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Abstract: Mimicking natural structures has been highly pursued recently in composite structure
design to break the bottlenecks in the mechanical properties of the traditional structures. Bone has
a remarkable comprehensive performance of strength, stiffness and toughness, due to the intricate
hierarchical microstructures and the sacrificial bonds within the organic components. Inspired
by the strengthening and toughening mechanisms of cortical bone, a new biomimetic composite
structure, with a designed progressive breakable internal construction mimicking the sacrificial
bond, is proposed in this paper. Combining the bio-composite staggered plate structure with the
sacrificial bond-mimicking construction, our new structure can realize tunable stiffness and superior
toughness. We established the constitutive model of the representative unit cell of our new structure,
and investigated its mechanical properties through theoretical analysis, as well as finite element
modeling (FEM) and simulation. Two theoretical relations, respectively describing the elastic modulus
decline ratio and the unit cell toughness promotion, are derived as functions of the geometrical
parameters and the material parameters, and validated by simulation. We hope that this work can lay
the foundation for the stiffness tunable and high toughness biomimetic composite structure design,
and provide new ideas for the development of sacrificial bond-mimicking strategies in bio-inspired
composite structures.

Keywords: biomimetic composite structure; sacrificial bond mimicking; tunable stiffness; superior
structure toughness

1. Introduction

Biological materials, such as bone in mammals and nacre in shells, have attracted constant
research interest for their excellent combination of strength, stiffness and toughness [1–5]. For example,
bone is a composite material made up of collagen (30%–45% by volume), apatite crystals (30%–50%
by volume) and small amounts of non-collagenous proteins [6,7]. The Young’s modulus is about
10 GPa, and the tensile strength is about 80–120 MPa [6–9]. The key reason for its excellent mechanical
performance owes to the “staggered lamellae layer”, an intricate hierarchical micro-structure inside
the cortical bone [10–14]. Besides this, it has also been revealed that the sacrificial bonds within the
organic components are among the important factors which account for its excellent energy dissipating
mechanisms [15–19]. Sacrificial bonds are defined as relatively weak bonds (and often reversible) that
rupture before strong bonds fail under deformation [20]. A load applied to the biological materials
would lead to the rupture of sacrificial bonds, which means a huge amount of energy dissipation and a
promotion of the toughness of the biological. Meanwhile, due to the retention of strong bonds, the
strength of the biological materials would rarely be influenced.
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Jäger et al. [7] first proposed a two-dimensional model to mimic the “staggered lamellae layer”
microstructure within bone, in which hard plates were staggered in soft matrix. This simplified
“biomimetic staggered structure” was also proved to be effective, mimicking other biological materials,
such as nacre and spider silk fibers, and then improved and widely used in the design and analysis
of biomimetic structures. Most optimizations of the classic “biomimetic staggered structure” focus
on the shape and size of the constituent part. Gao et al. [21,22] firstly established a simplified
one-dimensional analytic model to analyze the mechanical properties of the “biomimetic staggered
structure”. The critical “overlapped length” was derived, which was proven as a crucial structure
parameter affecting biological structural strength and toughness. Kim et al. [23] proposed an extended
“shear-lag” analytic model for the elastic properties of the “biomimetic staggered structure”. With their
more detailed analysis of the stress distribution in the “biomimetic staggered structure”, they reached
the conclusion that the mechanical weak points of this structure should be located at the “middle point
of the hard plate” and the “joint of the two hard plates”. Inspired by the diamond-shaped micro-pores
in the cortical bone, Hao et al. [24,25] proposed a new “biomimetic staggered structure” with optimized
geometric configuration of the “hard plate”, and established its constitutive model. Through theoretical
analysis and FEM simulation, they showed that this new biomimetic structure could eliminate the
stress concentration at the middle point of the hard plate. Wei et al. [26] considered how the ductility of
the matrix in shear deformation plays an important role in the mechanical properties of the “biomimetic
staggered structure”. They first presented an analytical model taking the matrix plasticity and failure
into account. With rigorous derivation, their analytical model predicts characteristic overlap lengths
that optimize the mechanical performance in a variety of natural materials with very different geometric
structures and at a range of different length scales. Their analytical model found a good agreement
compared with experimental measurements of three natural materials, i.e., nacre, collagen molecules,
and spider silk fibers.

However, as we mentioned before, the simultaneous high toughness and strength of the cortical
bone not only related to its microstructure configuration, but also to its unique biological function,
such as the “sacrifice bond”. In our study about the toughening mechanism of the cortical bone, [14]
the influence of micro-structure and micro-crack within the “staggered lamellae layer” was especially
analyzed. At a micrometer scale it was found that some tiny cracks, appearing under load, can
help dissipating energy and lead to the toughness promotion in the direction perpendicular to the
micro-crack [14,27–29]. This meso-scale phenomenon is similar to the “sacrificial bonds properties” at
the molecular scale, to some extent. Therefore, adding a biological function to the classic “biomimetic
staggered structure” is a promising design and optimization strategy.

Inspired by the hierarchical micro-structure of cortical bone and the “sacrificial bonds” phenomena,
we took advantage of the breakage of the mechanical weak points, i.e., the “joint of the two hard
plates” to realize biological function. As shown in Figure 1, we proposed a new biomimetic composite
structure mimicking the “sacrificial bonds” phenomena, and established its mechanical model. This new
“biomimetic staggered structure” could dissipate part of the work of the external load with the designed
progressive breakage of the “joint part”, while maintaining the bearing capacity to some extent.
Therefore, this new “biomimetic staggered structure” can realize superior structure toughness and the
tunable structure stiffness.

