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Abstract
Purpose: Nuclear grade of breast DCIS is considered during patient management decision-making although it may have only a mod-
est prognostic association with therapeutic outcome. We hypothesized that visual inspection may miss substantive differences in nuclei 
classified as having the same nuclear grade. To test this hypothesis, we measured subvisual nuclear features by quantitative image 
cytometry for nuclei with the same grade, and tested for statistical differences in these features.
Experimental design and statistical analysis: Thirty-nine nuclear digital image features of about 100 nuclei were measured in digital 
images of H&E stained slides of 81 breast biopsy specimens. One field with at least 5 ducts was evaluated for each patient. We compared 
features of nuclei with the same grade in multiple ducts of the same patient with ANOVA (or Welch test), and compared features of 
nuclei with the same grade in two ducts of different patients using 2-sided t-tests (P # 0.05). Also, we compared image features for 
nuclei in patients with single grade to those with the same grade in patients with multiple grades using t-tests.
Results: Statistically significant differences were detected in nuclear features between ducts with the same nuclear grade, both in dif-
ferent ducts of the same patient, and between ducts in different patients with DCIS of more than one grade.
Conclusion: Nuclei in ducts visually described as having the same nuclear grade had significantly different subvisual digital image 
features. These subvisual differences may be considered additional manifestations of heterogeneity over and above differences that can 
be observed microscopically. This heterogeneity may explain the inconsistency of nuclear grading as a prognostic factor.
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Introduction
Nuclear grade is one of the pathological factors 
reported for duct carcinoma in situ (DCIS) of the 
breast and may influence patient management.1 
Nuclear grading is the assignment of a numerical 
value to reflect various nuclear characteristics such as 
pleomorphism, size, nucleoli (whether present, sin-
gle or multiple), chromatin features (diffuse, coarse 
or vesicular), and mitotic activity. Assignment of 
nuclear grades has been found to be more consistent 
than architectural patterns.2 Nuclear grade may iden-
tify patients with DCIS at higher risk of recurrence 
after local excision.3

However, in our previous study, grade was not 
found to have a significant association with either 
local DCIS recurrence, or the development of invasive 
disease, regardless of whether grade was assessed as 
worst or predominant.4 In this previous study, nearly 
50% of the patients had DCIS with more than one 
nuclear grade; the different grades were either in dif-
ferent ducts in the same area, or in different ducts in 
different areas, and in some instances different grades 
were noted in the same duct. This heterogeneity in 
nuclear grading may have contributed to the apparent 
lack of statistical significance of grading in the devel-
opment of invasive disease or DCIS recurrence. Some 
other recent studies have reported similar heterogene-
ity of nuclear grading in DCIS.5,6 Nevertheless, while 
there is increasing recognition that DCIS is heteroge-
neous, the significance of grading heterogeneity, and 
the possible effect of this on prognosis is not clearly 
understood. In addition, in clinical practice, there is 
still an expectation that DCIS in a patient is assigned 
a single nuclear grade.

In the context of individualized patient manage-
ment, if patients with DCIS of different grades are 
treated differently, the issue of heterogeneity and the 
effect of this on assignment of a single grade is partic-
ularly important.7,8 The inherent subjectivity in grad-
ing DCIS should also be considered. Several grading 
systems have been proposed,3,9,10 but there is a lack of 
international consensus about the appropriate patho-
logic grading system to use for DCIS.

Since we previously did not find that nuclear 
grade had a prognostic effect when many patients had 
mixed nuclear grade, we assessed undetectable differ-
ences in routine microscopy with quantitative image 

cytometry features, and found that some of these fea-
tures are significantly associated with the develop-
ment of invasive disease or DCIS recurrence.11,12

This demonstration of prognostic relevance for 
quantitative cytometry suggested a role for digi-
tal image cytometry in evaluating nuclear features 
of DCIS. In this communication, we utilize image 
cytometry to assess nuclear heterogeneity by looking 
at whether a patient with a single grade exhibited dif-
ferences between ducts, and whether the presence of 
more than one nuclear grade in the same patient affects 
differences in nuclear features in ducts of the same 
grade. We focused attention on patients with grades 
that might influence decision-making: grade 2 nuclei 
in patients with only grade 2, compared to grade 2 
nuclei from patients with both grade 2 and grade 3, 
and the analogous situation for grade 3 nuclei.

