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In this review, we reveal the latest developments at the interface between
SARS-CoV-2 and the host cell surface. In particular, we evaluate the current
and potential mechanisms of binding, fusion and the conformational changes
of the spike (S) protein to host cell surface receptors, especially the human
angiotensin-converting enzyme 2 (ACE2) receptor. For instance, upon the
initial attachment, the receptor binding domain of the S protein forms
primarily hydrogen bonds with the protease domain of ACE2 resulting
in conformational changes within the secondary structure. These surface inter-
actions are of paramount importance and have been therapeutically exploited
for antiviral design, such as monoclonal antibodies. Additionally, we provide
an insight into novel therapies that target viral non-structural proteins, such as
viral RNA polymerase. An example of which is remdesivir which has now
been approved for use in COVID-19 patients by the US Food and Drug
Administration. Establishing further understanding of the molecular details
at the cell surface will undoubtably aid the development of more efficacious
and selectively targeted therapies to reduce the burden of COVID-19.
1. Introduction
Coronavirus disease 2019 (COVID-19) is caused by a novel strain of coronavirus
(CoV), termed severe acute respiratory syndrome (SARS)-CoV-2. First identified
in December 2019 in Wuhan, China, the infection has since spread globally. The
wide and rapid spread of the disease led the World Health Organization to
recognize the outbreak as a pandemic on 11 March 2020 [1], which is still
ongoing. SARS-CoV-2 has infected more than 118 million people worldwide
resulting in 2.6 million deaths.

Coronaviruses are large enveloped, non-segmented, positive-sense RNA
viruses. There are four coronaviruses that circulate in humans which are histori-
cally known to cause mild respiratory diseases: two α-coronaviruses (NL63 and
229E) and two β-coronaviruses (HKU1 and OC43) [2]. In the past two decades,
there have been two cases of crossovers from animals to humans which have
resulted in severe disease. In late 2002, a new coronavirus, with origin in horse-
shoe bats, designated as SARS-CoV-1, caused an epidemic that appears to have
started in the Guangdong province of China. SARS-CoV-1 affected 8422 people
and caused 916 deaths (mortality rate 11%) before being contained [3].
A decade later, another novel coronavirus, also from bat origins, emerged
in the Saudi Arabia causing the Middle East respiratory syndrome (MERS).
MERS-CoV affected 2494 people of which 858 died (mortality rate 34%) [4].