With the established constitutive model of the unit cell of our new “biomimetic staggered
structure”, we studied the relationship between its mechanical properties and its structural parameters.
Although we have not built a laboratory sample of the new “biomimetic staggered structure” for
experimental testing, an FEM simulation was carried out to verify the effectiveness of the designed
structure. The FEM simulation results agreed well with our theoretical analysis. Ultimately, we wish to
put forward a new design and optimization idea for meso/macro-scale biological structures, mimicking
“sacrificial bonds” to achieve superior toughness and tunable stiffness mechanical properties.
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Figure 1. (a) Schematic image of our biomimetic composite structure under uniaxial tensile load. (b) 
The unit cell defined in this paper, with the region partition 1 to 5 and coordinate definitions. 
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are shown in Figure 2b. In a unit cell at “phase 0”, there are “hard plate” (in Regions 1,2 and 4), “shear 
part” (in Region 3), and “joint part” (in Region 5). We make the simplification that “hard plate” and 
“joint part” can only hold normal stress, while “shear part” only hold shear stress under uniaxial tensile 
load. We assume that all parts maintain the characteristics of linear elastic deformation. Moreover, 
under our design the “joint part” is the only breakable region, and the fracture form is brittle fracture. 
Therefore, the “maximum tensile stress principle” was taken as the failure criterion for the “joint part”. 

Figure 1. (a) Schematic image of our biomimetic composite structure under uniaxial tensile load.
(b) The unit cell defined in this paper, with the region partition 1 to 5 and coordinate definitions.

2. Mechanical Model and Theoretical Analysis

Considering the periodicity and symmetry of our structure, we take a unit cell, as defined in
Figure 1b, to establish the constitutive model, and further analyze the trends in structure parameters
and mechanical response. We defined two phases for a unit cell, “phase 0”: before the “joint part”
breakage; and “phase 1” after the “joint part” breakage. With the designed progressive breakage
happening under load, the unit cells would change from “phase 0” to “phase 1” one by one. These will
reflect the structure parameters (such as stiffness and toughness) of the whole biomimetic structure
changing gradually.

2.1. Mechanical Model of Unit Cell

2.1.1. Unit Cell at “Phase 0”

The geometry and material parameters of a unit cell at “phase 0” are shown in Figure 2a. Stress
definitions and distribution in a deformed unit cell under uniaxial tensile load, with region partition,
are shown in Figure 2b. In a unit cell at “phase 0”, there are “hard plate” (in Regions 1,2 and 4), “shear
part” (in Region 3), and “joint part” (in Region 5). We make the simplification that “hard plate” and
“joint part” can only hold normal stress, while “shear part” only hold shear stress under uniaxial tensile
load. We assume that all parts maintain the characteristics of linear elastic deformation. Moreover,
under our design the “joint part” is the only breakable region, and the fracture form is brittle fracture.
Therefore, the “maximum tensile stress principle” was taken as the failure criterion for the “joint part”.

As defined in Figure 2a, dimension b is the half thickness of “hard plate” and “joint part”, h is
the thickness of the shear part; la is the length of the shear part (also the uniformly overlapped length
of the hard plate); 2la is the length of the “joint part” (also the non-overlapped length of the hard
plate). In this study, a uniformly overlapped structure assumption is due to the more efficient load
transfer capability [30,31]. The tensile modulus for “hard plate” and “joint part” are denoted as Em

and Ee; while the shear modulus for “region 3” are denoted as G. To easily describine the mechanical
model, we also defined several non-dimensional geometrical and material parameters. The geometrical
parameters are: the “hard plate” overlapped length to thickness ratio ρ = la/b; the “Region 3” length to
thickness ratio λ = la/h; the “hard plate” overlapped length to non-overlapped length ratio η = la/lb;
and the approximate volume fraction of “hard plate” φ = 2b/(2b + h). The material parameters are:
the “joint part” tensile modulus to “hard plate” tensile modulus α = Ee/Em; and the “Region 3” shear
modulus to “hard plate” tensile modulus β = G/Em.
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Figure 2. Schematic image of the unit cell at “phase 0”. (a) The geometry and material parameters are
defined on the undeformed unit cell. (b) The region partition 1 to 5 is defined on the deformed unit cell,
where Regions 1, 2 and 4 are “hard plate” material, region 3 is “share part” material and Region 5 is
“joint part” material. σi (i = 1, 2, 4, 5) and τ are respectively, the normal and shear stress distributed
in every region, under uniaxial tensile stress. Origin “o” and “x-axis” is the coordinate defined while
establishing the constitutive model.

At “phase 0”, under the coordinate defined in Figure 2b, we established the constitutive model of
the unit cell, applying the well-known ‘shear-lag’ model [26].

b dσ1(x)
dx = −τ

b dσ2(x)
dx = τ

τ = G
h (u2(x) − u1(x))

(1)

where the subscripts stand for the region number.
When considering the boundary conditions, because of the uniformly overlapped staggered

configuration, we assumed that stress in Region 4 (σ4) and Region 5 (σ5) were both uniform. Under this
assumption, a boundary condition can be written as

σ1(0) = σ2(la) = σ4 (2)

The other boundary condition was obtained by considering the force equilibrium between Region
5 and the left end of Region 2 (or the right end of Region 1).

σ1(la) = σ2(0) = σ5 =
Eehb
Glb

dσ2(0)
dx

+
Ee

Em
σ4 (3)

From the force equilibrium of the whole unit cell, σ4 and σ5 should correspond to the
following equation

φ

2
(σ4 + σ5) = σ (4)

whereφ = 2b/(2b + h) is the approximate volume fraction of “hard plate”, andσ is the volume-averaged
stress in the unit cell under uniaxial tensile load.

Solving Equation (1) with boundary conditions Equations (2) and (3), and simplified with Equation
(4); we obtained the stress distribution in Regions 1,2 and 3, at “phase 0”:

σ1(x) = σ
φ

(
1 +

(α−1)Ksinh
(
K 2x−la

la

)
αη cosh(K)+(α+1)Ksinh(K)

)
σ2(x) = σ

φ

(
1−

(α−1)Ksinh
(
K 2x−la

la

)
αη cosh(K)+(α+1)Ksinh(K)

)
τ(x) = σ

φ

(
(1−α)βλ cosh

(
K 2x−la

la

)
αη cosh(K)+(α+1)Ksinh(K)

) (5)
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where α = Ee/Em, β = G/Em, ρ = la/b, λ = la/h, η = la/lb are the non-dimensional geometrical or
material parameters defined before; K is a non-dimensional parameter that represents the complex
geometrical and material effects of Regions 1, 2 and 3.

