.05) in the VTA. Immobility
time showed a significant correlation with the plasma DA level
(r = −0.58, p < 0.05), the plasma GDNF level (r = −0.61, p <

0.05) and the GDNF mRNA level (r = −0.68, p < 0.05) in the
VTA (Table 1).

DISCUSSION

Anhedonia is one of the core symptoms of MDD (19), and was
examined in this study using a sucrose preference test. Results
showed that MD significantly decreased the sucrose preference
rate. The behavioral despair in MD rats were reflected by the
increased immobility time during the forced swimming test (20).
Our findings suggest that early life maternal deprivation has

a long-term effect on rodent behaviors and induce depressive-
like behaviors in adult rats. The locomotor activity, exploration,
and anxiety level were reflected by the total distance, vertical
counts, percentage of central distance and fecal pellets in the open
field test, respectively. In this study, early life maternal deprived
rats showed a significantly shorter total distance and more
fecal pellets. The results indicate that MD increased anxiety-like
behaviors and decreased locomotor activity, which is consistent
with the psychomotor retardation and anxiety in depressive
patients. Altogether, these results indicate that early life maternal
deprivation has a long-term effect on rats’ behaviors and induce
depression- and anxiety-like behavior in adulthood, which is
similar as our previous studies (3, 13, 21).

Previous studies have shown that the hypothalamic-pituitary-
adrenal (HPA) axis is involved in individual experiences
of psychological stress (22). Corticosterone (CORT), as a
glucocorticoid, is widely used to reflect an individual stress
response. In this study, rats exposed to early life maternal
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TABLE 1 | Correlation between biomarkers and behavioral indexes (r).

Total distance Fecal pellets Sucrose

preference rate

Immobility

time

In plasma CORT −0.09 0.75** −0.38 0.42

DA 0.74** −0.19 0.65* −0.58*

GDNF 0.61* −0.20 −0.09 −0.61*

In VTA Methylation level of GDNF promoter −0.66* 0.38 −0.67* 0.45

GDNF mRNA level 0.77** −0.16 0.71* −0.68*

GDNF Protein level 0.54 −0.24 0.16 −0.41

*p < 0.05, **p < 0.01.

deprivation stress still had a significantly higher level of plasma
CORT in adulthood, indicating that early life stress can induce
long-term high levels of CORT. This result is consistent with
previous studies, that indicate that early life adversity affects
the individual HPA axis and induces an aberrant stress coping
style in individuals. Furthermore, the plasma CORT level showed
a significant correlation with anxiety-like behaviors, which
suggests that CORT levels not only reflect individuals in a status
of stress, but also reflects an individual’s high level of anxiety.

Dopamine is an important neurotransmitter in the brain,
which is closely related to stress-induced depression. Many
studies have found that early life stress can induce abnormal
changes in the dopaminergic system (18, 23). In the current
study, maternal deprivation stress significantly reduced plasma
dopamine concentration. When the dopaminergic system in the
CNS is damaged, such as the dopaminergic neuron, the secretion
of the dopamine and the blood that enters through the blood-
brain barrier both decrease. Therefore, low levels of dopamine
in the blood reflect the abnormality of the central dopamine
system to some extent. In addition, the level of plasma dopamine
was significantly correlated with the rate of sucrose preference,
immobility time and the total distance inMD rats, suggesting that
maternal deprivation stress-induced depression-like behaviors
may be closely related to the inactivation of the dopamine system.

It has been found that the GDNF plays a crucial role in
the nutritional support of central dopaminergic neurons and
can promote the development and repair of dopaminergic
neurons (24). Human and animal studies have shown that
high expression of the GDNF can promote the growth of
transplanted dopaminergic neurons and alleviate the damage of
the dopaminergic system induced by psychological stress (25, 26).
In this study, maternal deprivation stress down-regulated the
plasma GDNF level, and the expression of the GDNF mRNA
and protein in the VTA. The expression of the GDNF mRNA
in the VTA was significantly correlated with anhedonia, despair,
and locomotor activity, suggesting that the GDNF is associated
with maternal deprivation-induced depression-like behaviors. A
recent study has demonstrated that the GDNF is important for
the pathogenesis of depression, such as the decrease of the GDNF
protein and mRNA expression in the serum and hippocampus
of depressive individuals (27). According to previous studies
on the effect of the GDNF on dopaminergic neurons, it was
suggested that early life stress down-regulates the expression of

the GDNF gene in the VTA, subsequently impair the nutritional
effect of the GDNF on the growth and function maintenance of
dopaminergic neurons, destroy the repairing effect of the GDNF
on the damaged dopaminergic neurons, which finally leads to the
onset of depression-like behavior.

Increasing evidence suggests that aberrant transcription
regulation, such as the epigenetic regulation of some critical
genes in the brain, is a key component in the pathophysiology
of depression (28, 29). DNA methylation of genes could
trigger the development of depression symptoms in response to
psychological stress (30–33). The results in this study showed that
MD rats had a high level of DNA methylation at the promoter
of the GDNF gene in the VTA which may down-regulate the
expression of theGDNF gene. Furthermore, themethylation level
of the GDNF gene correlated with anhedonia and locomotor
activity, suggesting that a high level of DNA methylation in
the GDNF gene in the VTA, may be one of the regulatory
mechanisms of maternal deprivation-induced adult depression
in rats. A study by Uchida et al. (17) showed that epigenetic
regulation of the GDNF promoter in the NAc is associated with
the susceptibility and the adaptation responses to chronic stress.
Collectively these data indicate that long-term changes in the
GDNF expression, induced by early life maternal deprivation,
may be the underlying factor that increases the probability of
developing psychopathology later in life.

In conclusion, up-regulation of the DNA methylation at the
GDNF gene promotor and the subsequent down-regulation of
the GDNF gene expression in the VTA, may be involved in the
development of depression-like behaviors in rats experiencing
maternal deprivation in early life.
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