The genome of SARS-CoV-2 shares a sequence identity of 80% with SARS-
CoV-1. Furthermore, it has been shown that SARS-CoV-2 uses the same
receptor to enter host cells—angiotensin-converting enzyme 2 (ACE2)—as
SARS-CoV-1 [5]. Entry into the host cell is a crucial and necessary step in the
life cycle of the virus. In fact, it is the initial interaction with the host cell that
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Figure 1. SARS-CoV-2 structure and the structure of the spike protein. The newly discovered SARS-CoV-2 comprises a lipid envelope from the host with four viral
structural proteins including the spike (S), envelope (E), membrane (M) and nucleoprotein (N) protein. Encased in the envelope is the positive-sense RNA genome of
29–30 kb in size. SARS-CoV-2 uses the human angiotensin-converting enzyme 2 (ACE2) to bind to host cells and to mediate membrane fusion. The S protein
comprises two distinct subunits, S1 subunit and S2 subunit. The S2 subunit is a trimeric helical stalk with two heptad repeat (HR) regions HR1 and HR2. The
S2 subunit is capped by the clove-shaped trimeric S1 head. The S1 subunit contains the RBD which binds to the ACE2 receptor. The initial attachment leads
to the adoption of an open conformation that is thought to facilitate membrane fusion.
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allows the virus to enter, establish an infection and replicate,
which can lead to tissue damage and ultimately death in some
cases. Due to this similarity, much of the understanding of
SARS-CoV-2 molecular interactions, proteins and pathogenesis
has been based on research in other coronaviruses, especially
SARS-CoV-1. In this review, we explore SARS-CoV-2–host cell
surface interactions, the cellular entry mechanisms, potential
therapies and allude to why SARS-CoV-2 has developed
pandemic potential when compared with other coronaviruses.
2. Structural proteins
Coronaviruses are named for the large spikes protruding from
their spherical envelope giving thema ‘crown’-like shapewhen
viewed under an electron microscope. SARS-CoV-2 consists of
a lipid envelope from the host with four viral structural pro-
teins, including the spike (S), envelope (E), membrane (M)
and nucleoprotein (N) with around 16 non-structural proteins
(nsp1–16) and 8 accessory proteins (figure 1) [6,7]. Within the
envelope is a single-stranded, positive-sense RNA genome of
29–30 kb in size that is split up into 11 open reading frames
which express 11 genes [7–9]. The S protein is a glycoprotein
which is pivotal in initiating binding of the virion to the host
cell. The S protein is structurally categorized as a class I viral
fusion protein that is heavily N-glycosylated with two distinct
cleavage sites. TheM protein works in concert with E, N and S
proteins to form the viral structure and plays a major role in
RNA binding [10]. The M protein is a long (222 amino acids)
structural transmembrane dimer with an N-terminal ectodo-
main and a C-terminal endodomain. The M protein is the
most abundant viral protein and helpsmaintain themembrane
curvature [11]. The M protein together with the much less
abundant E protein (75 amino acids) makes up the virus-like
particle and has an important role in morphogenesis and
release [6,12]. The E protein is a transmembrane protein, also
with anN-terminal ectodomain and aC-terminal endodomain.
That can oligomerize to create an ion channel, an important
function in the virus–host interaction [13]. Finally, theNprotein
is part of the nucleocapsid and is highly phosphorylated to
increase its RNA-binding affinity. The N protein packages
the viral RNA into the ribonucleocapsid by binding to the
approximately 140 amino acid long RNA-binding domain [14].
3. Mechanism of binding and fusion with host
cell surface

SARS-CoV-2 is primarily transmitted via airborne droplets
expelled from infected persons. Its initial tropism is towards
the pneumocytes of the lungs which express ACE2, the recep-
tor SARS-CoV-2 requires for cellular entry [15]. Particularly
type II alveolar cells appear to have the greatest concentration
of ACE2 within the respiratory tract [16]. However, ACE2
expression is not restricted to the respiratory tract and is
expressed in a plethora of other sites including the small intes-
tine, testis, kidneys, heart, thyroid, adipose tissue, colon, liver,
bladder and adrenal glands as well as at lower levels in the
blood, spleen, bone marrow, brain, blood vessels and muscle
[17–19]. In some cases, a threefold higher ACE2 expression
has been found in the pancreatic islets compared to the lung
[19], suggesting the potential for the virus’s targeting speci-
ficity for endocrine cells within the pancreas [20,21]. ACE2
expression levels are higher within males; however, the effect
of ageing may only effect females [22]. ACE2 is best known
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for its role for maintaining the homeostasis of renin–angioten-
sin system by acting as a negative regulator degrading
angiotensin II to angiotensin, although it also acts as a chaper-
one molecule for amino acid transport and the integrin ligand
and, as noted, a receptor for SARS-CoV-2 [22]. Unfortunately,
the entry of SARS-CoV-2 into the cells through membrane
fusion markedly downregulates ACE2 receptors; with loss of
the catalytic effect of these receptors, side effects ensue, such
as increased pulmonary inflammation and coagulation [23].
ACE2’s catalytic site is exposed to circulating peptides and is
regulated by both its rate of expression and cleavage from
the cell surface [24]. ACE2 catalytic site contains an N-terminal
peptidase domainwhich acts as a carboxypeptidase. The active
sites (S20–S2 subsites) are highly conserved with the carboxy
terminus of peptide ligands binding strongly to conserved
residues in the S20 subsite [25].