K =

√
Gla2

2Embh
=

√
βρλ

2
(6)

Combining Equations (2)–(4), we obtained the uniform stress in Regions 4 and 5. σ4 = σ
φ

(
αη+2Ktanh(K)

αη+(α+1)Ktanh(K)

)
σ5 = σ

φ

(
αη+2αKtanh(K)

αη+(α+1)Ktanh(K)

) (7)

2.1.2. Unit Cell at “Phase 1”

Next, we established the changed constitutive model of a unit cell at “phase 1”, also under the
uniaxial tensile load. In the unit cell at “phase 1”, the Region 5 was breaking under deformation and
there was only “hard plate” (in Regions 1,2 and 4) and “shear part” (in Region 3), as shown in Figure 3.
Moreover, all the geometrical and material parameters of the unit cell can be inherited from “phase 0”.
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are inherited from Figure 2. (a) Stress only distributed in Regions 1, 2, 3, 4 because of the breakage of
Region 5. Origin “o” and “x-axis” represent the coordinate.

For unity of the analysis, we used the “shear-lag” model in Regions 1, 2, 3 and then determined
the uniform σ4. Therefore, under the coordinate defined in Figure 3, the shear-lag model in Regions 1,
2 and 3 should still be written as Equation (1).

However, the boundary conditions would change as the following:

σ1(0) = σ2(la) = σ4 (8)

σ1(la) = σ2(0) = 0 (9)

Moreover, from the force equilibrium of the whole unit cell, σ4 should be derived as

σ4 =
2
φ
σ (10)

Solving Equation (1) with boundary conditions Equations (8) and (9), and simplified with
Equation (10), we obtained the stress distribution in Regions 1, 2 and 3 at “phase 1”.

σ1(x) = σ
φ

(
1 + cosh

(
K 2x

la

)
− coth(K)sinh

(
K 2x

la

))
σ2(x) = σ

φ

(
1− cosh

(
K 2x

la

)
+ coth(K)sinh

(
K 2x

la

))
τ(x) = 2σ

φρKcsch(K) cosh
(
K
(
1− 2x

la

)) (11)
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2.2. Unit Cell Elastic Modulus Analysis

Taking the unit cell as the basic building block of our biomimetic structure, then the structure
stiffness can be defined by the material parameters and the geometrical parameters of the unit cells.
Therefore, it is necessary to study the elastic modulus of the unit cell.

Following the definition of Hill [32], the volume-averaged stress σ = 1
V

∫
V σdV and strain

ε = 1
V

∫
V dV of a unit cell at both “phase 0” and “phase 1” were calculated separately, where V is the

volume of a unit cell. Then, we obtained the effective elastic modulus (E) of the unit cell, at “phase 0”

and “phase 1”, denoted as E
0

and E
1
, in terms of non-dimensional parameters.

At “phase 0”

E
0
= φEm

(η+ 2)[αη+ (α+ 1)A]

(α+ 1)η+ 4A + η[αη+ (α+ 1)A]
(12)

where A = Ktanh(K) is a non-dimensional parameter for written simplicity.
At “phase 1”

E
1
= φEm

(η+ 2)A
(η+ 4)A + η

(13)

Combining E
0

and E
1

E
0
− E

1
=

φEmα(η+ 2)(η+ 2A)2

((η+ 4)A + η)((αη+ η+ 4)A + (αη+ α+ 1)η)
> 0 (14)

This formula indicates that the effective modulus of the unit cell must decline when the unit cell
changes from “phase 0” to “phase 1”, and the decline ratio is written as below.

E
1

E
0 =

(
η+

(α+1)η+4A
αη+(α+1)A

)
A

η+ (η+ 4)A
(15)

Considering the convenience of the following simulation process and the improvement of the
structure, the non-dimensional materials parameters α and β were referred to resin and rubber-like
materials, which were widely used in the polyject method 3D-printing. On the other hand, the structural
geometric configuration parameters are calculated by the theoretical model after the material parameters
are determined, which can clearly reflect the changing trends of the equivalent elastic modulus and
structural toughness of the designed structure. We chose the non-dimensional geometrical parameter
η and the non-dimensional material parameter α as the independent variables, and studied their

influence on E
0
, E

1
and the effective modulus decline E

1
/E

0
. Besides α and η, other non-dimensional

parameters used for plotting Figure 4 are listed in Table 1.

Table 1. The value of the non-dimensional parameters set for analysis.

Non-Dimensional Parameters η α β ρ λ φ A

Value 5–500 0.01–0.1 0.4 2 10 0.9091 1.928

It is shown in Figure 4a that, as η increases, both E
0

and E
1

would increase with an attenuated
increase rate, and finally approach their limiting value, derived by Equations (16) and (17) respectively.
We particularly defined several critical values of ηc upon differtent paramaters. First of all, we denoted

the critical value of η for E
1

as ηc. As η is the only influence factor on E
1
, we decided on ηc as the
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baseline value. When η = ηc, E
1

would reach 99.7% of its limiting value, which means η would have

no more influence on E
1

when η ≥ ηc. With our definition, ηc can be derived by Equation (18).

lim
η→∞

E
0
= φEm (16)

lim
η→∞

E
1
= φEm

A
A+1

(17)

(ηc+2)A
(ηc+4)A+ηc

= 0.997 A
A+1

ηc = 662.667A−666.667
A+1

(18)

However, as also shown in Figure 4a, E
0

would be influenced by not only η but also α; E
0

would

increase as α increased from 0.01 to 0.1. Similarly, we denoted the critical value of η for E
0

as ηc

(
E

0
)
,

derived as Equation (19), which is influenced by α.