Materials and Methods
Patients and specimens
Out of the full cohort of 124 patients with DCIS that 
were studied previously,4 this study was restricted 
to the subgroup of 88 patients who had undergone 
a lumpectomy alone without adjuvant radiotherapy. 
The presentation of these 88 patients is as follows: 
58 presented mammographically, 24 clinically (pal-
pable mass and/or nipple discharge), and in 6 patients 
the presentation was unknown. Details of specimen 
handling are as previously reported.4 The cohort of 
patients was accrued between 1979 and 1994, the 
specimens were handled in a manner consistent with 
the standards at the time: the specimens were sampled 
directed by the gross appearance of the specimen and 
the position of any localizing needle, but were not sub-
mitted in toto. The tissue was formalin fixed and had 
not been frozen. The slides evaluated by morphom-
etry were prepared using tissue sections of uniform 
thickness, approximately 3–4  microns, and stained 
with hematoxylin and eosin. Grades were assigned 
based on review of the entire slides of the case. The 
DCIS was graded into three grades: low, intermediate 
and high grade (grades 1, 2, 3 respectively) based on 
nuclear size and appearance of nuclear chromatin 
and nucleoli.13–15 When more than one grade was 
present, all grades, the worst (highest) grade and the 
predominant (most extensive) grades were recorded. 
This project was reviewed and approved by the Insti-
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tutional Review Board of Rutgers University, Piscat-
away, New Jersey, and by the Research Ethics Board 
of Women’s College Hospital, University of Toronto, 
Toronto, Ontario.

Image analysis
For each patient, one low power microscopic field was 
selected in which there were a minimum of 5 ducts 
containing DCIS. At high power (40×), digital images 
of DCIS were obtained: five computer images were 
obtained from each of these 5 selected ducts. Image 
features were measured for each of approximately 20 
representative nuclei per duct, for a total of approxi-
mately 100 nuclei per patient. The nuclear grade(s) 
were recorded for each duct. For each nucleus, 
39 feature values were determined in three categories. 
(i) Morphometry: area, perimeter, ellipse major 
axis, ellipse minor axis, ellipticity (major axis/minor 
axis), shape form factor (4 × pi × area/perimeter 
squared), and roundness b (4 × area/pi × ellipticity 
squared). (ii) Densitometry: mean density, standard 
deviation of density, modal density, minimum den-
sity, maximum density, sum density (mean density × 
area, used instead of I.O.D. of NIH-Image), range 
density. (iii) Markovian texture features were cal-
culated from the Markovian co-occurrence matrix 
of pixel densities with a step size of 2. They were 
angular second moment, contrast, correlation, vari-
ance, inverse difference moment, sum average, sum 
variance (corrected), difference average, difference 
variance, initial entropy, final entropy, entropy, sum 
entropy, difference entropy, coefficient of varia-
tion, peak transition probability, diagonal variance, 
diagonal moment, second diagonal moment, product 
moment, and triangular symmetry. Additional tex-
ture features, calculated from the binned histogram 
of pixel gray scale values, included histogram mean, 
histogram variance, histogram skewness, and histo-
gram kurtosis. Further details of the digital image 
analysis method were reported previously.11,12 For this 
study, satisfactory computer images were obtained 
and data extracted for 81 patients. The reproducibil-
ity of the image measurements obtained was assessed 
in two ways, with repeated measurements of the 
same nucleus and with duplicate measurements made 
at different times of randomly selected nuclei from 
seven randomly selected patients.