Upon SARS-CoV-2 encountering a susceptible host cell, the
SARS-CoV-2 S protein facilitates entry into cells and is a key
determinant of tissue tropism, virus infectivity, pathogenesis
and host range [18,26]. Electron microscopy studies show
that the S protein is a clove-shaped trimer with three S1
heads and a trimeric S2 stalk, all of which are essential for
attachment, fusion and cellular entry [27,28]. The S1 domain
mediates receptor recognition and contains two large subdo-
mains, the N-terminal domain often binding sialic acid and
the receptor binding domain (RBD) required for ACE2 binding
[29]. The C-terminal S2 subunit is responsible for membrane
fusion and contains a highly conserved fusion peptide (FP)
and two heptad repeat regions; heptad repeat 1 (HR1) and
heptad repeat 2 (HR2). The structural features of the S2
domain of CoVs indicate the use of a type I fusion protein
system like the well investigated fusion proteins of influenza
and HIV viruses; however, the S proteins of CoVs are much
longer and appeared to be more complex [30].

The S protein exists in a closed form within the viral
membrane with the RBD capping the top of the S2 core. The
process of cellular entry begins with the S protein transitioning
from a metastable state into a post-fusion conformation after
distinct conformational changes [29]. Exposure of the RBD
occurs after one S1 component opens exposing the RBD for
interactions with ACE2 (figure 1) [29,31,32].

The S protein binds to the extracellular protease domain
(PD) of ACE2 which is distinct from the ACE2 catalytic site
forming RBD–PD complex [31,33]. An S1/S2 cleavage site is
located at amino acid 667 of the precursor protein and it is
completely exposed in the prefusion conformation [34].
Whereas, the S2 cleavage site (S20) is 130 amino acids from
the N-terminus of the S2 subunit and it is completely hidden
in the prefusion conformation. The site that is first cleaved is
located on a flexible loop of the S1/S2 subunits and is required
for binding. The S1 RBD performs hinge-like conformational
movements that reduce S1 contacts and un-shields the trimeric
S2 core exposing the S1/S2 cleavage site [32]. As a result of this
conformational change, the FURIN cleavage site is exposed at
the boundary between the S1 and S2 subunits which is
composed of 8 amino acids (Arg–Arg–Ala–Arg–Ser–Val–
Arg–Ser) between 682 and 689 [31,35]. FURIN cuts after the
fourth amino acid between Arg and Ser on the S protein med-
iating S1/S2 dissociation. On cleavage by FURIN between the
S1 and S2 domain, the proportion of trimers in an open confor-
mation increases, which facilitates S protein binding to ACE2
[29,36]. Open RBD binding to ACE2 leads to more open
trimer conformations, successive RBD openings and ACE2
binding. These changes lead to a fully open ACE2 bound
form, whereby the trimeric S1 ring remains bound to the S2
stalk though limited contacts via the S1 subdomains [29]. The
top of the S2 is now fully exposed and ready to mediate
membrane fusion.

Even in SARS-CoV-2 S fur/mut which lacks the FURIN
cleavage site, S1/S2 cleavage by FURIN was not necessary
for S-mediated entry; hence, it is speculated that FURIN-
like proteases may also be able to facilitate this cleavage
[31]. The proteomics work of Anand et al. shows that the pro-
protein convertase subtilisin/kexin (PCSK) family members
have similar proteolytic activity to FURIN, suggesting that
PCSK family members may also carry out this cleavage.
These eight amino acids (Arg–Arg–Ala–Arg–Ser–Val–Arg–
Ser) are highly conserved among SARS-CoV-2 circulating
strains, whereas they are not in non-COVID-19 SARS-CoV-1
S proteins, indicating the significance of this cleavage site
[37]. Interestingly, this sequence of peptides is exclusively con-
served on the extracellular domain of human ENaC-ɑ, which
implies that the SARS-CoV-2 may have specifically evolved
to mimic a human protease substrate [37]. Akin to SARS-
CoV-2 ENaC-ɑ also requires proteolytic activation via cleavage
betweenArg and Ser residues. As SARS-CoV-2 uses FURIN for
its own cleavage, it is conceivable to hypothesize that ENaC-ɑ
activation is compromised and low ENaC-ɑ activity on epi-
thelial surfaces may hamper sodium water reabsorption
contributing to the COVID-19 pathology [38].