0.997 =
ηc

(
E

0
)
+2

(α+1)ηc
(
E

0
)
+4A

αηc
(
E

0)
+(α+1)A

+ηc

(
E

0
)

ηc

(
E

0
)
= 0.167

α

 997− 3A− 1003α− 3A±√
(−997 + 3A + 1003α+ 3Aα)2

− 12α(−1988A + 2000Aα)


(19)

As shown in Figure 4b, the effective modulus decline E
1
/E

0
would decrease as η increased, and

finally approach the limiting value, derived by Equation (20). However, contrary to E
0
, E

1
/E

0
will

decrease as α increases from 0.01 to 0.1. Meanwhile, the critical value of η for E
1
/E

0
, i.e., ηc

(
E

1
/E

0
)
, is

also influenced by α and derived as Equation (21).

lim
η→∞

E
1

E
0 =

A
A + 1

(20)

0.997 1
A+1 =

ηc

(
E

1
/E

0
)
+

(α+1)ηc
(
E

1
/E

0)
+4A

αηc
(
E

1
/E

0)
+(α+1)A

ηc

(
E

1
/E

0
)
+

(
ηc

(
E

1
/E

0
)
+4

)
A

ηc

(
E

1
/E

0
)
= 0.5015

Aα


1 + A− 0.997A2 + α− 2.988Aα− 0.997A2α±√√√ 3.988Aα

(
4A + 0.012A2

− 3.988A2α
)
+(

1 + A− 0.997A2 + α− 2.988Aα− 0.997A2α
)2




(21)

Usually, in order to realize a large tunable stiffness range in our biomimetic structure, a small

E
1
/E

0
for the unit cell should be expected. Therefore with certain material components, (i.e., α is

defined), the lower limit of η, i.e., ηc

(
E

1
/E

0
)
, will be determined by the demand of E

1
/E

0
.
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2.3. Unit Cell Phase Changing Process Analysis

With the “joint part” breakage, the unit cell will change from “phase 0” to “phase 1” and the
mechanical properties of the unit cell will change. Starting with the strength limit of the “joint part”, we
further studied the relationship between stress and strain during the unit cell phase changing process.

We defined the limiting tensile stress of the “joint part” as σs
e, the limiting tensile stress of the

“hard plate” as σs
m, and the limiting shear stress of “Region 3” as τs. In order to fulfill the assumption

that the “joint part” is the only breakable part under our design, the strength parameters within the
unit cell (σs

e, σs
m and τs) should satisfy the following relationships

σ5
σs

e
> σ4

σs
m

σ5
σs

e
> τmax

τs
(22)

taking volume-averaged stress σ as the dependent variable and volume-averaged strain ε as the
independent variable. Before the “joint part” breakage, the unit cell at “phase 0” should deform under

the tensile load with the effective modulus E
0
. Then, we defined the critical average stress σ0

cr: when
σ ≤ σ0

cr, the breakage will not happen and the unit cell at “phase 0”. σ0
cr could be derived by combining

Equation (7) with σs
e:

σ0
cr = σs

eφ
αη+ (α+ 1)A
αη+ 2αA

(23)

Further, we derived the critical average strain εcr, which represents the volume-averaged strain ε
of the unit cell when the phase-change is just about to happen. With the “generalized Hooke law” at
“phase 0”, εcr was derived as the following

εcr =
σ0

cr

E
0 =

σs
e

Em

(α+ 1)η+ αη2 + (αη+ η+ 4)A
α(η2 + 2) + 2α(η+ 2)A

(24)

Considering that, when the “joint part” breaking, the shape of the unit cell must not abruptly
change, i.e., saltation is impossible for the strain field, we concluded that εcr at “phase 0” is the same to
that at “phase 1”. Therefore, for the equilibrium of the unit cell, the saltation must happen within the
stress field, which means the critical average stress at “phase 1” (σ1

cr) should not equal σ0
cr, i.e., σ1

cr , σ
0
cr.

Then, σ1
cr can be derived along with the “generalized Hooke law” at “phase 1”, as in the following:
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σ1
cr = εcrE

1
= σs

eφ

[
A

1 + A
+

(1− α)A
2αA + αη

+
2A2
−A

(η+ 4)A2 + 2(η+ 2)A + η

]
(25)

After changing into “phase 1”, the unit cell will deform with the effective elastic modulus E
1
, until

reaching the ultimate strength limit of the unit cell (decided by σs
m and τs). With all the characteristic

parameters derived above, we obtained the volume-averaged stress–strain relationship of the whole
“phase changing” process, as shown in Figure 5.

Materials 2020, 13, x FOR PEER REVIEW 11 of 19 

 

 

Figure 5. The volume-averaged stress–strain curve for the unit cell during “phase changing”, which 
is marked with the black line. The effective elastic moduli at “phase 0” and “phase 1” are marked with 

the red dashed line and blue dashed line, respectively. The critical average strain, crε , and the critical 

average stress, 
0
crσ , as well as 

1
crσ , is marked with black dashed line. The structure stiffness of the 

unit cell defined in this paper is encircled by the black line and the blue dashed line. 

2.4. Structure Toughness Analysis 

While the term “toughness” has multiple usages, the “structure toughness” mentioned in this 
paper is not the material toughness (usually defined as the maximum energy adsorbed per mass 
before fracture [19]). Instead, we explored hierarchical and structure parameter-dependent 
toughness—e.g., “structure toughness”. This particular toughness is defined as the specific energy 
dissipation needed for the breakage of the “joint parts”, which also reflected the extra toughness 
increase for our biomimetic structure during “phase changing”, compared with the classical plate-
staggered structure. 

We neither made assumptions of “joint part” reformation nor a reversible process. Therefore, 
the stress-strain response is unidirectional, and no hysteretic behavior needs considering. We 
denoted the normalized “structure toughness” of a unit cell as cellT , and defined it as the following: 

( )0 1

2

cr crcrV
cell

V

dV
T

dV

ε σ σ−
=



 (26) 

Noting that the “joint part” breaking event results in a repeated pattern within every unit cell, 
the “structure toughness” T  for the whole biomimetic structure can be simply summarized as: 

cellT T=  (27) 

Therefore, without loss of generality, we took the unit cell as before, and analyzed its cellT . 

Substituting Equations (23 ~ 25) into Equation (26), then cellT  can be derived as: 

( ) ( )( )
2

1 4+1+ +

2
=

2 4

s

ce
e

m
llT

A

E A

ηη η η
σ α αφ

η η η

   + +   
   

+ + +
 (28) 

Figure 5. The volume-averaged stress–strain curve for the unit cell during “phase changing”, which is
marked with the black line. The effective elastic moduli at “phase 0” and “phase 1” are marked with
the red dashed line and blue dashed line, respectively. The critical average strain, εcr, and the critical
average stress, σ0

cr, as well as σ1
cr, is marked with black dashed line. The structure stiffness of the unit

cell defined in this paper is encircled by the black line and the blue dashed line.

2.4. Structure Toughness Analysis

While the term “toughness” has multiple usages, the “structure toughness” mentioned in this
paper is not the material toughness (usually defined as the maximum energy adsorbed per mass before
fracture [19]). Instead, we explored hierarchical and structure parameter-dependent toughness—e.g.,
“structure toughness”. This particular toughness is defined as the specific energy dissipation needed for
the breakage of the “joint parts”, which also reflected the extra toughness increase for our biomimetic
structure during “phase changing”, compared with the classical plate-staggered structure.

We neither made assumptions of “joint part” reformation nor a reversible process. Therefore, the
stress-strain response is unidirectional, and no hysteretic behavior needs considering. We denoted the
normalized “structure toughness” of a unit cell as Tcell, and defined it as the following:

Tcell =

∫
V εcr

(
σ0

cr − σ
1
cr

)
dV

2
∫

V dV
(26)

Noting that the “joint part” breaking event results in a repeated pattern within every unit cell, the
“structure toughness” T for the whole biomimetic structure can be simply summarized as:

T =
∑

Tcell (27)

Therefore, without loss of generality, we took the unit cell as before, and analyzed its Tcell.
Substituting Equations (23)–(25) into Equation (26), then Tcell can be derived as:
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Tcell = φ
σs

e
2

Em

η
(
1+η+ 1

α

)
+ A

( 4+η
α + η

)
2(2 + η)(η+ A(4 + η))

(28)

As is shown in Figure 6 with η increasing, the normalized structure toughness of the unit cell Tcell
would decrease with an attenuated decrease rate, and finally approach the limiting value, written as
Equation (29). As α increases from 0.01 to 0.1, Tcell would decrease, and the critical value of η for Tcell
i.e., ηc(Tcell), derived by Equation (30), is also influenced by α.

lim
η→∞

Tcell =
φσs

e
2

2Em
(29)

0.997 =
ηc(Tcell)(1+ηc(Tcell)+

1
α )+A

(
4+ηc(Tcell)

α +ηc(Tcell)
)

(2+ηc(Tcell))(ηc(Tcell)+A(4+ηc(Tcell)))

ηc(Tcell) =


l + A− 0.994α− 4.982Aα±√(

A+l
α − 0.994− 4.982A

)2
+ (3.988A− 0.012)

(
4A
α − 7.976A

) 
1.994Aα−0.006α

(30)

Moreover, to gain a high Tcell for the unit cell, both α and η should be set as small as possible, under

the compromise of E
1
/E

0
and the design constraints. Therefore, with certain material components (i.e.,

α is defined), the upper limit of η, i.e., ηc(Tcell), for the unit cell will be determined by Tcell requirement.
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3. Finite Element Modeling and Simulation 

Figure 6. The structure toughness change with respct to the non-dimensional geometrical parameter η
and the non-dimensional material parameter α, in the logarithmic coordinate. α changed from 0.01 to
0.1 discretely, shown with a black dashed line. η changed from 5 to 500 continuously, and the ηc is
marked with a black dash-dotted line. Other parameters used for making this figure were inherited
from Table 1.

3. Finite Element Modeling and Simulation

We validated the generality and accuracy of our mechanical model by finite element analysis
(FEA) with ABAQUS/CAE, steady-state static, direct solver. Then, we compared the simulation results

and the theoretical results of the stiffness decline E
1
/E

0
, as well as the structure toughness Tcell of the

unit cell.

3.1. FEM Simulation Preparation

The cohesion FEM model can simulate the failure process of materials by introducing the cohesion
model within the materials. In this paper, zero-thickness cohesion elements COH2D4 were inserted
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between every solid elements CPE4R element at Region 5 to simulate the designed progressive damage
and breaking process of the “joint part” under external load. The zero thickness COH2D4 element
can be regard as two connecting faces of adjacent solid elements. The cohesive elements describe the
damage and failure, which have different forms, by the “traction separation law”. To remain consistent
with the theoretical analysis, we chose the “bilinear cohesive damage model” in the ABAQUS platform,
as shown in Figure 7. Under external load, the cohesive element would firstly go through the elastic
deformation stage, and when meeting the damage initiation criteria, the damage evolution stage would
begin, and, after the cohesive element completely failed, it would be deleted.
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Figure 7. Bilinear cohesive damage model.

In Figure 7, the abscissa and ordinate are, respectively, the cohesive element separation
displacement and the traction stress; the slope of the elastic deformation stage is the cohesive
element stiffness k; δi is the separation displacement at damage initiation; and σs

e is the traction stress
at damage initiation, which is equivalent to the “maximum tensile stress” when the “Maxs” principle
is selected as the cohesive element failure criterion in ABAQUS; δ f is the failure displacement; and the
triangle area enclosed by the elastic deformation stage curve, the damage evolution stage curve and
the abscissa is the fracture energy Gc.