Another central modification at the host cell interface is the
presence of glycans, which are present on both ACE2 and S
protein [39,40]. The SARS-CoV-2 spike protein has 22 predicted
N-linked glycosylation sites and 3 O-glycosylation sites
[39–41], while ACE2 presents six sequences for N-linked glyco-
sylation at its N-terminal extracellular domain and a few
potential O-linked sites [42]. Glycosylation on the S protein
and ACE2 receptor indicates a possible role in the binding
process [43]. For example, Zhao et al. suggested a direct
glycan–glycan interaction specifically between the glycan at
N546 of the ACE2 and the glycans N74 and N165 on the S
protein. Furthermore, the glycans of ACE2 at N90 and N322
interact with the protein moiety of the S protein [44]. Recent
biochemical and genetic analyses found that mutations in the
glycan at N90 on ACE2 increase the susceptibility to SARS-
CoV-2 infection by enhancing the binding of the angiotensin
receptor to the RBD of the S protein [45–47].

Following receptor binding and conformational changes,
the S2 subunit now plays a key role in mediating viral fusion
with the host cell membrane. Membrane fusion occurs when
closely apposed lipid bilayers merge, forming a continuous
single bilayer which allows the transfer of viral RNA into the
host cell [30]. Membrane fusion and organization is highly
dependent on the presence of calcium ions [48], as well as
being influenced by the concentration of cholesterol within
the membrane [10,49]. In the process of the RBD transitioning
into the open conformation, molecular interactions from the S1
domain with a segment that precedes the S2 FP region are lost;
it is hypothesized that this primes the S protein for helical
rearrangements of S2 domain required for viral and host cell
membrane fusion [29,36]. This is facilitated by the transmem-
brane protease serine 2 (TMPSSR2) or cathepsin L/B which
cleaves the S20 site exposing the highly conserved FP [50,51].
The FP is required for viral entry into host cells which alters
the membrane organization and dynamics of the host mem-
brane to facilitate membrane fusion [49]. The fusion domain



Table 1. Amino acid sequence alignment of SARS-CoV-2 RBD against SARS-CoV-1 RBD by BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi). The differences
between SARS-CoV-1 and SARS-CoV-2 are shown in bold. a.a., number of amino acid.

strain a.a. differences in amino acid sequence alignment a.a.

SARS-CoV 2 387 LNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWN 437

SARS-CoV 374 LNDLCFSNVYADSFVVKGDDVRQIAPGQTGVIADYNYKLPDDFMGCVLAWN 424

SARS-CoV 2 438 SNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNC 488

SARS-CoV 425 TRNIDATSTGNYNYKYRYLRHGKLRPFERDISNVPFSPDGKPCTP-PALNC 474

SARS-CoV 2 489 YFPLQSYGFQPTNGVGYQPYRVVVLSFE 516

SARS-CoV 475 YWPLNDYGFYTTTGIGYQPYRVVVLSFE 502
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comprises four distinct regions, i.e. FP, HR, transmembrane
domain (TMD) and cytoplasmic tail (CT) regions [52]. As yet,
the role of the CT region is not well established. The FP is a
20–25 amino acid long peptide and is vital for membrane
fusion. Mutations along this peptide block fusion mediated
viral infection for several viruses [53–55]. HR 1 andHR 2 inter-
act to form a six-helical bundle bringing the viral and host cell
membranes together for fusion [56]. The TMD remains
anchored to the viral envelope and it is thought that the FP
(embedded in the host membrane) interacts with the TMD
(anchored in the viral envelope) to facilitate pore formation
[57]. In SARS-CoV-1, it has been demonstrated that the site
immediately upstream of the FP (S20) cleavage site or FP1
increases membrane order. Further the sequence downstream
of FP1 (FP2) also has characteristics of an active fusion
domain. It is suggested that FP1 and FP2 work cooperatively
as a bipartite fusion ‘platform’ within an extended FP [48].
The binding of the membranes results in the formation of
pores enabling transfer of viral RNA from the viral envelope
to the host cell which then replicates in the host cell cytoplasm
leading to newly formed genomic RNA.

SARS-CoV-2 high level of infectivity could be potentially
due to more efficient membrane fusion to the host cell than
other coronaviruses. Sequence analysis of the S protein
domains from SARS-CoV-1 and SARS-CoV-2 indicates high
levels of sequence homology in both the S1 and S2 domains
[58]. Nevertheless, variations within the S2 domains are
observed with various novel glycosylation sites present in
SARS-CoV-2. At the interface of the receptor binding (S1)
and fusion (S2) domains of SARS-CoV-2, there is an extended
structural loop containing basic amino acids. It is suggested
that this loop confers fusion activation and entry properties
and could be a key component in the evolution of SARS-
CoV-2 with this structural loop affecting virus stability and
transmission [59]. In addition, mutations within the RBD
may limit the effectiveness of antibodies targeting this region;
thus, predicting which mutations may arise in the RBD may
aid in the development of antibody cocktail therapies and
aid in vaccine development [60,61].

In addition to SARS-CoV-2 infecting cells of the aforemen-
tioned tissues, SARS-CoV-2 has recently been shown to also
infect humanCD4+ T-helper cells, of severe COVID-19 patients
[62]. It was demonstrated that SARS-CoV-2 S protein directly
binds to the CD4 molecule, which in turn mediates the entry
of SARS-CoV-2 into T-helper cells in a mechanism that also
requires ACE2 and TMPRSS2 [62]. Following SARS-CoV-2
entry into T-helper cells, cell function is impaired and interleu-
kin-10 expression is upregulated which is associated with viral
persistence, disease severity and the poor adaptive immune
response in some COVID-19 patients [62].
4. Molecular details of the interactions
SARS-CoV-2 and SARS-CoV-1 S proteins share 77.46% iden-
tity, with the major mutations found in the NTD and RBD
[63]. The amino acid sequence alignment of SARS-CoV-2
RBD against SARS-CoV-1 RBD indicates the main changes
occurred through convergent evolution (table 1). Despite the
striking similarities, when compared with SARS-CoV-1 RBD,
SARS-CoV-2 RBD binds the PD of ACE2 with more than
10-fold higher affinity, which might explain the increased
virus transmissibility and disease severity in humans
[31,64,65]. The binding interface formed by SARS-CoV-2
receptor binding motif (RBM) is larger than that formed by
SARS-CoV-1 RBM due to structural differences between the
two [66]. The formation of new hydrogen bonds between S19
of ACE2 and A475 of the SARS-CoV-2 RBD, as well as Q24
of ACE2 and N487 of the SARS-CoV-2 RBD results in a more
compact conformation [43,66]. The binding affinity is affected
by K417, which has been found to increase the binding affinity
to ACE2 by 2.2 ± 0.9 kcal mol−1 when compared with its
corresponding V404 of SARS-CoV-1 [67]. Additionally, the
interaction between F486 of the SARS-CoV-2 RBM and
the hydrophobic pocket of ACE2 (M82, L79 and Y83) is not
formed by the corresponding L472 of SARS-CoV-1; this may
explain the enhanced binding activity of SARS-CoV-2 [66].
Regarding transmission, Q493 has been associated with the
civet-to-human transmission, as electrostatic repulsion is
reduced with a neighbouring hot spot K31 of ACE2 [26,68].
Moreover, the evolutionary mutation of K403R gives rise to
an RGD motif within the RBD which may confer the ability
of the virus to be recognized by integrins in alveolar epithelial
cells and enhance its infectivity [32,69]. Toll-like receptor 4
(TLR4) has been shown to recognize the S protein of SARS-
CoV-2 via hydrogen bond interactions involving ASN409,
ASN333, SER386, SER352, HIS431 and ASN361 on TLR4 and
SER221, ASN280, THR588, THR208, ASN657 and TYR204 on
the S protein [70].