The FEM model with mesh properties of the unit cell is shown in Figure 8. In order to keep
consistent with theoretical analysis, isotropic linear elastic materials were chosen for all parts in the
unit cell FEM model, and the “Maxs” principle was selected as the COH2D4 failure criterion. Moreover,
the elastic modulus of the COH2D4 elements should be the same as the adjacent CPE4R elements.
The geometrical and material properties used for the simulation are listed in Tables 2 and 3, respectively.
Considering the periodic property of the structure, the periodic boundary conditions were set to this
unit cell FEM model, and the uniform-speed displacement load was applied to the left and right edges,
as shown in Figure 8.

Table 2. Geometrical properties used for FEM simulation.

Geometric Parameter b h la lb

(mm) 3 1 10 1

Table 3. Materials properties used for FEM simulation.

Part Element Type E (MPA) Poisson’s Ratio σs
e (Mpa) Gc (N/mm)

Hard plate CPE4R 50000 0.3
Shear part CPE4R 5600 0.4
Joint part CPE4R 5000 0.3
Joint part COH2D4 5000 0.3 5 2 × 10−2
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Figure 8. Finite element modelling (FEM) model with mesh properties of the unit cell. Cohesive
elements are inserted in the red region. In the FEM model, the periodic boundary conditions were set
to the upper and lower edges, and uniform-speed displacement tension load was set to the left and
right edges.

3.2. Simulation Results and Discussion

Under the displacement load, the Region 5 break, as designed, and the unit cell FEM model, went
through the phase changing process. Figure 9a–f displays the strain and stress contour figures of
the deformed FEM model, changing from “phase 0” to “phase 1” during simulation. Especially, the
gradient change of stress and strain along y direction owe to the stress concentration that occurred at
the intersection of Region 3 and Region 1 (2), which is relatively small compared with the gradient
change along x direction, and is neglected while theoretical modeling and analyzing.Materials 2020, 13, x FOR PEER REVIEW 15 of 19 
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Figure 9b shows the stress distribution within the unit cell at “phase 0”, under uniaxial tensile,
which basically coincides with the trend theoretically derived by Equation (5). Figure 9f shows the
stress distribution of the unit cell at “phase 1”, which basically coincides with Equation (11).

As shown in Figure 10, the stress–strain relationship during FEM simulation agrees well with
the theoretical result. The fluctuation of the simulation curve from point a to point b happened
during the phase changing process. This is because the breakage of Region 5 would start at point a
(εa

cr = 1.031× 10−4) and gradually develop along y direction, as shown in Figure 9e,f, until the complete
breakage at point b (εb

cr = 1.296× 10−4), while in theoretical analysis we assumed the breakage would

complete instantaneously at point c and point (εc
cr = εd

cr = 1.356× 10−4). With this assumption, the

relative errors of simulation results E
0
, E

1
, E

1
/E

0
and Tcell compared to the theoretically derived E

0
, E

1
,

E
1
/E

0
and Tcell are shown in Table 4.Materials 2020, 13, x FOR PEER REVIEW 16 of 19 
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Figure 10. Comparison between FEM simulation and theoretical derivation of the volume-averaged
stress–strain curve during the phase changing process. The volume-averaged strain and stress at feature

points a, b, c, d are εa
cr = 1.225× 10−4, σa

cr= 4.953, εb
cr = 1.541× 10−4, σb

cr= 4.137εc
cr = εd

cr = 1.356× 10−4,
σc

cr = 5.729, σd
cr= 4.033.

Table 4. Relative errors of FEM simulation and theoretical results.

E
0

(Mpa) E
1

(Mpa) E
1
/E

0 Tcell (mJ/mm3)

Theoretical result 4.226 × 104 2.975 × 104 0.704 1.420 × 10−4

Simulation result 4.046 × 104 2.565 × 104 0.6341 1.446 × 10−4

Relative error 4.27% 13.77% 9.92% 1.84%

Next, we simulated the influence of α on the unit cell effective modulus. In this simulation, α was
set as 0.02, 0.05, 0.1, 0.14 and 0.2, by adjusting the material property Ee successively, while η was kept
as 100. The simulation result was compared with theoretical results, in which α continuously changed
from 0.01 to 0.2, as shown in Figure 11. It is predicted by the theoretical analysis and verified by this

simulation that, when η is set, as α increases, E
0

would increase with an attenuated increase rate and
finally approach a limiting value. As can be seen in the above analysis, the limited value should be
defined by η.
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4. Conclusions

In summary, we have brought up a new biomimetic composite structure with tunable stiffness
and superior structure toughness via a designed progressive breakable constituent. We mainly focused
on the periodic unit cell of the structure, established the mechanical model of the unit cell and verified
it with FEM simulation. Two theoretical relations describing the elastic modulus decline ratio and
the unit cell toughness promotion are developed as functions of the geometrical parameters and the
material parameters, respectively. Moreover, we demonstrate a strategy to adjust the unit cell stiffness
and structure toughness by typical geometrical parameter η (the “hard plate” overlapped length to
non-overlapped length ratio) and typical material parameter α (the “joint part” tensile modulus to
“hard plate” tensile modulus ratio).

Based on the above theatrical analysis and FEM simulation, we can draw the following conclusions.
Firstly, the breakage of the “joint part” within the unit cell, while phase changing, does not mean
biomimetic composite structure failure. The strength property of the structure should be decided
at “phase 1”, by the tensile strength of “hard plate” and the shear strength of “shear part” together.
Therefore, with the proper choice of materials for the “hard plate” and “shear part”, when the breakage
of Region 5 occurs, the unit cell can realize extra energy dissipation and stiffness changing without

loss of strength. Secondly, as η increases, both E
0

(the effective modulus at “phase 0”) and E
1

(the
effective modulus at “phase 1”) would increase with an attenuated increase rate and finally approach a

limiting value, derived as Equations (16) and (17). However, as α increasing, only E
0

will be influenced,
i.e., increase with an attenuated increase rate and finally approach a limiting value. Therefore, the

structure stiffness before phase changing will restrict the material selection. Thirdly, E
1
/E

0
(the

effective modulus decline ratio) and Tcell (the normalized “structure toughness” of a unit cell) are
two unique target parameters for our design. They will respectively decide the lower and upper
limiting value of η, derived as Equations (21) and (30), which are two constraint conditions for structure
configuration design.