Hydrogen bonds are the main interactions that form
between SARS-CoV-2 RBD and ACE2 (figure 2) [43,71].
One salt bridge is formed outside RBM between residue
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K417 of SARS-CoV-2 and residue D30 of ACE2, which
is absent in SARS-CoV-1 due to the presence of the
corresponding valine [43].
5. SARS-CoV-2–ACE2 bound state
The secondary structure of SARS-CoV-2 RBD has revealed a
diverse distribution of κ-helices throughout the domain as
well as the presence of β-strands, α-helices and 310-helices
[71]. Receptor binding is associated with conformational
changes at the level of coils and turns, and formation of
κ-helices, followed by α-helices, β-strands and 310-helices.
The hydrogen bonds of Y495 and the side chains of K443
and Y505 are lost upon binding, leading to the formation of a
new κ-helix κ10 and conversion of κ50 into a coil, which further
stabilizes α-helix α5. The side chain of D442 on α5 forms hydro-
gen bonds and salt bridges with R509, which is rotated and
switched to a κ-helix κ12. 31010 that converts into α1 as a new
hydrogen bond is formed between N343 and G339. α1 pulls
κ1 forming theN-terminus of the hinge region. Conformational
changes occur at the C-terminus of the hinge region as κ140

converts to β8. A new α-helix α3 is formed as a consequence of
Y380 displacement and it forms van der Waals interactions
with α2, repositioning the helix one step back. The transition is
associated with a small movement of β1 at the medial region of
the hinge. The potential of the two pairs of highly conserved
cysteines in the hinge region to act as allosteric switches has
been evaluated through the assessment of energy, geometrical
features of disulfide bonds and quality metrics of cysteine
residues [71]. The parallel alignment of cysteines indicated alter-
nating patterns in bond energy, geometrical characteristics
and quality between the pairs C336–C361 and C391–C525,
which might explain a switch-like mechanism and possible dis-
ulfide exchange reactions. These disulfide rearrangements have
been previously reported to play a crucial function in triggering
membrane fusion process in other viruses such as HIV [72].
Another group showed that the reduction of all disulfide
bonds to thiol in both ACE2 and SARS-CoV-2 impairs their abil-
ity to bind to each other [73]. However, more structural studies
are needed to determine the intricate details of these structural
rearrangements.
6. SARS-CoV-2–ACE2 unbound state
Recently, cryo-electron microscopy studies have indicated the
presence of three pockets within RBD where linoleic acid
(LA) molecules can bind [74]. The pockets have a tube-like
shape which is lined with phenylalanines, hydrophobic
amino acids that form a suitable environment for the hydro-
phobic tail of LA. A hydrophilic anchor formed by R408 and
Q409 interacts with the carboxyl head group of LA, locking
the fatty acid inside the pocket. In addition to these molecular
features, a gating helix consisting of Y365 and Y369 is loca-
lized at the entrance of the hydrophobic pocket, whose role
is to open the pocket. In the presence of LA, the gating
helix moves away 6 Å allowing the acid to enter the pocket.
The hydrophilic anchor moves 10 Å away from the hydrophi-
lic head of LA; once bound to the hydrophobic residues, the
RBD trimer compacts triggering the lock down on the head-
group of LA by the anchor. The role of LA is to stabilize the
closed conformation of the RBD trimer; therefore, its absence
is associated with the unbound open conformation that
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allows RBD interactionwith ACE2 receptor. A surface plasmon
resonance assay suggested reduced levels of S binding in the
presence of LA. Low levels of LA were found in the serum of
people infected with the virus, suggesting LA sequestration
by SARS-CoV-2. This essential fatty acid is a precursor of a
myriad of molecules that play important roles in cell metab-
olism and deficiencies were associated with growth-related
problems, mental retardation and skin-related disorders in
children [75]. More studies suggested that higher plasma
levels of LA are associated with a 43% reduced risk of diabetes,
decreased plasma levels of serum pro-inflammatory markers,
increased levels of anti-inflammatory markers and a reduced
risk of cardiovascular disease [75–77]. These facts might offer
an explanation for the range of severity issues seen in some
patients and their course of the disease [78,79].
ce
Focus

12:20200081
7. Therapeutic agents
Although specific antiviral treatments are available for
coronavirus infections, a lack of specific drugs and vaccines
against the new CoV-2 strains has resulted in high mortality
rate. One strategy has been to repurpose existing antiviral
agents which are known to produce antiviral effect against
similar viruses [80]. For instance, ribavirin interferes with
nucleic acid metabolism and thus inhibits viral replication,
including SARS-CoV-2 in vitro [81]. A clinical trial of its
efficacy in SARS-CoV-2 patients is currently underway
(ClinicalTrials.gov; NCT04356677).

The antimalaria drug chloroquine and its derivative
hydroxychloroquinehavebeen shown tohave inhibitoryactivity
against anumberofviruses in cell culture [82]. Specifically, chlor-
oquine phosphate inhibits terminal phosphorylation of ACE2,
while hydroxychloroquine elevates pH in endosomes (involved
in virus cell entry) [83,84]. Therefore, chloroquine has the poten-
tial to limit and inhibit the in vitro spread of SARS-CoV-1 [83]. In
recent studies, chloroquine together with hydroxychloroquine
inhibited replication of SARS-CoV-2 in Vero cells in vitro [85].
Subsequently, chloroquine and hydroxychloroquine were also
investigated for their therapeutic efficacy against SARS-CoV-2
in international trials (SOLIDARITY trial) [86]. However, the
evidence submitted for hydroxychloroquine versus standard-
of-care (SOC) showed that hydroxychloroquine produced
no significant reduction in the mortality of hospitalized
COVID-19 patients; consequently, this arm of the trial was
terminated [87]. In addition, the RECOVEY trial showed that
hydroxychloroquine did not reduce the mortality rate of
hospitalized COVID-19 patients [88].

Remdesivir had previously been shown to inhibit SARS-
CoV-1 and MERS-CoV in vitro [89,90] and to inhibit virus
levels and lung damage in MERs-CoV-infected non-human
primates [91,92]. It was also shown to inhibit SARS-CoV-2
in vitro [93] and was subsequently included in clinical trials
to evaluate its efficacy in COVID-19 infections. Results
show that remdesivir shortened the recovery time of
COVID-19 patients who had evidence of lower respiratory
tract infections and had been hospitalized (ClinicalTrials.gov;
NCT04280705). Due to its high clinical benefit, remdesivir
has been recently approved by the US Food and Drug
Administration [94].

To successfully enter host cells, SARS-CoV-2 not only
has to interact and bind with ACE2 receptors, but also
requires priming by TMPRSS2. Studies have revealed that
protease inhibitors, such as camostat mesylate, can block
the activity of TMPRSS2, preventing viral host cell entry
[50]. Consequently, camostat mesylate could be a potential
candidate against SARS-CoV-2. Clinical trials are currently
ongoing testing the activity of camostat mesylate, combined
with SOC treatment, as an inhibitor of TMPRSS2 in patients
affected by COVID-19 (ClinicalTrials.gov; NCT04470544).

Other studies suggested that the host cell entry of corona-
virus is regulated by receptor-dependent endocytosis.
AP2-associated protein kinase 1 (AAK1) is a known regulator
of endocytosis, therefore could be considered a target for viral
entry inhibition. Studies have revealed that the Janus kinase
inhibitor baricitinib is able to inhibit AAK1 and prevent the
intracellular assembly of SARS-CoV-2 into target host cells
mediated by ACE2 receptor, making it a potential drug can-
didate against SARS-CoV-2 [95]. A number of clinical trials
are currently investigating baricitinib as a possible COVID-
19 treatment. One of these clinical trials (ClinicalTrials.gov;
NCT04358614) has been completed with encouraging
results with a small group of patients showing significantly
improved conditions compared to baseline [96].