To recapitulate, the stiffness changing and toughness promotion of our biomimetic structure can
be precisely achieved with theoretically calculated structure parameters, i.e., by quantitatively tailoring
the “joint part” breaking process within each unit cell. The theoretical analysis was verified by the
FEM simulation. Moreover, the simulation results provide more detailed insights into the mechanical
properties of the unit cell, such as the detailed stress and strain field output and the specific breaking
process of Region 5 during phase changing. Therefore, combining the theoretical predication and
the FEM verification, it is possible to adjust the properties of our biomimetic composite structure.
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With superior toughness and tunable stiffness, our biomimetic composite structure can serve as a
guideline in designing novel load-bearing structures.

Future extension of this study can involve investigating and designing the dynamic properties
of the unit cell, under dynamic load. Taking the unit cell as the basic building block, a hierarchical
structure can be constructed with different unit cell arrangement modes. Then, the influence of the
unit cell properties, as well as the arrangement modes on the whole structure dynamic response, can
be studied.

Author Contributions: Conceptualization, X.W.; Data curation, X.W.; Formal analysis, X.W.; Investigation, X.W.;
Project administration, D.L.; Software, X.W.; Supervision, D.L.; Writing—review & editing, D.L. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bechtle, S.; Ang, S.F.; Schneider, G.A. On the mechanical properties of hierarchically structured biological
materials. Biomaterials 2010, 31, 6378–6385. [CrossRef] [PubMed]

2. Tai, K.; Dao, M.; Suresh, S.; Palazoglu, A.; Ortiz, C. Nanoscale heterogeneity promotes energy dissipation in
bone. Nat. Mater. 2007, 6, 454. [CrossRef] [PubMed]

3. Espinosa, H.D.; Rim, J.E.; Barthelat, F.; Buehler, M.J. Merger of structure and material in nacre and
bone–Perspectives on de novo biomimetic materials. Prog. Mater. Sci. 2009, 54, 1059–1100. [CrossRef]

4. Wang, R.; Suo, Z.; Evans, A.; Yao, N.; Aksay, I.A. Deformation mechanisms in nacre. J. Mater. Res. 2001, 16,
2485–2493. [CrossRef]

5. Evans, A.; Suo, Z.; Wang, R.; Aksay, I.A.; He, M.; Hutchinson, J. Model for the robust mechanical behavior of
nacre. J. Mater. Res. 2001, 16, 2475–2484. [CrossRef]

6. Norman, T.L.; Vashishth, D.; Burr, D. Fracture toughness of human bone under tension. J. Biomech. 1995, 28,
309–320. [CrossRef]

7. Jäger, I.; Fratzl, P. Mineralized collagen fibrils: A mechanical model with a staggered arrangement of mineral
particles. Biophys. J. 2000, 79, 1737–1746. [CrossRef]

8. Ascenzi, A.; Bonucci, E. The tensile properties of single osteons. Anat. Rec. 1967, 158, 375–386. [CrossRef]
9. Ascenzi, A.; Bonucci, E. The compressive properties of single osteons. Anat. Rec. 1968, 161, 377–391. [CrossRef]
10. Rho, J.-Y.; Kuhn-Spearing, L.; Zioupos, P. Mechanical properties and the hierarchical structure of bone.

Med. Eng. Phys. 1998, 20, 92–102. [CrossRef]
11. Meyers, M.A.; McKittrick, J.; Chen, P.-Y. Structural biological materials: Critical mechanics-materials

connections. Science 2013, 339, 773–779. [CrossRef] [PubMed]
12. Schwarcz, H.P.; McNally, E.A.; Botton, G.A. Dark-field transmission electron microscopy of cortical bone

reveals details of extrafibrillar crystals. J. Struct. Biol. 2014, 188, 240–248. [CrossRef] [PubMed]
13. Georgiadis, M.; Mueller, R.; Schneider, P. Techniques to assess bone ultrastructure organization: Orientation

and arrangement of mineralized collagen fibrils. J. R. Soc. Interface 2016, 13, 20160088. [CrossRef] [PubMed]
14. Wang, X.; Li, D.; Hao, R. Experimental Study of Cortical Bone Microstructure and Its Toughening Mechanism.

In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2019; p. 032052.
15. Rief, M.; Gautel, M.; Oesterhelt, F.; Fernandez, J.M.; Gaub, H.E. Reversible unfolding of individual titin

immunoglobulin domains by AFM. Science 1997, 276, 1109–1112. [CrossRef] [PubMed]
16. Smith, B.L.; Schäffer, T.E.; Viani, M.; Thompson, J.B.; Frederick, N.A.; Kindt, J.; Belcher, A.; Stucky, G.D.;

Morse, D.E.; Hansma, P.K. Molecular mechanistic origin of the toughness of natural adhesives, fibres and
composites. Nature 1999, 399, 761. [CrossRef]

17. Li, H.; Oberhauser, A.F.; Fowler, S.B.; Clarke, J.; Fernandez, J.M. Atomic force microscopy reveals the
mechanical design of a modular protein. Proc. Natl. Acad. Sci. USA 2000, 97, 6527–6531. [CrossRef]