7.1. Monoclonal antibodies
The membrane-anchored spike glycoprotein of SARS-CoV-2 is
a key immunogenic antigen which has been shown to be tar-
geted by monoclonal antibodies (mAbs) [97,98]. mAbs may
provide a short-term protection from SARS-CoV-2 and help
in the fight against the COVID-19. Two specific human
mAbs, CA1 and CB6, from COVID-19 patients were isolated
that demonstrated in vitro potent neutralization against SARS-
CoV-2. Specifically, structural studies of these human mAbs
revealed that CB6 recognizes the same epitope asACE2-binding
sites in SARS-CoV-2, thus directly competing for its binding
[99]. Another neutralizing antibody, CR3022, a SARS-CoV-
specific human mAb, was found to potently bind to the RBD
domain of SARS-CoV-2 [100]. In this respect, these mAbs
may be promising candidates for the therapy of COVID-19.

There are currently several ongoing clinical trials investi-
gating the efficacy of experimental mAbs against SARS-CoV-
2 in patients with COVID-19. One of the most promising
trials is being conducted by Regeneron Pharmaceuticals (Clin-
icalTrials.gov; NCT04452318) who are testing a double mAb
combination, REGN-COV-2, made of REGN10933 and
REGN10987, which is designed to bind at two non-overlap-
ping points on the spike protein of the virus, thus
preventing it from entering healthy host cells. Interestingly,
the trial is designed to determine if the cocktail of mAbs can
also prevent the occurrence of the disease in people exposed
to COVID-19 patients, such as healthcare workers. Another
trial, conducted by Eli Lilly and Company (ClinicalTrials.gov;
NCT04497987), is currently evaluating a mAb isolated from
recovered COVID-19 patients, LY-CoV555, to assess its effi-
cacy in preventing SARS-CoV-2 infection in people at high
risk and COVID-19 in nursing home residents and staff.
8. Future perspectives
As advances have been made in unravelling the molecular
biology and pathogenesis of SARS-CoV-2, targeting infection
processes, such as attachment to host cell and virus replication,
remains of paramount importance in case vaccine design fails.
Specific domains within the S protein that can be targeted by
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antiviral drugs, such as the galectin-like domain and integrin
domain, have been recently discovered and are presumed to
contribute to virus entry [32,101]. A new type of ganglioside-
binding domain on the N-terminus of SARS-CoV-2 protein is
thought to interact with sialic acids linked to membrane
gangliosides and to have a role in tightening the interaction
of S protein with ACE2 [102]. Additionally, the presence of
an RGD motif in RBD might confer the ability of the virus to
interact with integrins, and it is noteworthy that integrin block-
ers might prevent virus attachment [69]. More studies are
needed to decipher the exact function of these domains and
to evaluate if potential inhibitors of these sites affect virus
entry. Apart from these interface domains, the LA binding
pocket within the RBD can be thought of as a potential allo-
steric site with great potential for therapeutic targeting,
taking into consideration that this approach was considered
before for rhinovirus infections [103]. The design of small
inhibitors capable of covalent interactions with the pocket
and of maintaining the S protein in an irreversibly closed
conformation could give rise to a COVID-19 treatment.
Additionally, targeting glycans on ACE2 or S protein could
potentially lead to the development of therapeutics, such as
neutralizing antibodies, that are able to block receptor binding
and viral entry of the virus into the host cells.
9. Concluding remarks
The surface interactions between SARS-CoV-2 and the host
cells are complex and undoubtably there is more to be discov-
ered. ACE2 expression and functional activity is likely to play
a key role in the pathology of COVID-19. However, a myriad
of host factors including lifestyle, genetics, demographic
characteristics and co-morbidities are all likely to influence
how effectively the body is able to clear the viral challenge.
Deciphering the molecular interactions that occur at the cell
surface will enhance our understanding of the entry process,
which is likely to lead to an increased number of suitable
therapeutic targets which may be pivotal in developing
novel therapies to inhibit the virus–host interaction.
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