18. Fantner, G.E.; Hassenkam, T.; Kindt, J.H.; Weaver, J.C.; Birkedal, H.; Pechenik, L.; Cutroni, J.A.; Cidade, G.A.;
Stucky, G.D.; Morse, D.E. Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate
during bone fracture. Nat. Mater. 2005, 4, 612. [CrossRef]

http://dx.doi.org/10.1016/j.biomaterials.2010.05.044
http://www.ncbi.nlm.nih.gov/pubmed/20541256
http://dx.doi.org/10.1038/nmat1911
http://www.ncbi.nlm.nih.gov/pubmed/17515917
http://dx.doi.org/10.1016/j.pmatsci.2009.05.001
http://dx.doi.org/10.1557/JMR.2001.0340
http://dx.doi.org/10.1557/JMR.2001.0339
http://dx.doi.org/10.1016/0021-9290(94)00069-G
http://dx.doi.org/10.1016/S0006-3495(00)76426-5
http://dx.doi.org/10.1002/ar.1091580403
http://dx.doi.org/10.1002/ar.1091610309
http://dx.doi.org/10.1016/S1350-4533(98)00007-1
http://dx.doi.org/10.1126/science.1220854
http://www.ncbi.nlm.nih.gov/pubmed/23413348
http://dx.doi.org/10.1016/j.jsb.2014.10.005
http://www.ncbi.nlm.nih.gov/pubmed/25449316
http://dx.doi.org/10.1098/rsif.2016.0088
http://www.ncbi.nlm.nih.gov/pubmed/27335222
http://dx.doi.org/10.1126/science.276.5315.1109
http://www.ncbi.nlm.nih.gov/pubmed/9148804
http://dx.doi.org/10.1038/21607
http://dx.doi.org/10.1073/pnas.120048697
http://dx.doi.org/10.1038/nmat1428


Materials 2020, 13, 636 16 of 16

19. Deng, Y.; Cranford, S.W. Tunable toughness of model fibers with bio-inspired progressive uncoiling via
sacrificial bonds and hidden length. J. Appl. Mech. 2018, 85, 111001. [CrossRef]

20. Zhou, X.; Guo, B.; Zhang, L.; Hu, G.-H. Progress in bio-inspired sacrificial bonds in artificial polymeric
materials. Chem. Soc. Rev. 2017, 46, 6301–6329. [CrossRef]

21. Ji, B.; Gao, H. Mechanical properties of nanostructure of biological materials. J. Mech. Phys. Solids 2004, 52,
1963–1990. [CrossRef]

22. Yao, H.; Gao, H. Multi-scale cohesive laws in hierarchical materials. Int. J. Solids Struct. 2007, 44, 8177–8193.
[CrossRef]

23. Kim, Y.; Kim, Y.; Lee, T.-I.; Kim, T.-S.; Ryu, S. An extended analytic model for the elastic properties of
platelet-staggered composites and its application to 3D printed structures. Compos. Struct. 2018, 189, 27–36.
[CrossRef]

24. Hao, R.; Li, D. An inspiration from the microstructure of the cortical bone in goat tibia. In Bioinspired,
Biomimetic and Nanobiomaterials; ICE Virtual Library: London, UK, 2019; pp. 1–11.

25. Hao, R.; Li, D.X. A New Structure Model of Biomimetic Composites Considering the Sub-Microscale Porosity
of Bone. Adv. Eng. Mater. 2019, 21, 1900095. [CrossRef]

26. Wei, X.; Naraghi, M.; Espinosa, H.D. Optimal Length Scales Emerging from Shear Load Transfer in Natural
Materials: Application to Carbon-Based Nanocomposite Design. ACS Nano 2012, 6, 2333–2344. [CrossRef]
[PubMed]

27. O’brien, F.J.; Hardiman, D.A.; Hazenberg, J.; Mercy, M.V.; Mohsin, S.; Taylor, D.; Lee, T.C. The behaviour of
microcracks in compact bone. Eur. J. Morphol. 2005, 42, 71–80. [CrossRef] [PubMed]

28. Zhang, X.; Liu, X.; Yan, Z.; Cai, J.; Kang, F.; Shan, S.; Wang, P.; Zhai, M.; Guo, X.E.; Luo, E. Spatiotemporal
characterization of microdamage accumulation in rat ulnae in response to uniaxial compressive fatigue
loading. Bone 2018, 108, 156–164. [CrossRef]

29. Katsamenis, O.L.; Jenkins, T.; Thurner, P.J. Toughness and damage susceptibility in human cortical bone is
proportional to mechanical inhomogeneity at the osteonal-level. Bone 2015, 76, 158–168. [CrossRef]

30. Begley, M.R.; Philips, N.R.; Compton, B.G.; Wilbrink, D.V.; Ritchie, R.O.; Utz, M. Micromechanical models to
guide the development of synthetic ‘brick and mortar’ composites. J. Mech. Phys. Solids 2012, 60, 1545–1560.
[CrossRef]

31. Sakhavand, N.; Shahsavari, R. Universal composition-structure-property maps for natural and biomimetic
platelet-matrix composites and stacked heterostructures. Nat. Commun. 2015, 6, 6523. [CrossRef]

32. Hill, R. Elastic properties of reinforced solids: Some theoretical principles. J. Mech. Phys. Solids 1963, 11,
357–372. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1115/1.4040646
http://dx.doi.org/10.1039/C7CS00276A
http://dx.doi.org/10.1016/j.jmps.2004.03.006
http://dx.doi.org/10.1016/j.ijsolstr.2007.06.007
http://dx.doi.org/10.1016/j.compstruct.2018.01.038
http://dx.doi.org/10.1002/adem.201900095
http://dx.doi.org/10.1021/nn204506d
http://www.ncbi.nlm.nih.gov/pubmed/22316210
http://dx.doi.org/10.1080/09243860500096131
http://www.ncbi.nlm.nih.gov/pubmed/16123026
http://dx.doi.org/10.1016/j.bone.2018.01.011
http://dx.doi.org/10.1016/j.bone.2015.03.020
http://dx.doi.org/10.1016/j.jmps.2012.03.002
http://dx.doi.org/10.1038/ncomms7523
http://dx.doi.org/10.1016/0022-5096(63)90036-X
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Mechanical Model and Theoretical Analysis 
	Mechanical Model of Unit Cell 
	Unit Cell at “Phase 0” 
	Unit Cell at “Phase 1” 

	Unit Cell Elastic Modulus Analysis 
	Unit Cell Phase Changing Process Analysis 
	Structure Toughness Analysis 

	Finite Element Modeling and Simulation 
	FEM Simulation Preparation 
	Simulation Results and Discussion 

	Conclusions 
	References