Hardware
A custom image cytometry system was assembled 
which consisted of a CCD camera attached to a bright 
field microscope and linked to a desktop computer 
with a frame grabber card. Images of nuclei were 
acquired and stored as follows: hematoxylin and eosin 
stained slides were viewed with a bright field micro-
scope (Wild model M20), 40× N.A. 0.75 objective, 
1.25× phototube, 530–590  nm band pass green fil-
ter, detected with an 8 bit monochrome CCD camera 
(Sonyo model VDC3874) connected to a video monitor 
(RCA TC1112) and a frame grabber card (60 HZ Data 
Translation Quick Capture model DT2255) in a desk-
top computer (Apple Macintosh model IIci, 12 MB 
RAM, 80 MB hard disk), and stored as uncompressed 
TIFF files on removable media (Zip 100 disks). Ten 
frames were averaged and acquired using NIH-Image 
software (v. 1.57, written by Wayne Rasband, obtained 
from the internet by anonymous FTP). Each TIFF for-
matted image was 640 × 480 pixels, with 256  gray 
levels. The resulting pixel images were isotropic, with 
an effective size of 0.25 microns × 0.25 microns. Seg-
regated nuclear images were of modest resolution, 
typically containing 800 to 1600 square pixels. Sizes 
were calibrated with a B&L stage micrometer. Opti-
cal density of pixel gray values was standardized and 
camera response calibrated with a set of neutral density 
filters (50, 25, and 12.5% transmission).

Software
NIH-Image v.1.62b34-Arnv software (modified from 
http://rsb.info.nih.gov/) and StatView v. 5.01statistical 
package (BrainPower, Calabasas, CA, USA) were 
used to measure and calculate DNA densitometric 
and nuclear morphometric features using a Mac G4 
computer. TextureCalc v. 1.1ax, software (written by 
W. C.-B.) was used to rebin 256 gray levels into 8 inter-
vals and to calculate texture features from the Markovian 
gray level co-occurrence matrices. Programs written in 
SAS release 6.12 for the Macintosh (SAS Institute, Inc., 
Cary, NC, USA) were used to format data and BMDP 
PC Dynamic Version 7.0 (Statistical Solutions, Sagua, 
MA, USA) was used for statistical analysis.

Statistical analysis
We looked at intra-DCIS heterogeneity, i.e. whether 
there were differences between ducts of patients who 
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had the same nuclear grade, Figure 1. For each patient, 
the 39 digital image feature data were pooled across 
all nuclei in a duct to yield for the duct, 39 summary 
feature values [mean image feature/standard error of 
the mean (s.e.m.)]. We examined whether the values 

of each continuous image feature were significantly 
different by grade. If there was no evidence against 
equal variances across grades (P $ 0.10, by Levene 
test), then an analysis of variance (ANOVA) F-test 
was used; however, if there was evidence of het-
erogeneous variance by the Levene test (P , 0.10), 
the Welch’s adaptation of the t- test which does not 
assume equal variances, was used to test for homoge-
neity of image feature values between ducts with the 
same nuclear grade(s). Then, when there was signifi-
cant evidence of different image feature value(s) in 
different ducts, pair-wise t-tests were used to test for 
differences in image feature value(s) between ducts 
with the same nuclear grade.

We looked at inter-person heterogeneity of image 
analysis features, i.e. whether image features for DCIS 
of a particular grade in a patient with a single nuclear 
grade differed from those of DCIS of the same grade 
in a patient with more than one grade, Figure 2. As 
before, the image feature data were pooled for each 
patient across all nuclei in ducts with the same nuclear 
grade, to yield summary feature values of mean/s.e.m. 
for each of the 39 image features, for nuclei of the 
same nuclear grade. Two-sided Student t-tests were 
used to test for differences between grade 2 nuclei in 
patients with only grade 2 nuclei compared to grade 
2 nuclei in patients with both grade 2 and grade 3 
nuclei. Also, Student t-tests were used to test for dif-
ferences in grade 3 nuclei in patients with only grade 
3 nuclei compared to patients with both grade 2 and 
grade 3 nuclei. Comparisons of digital image analy-
sis features for patients with grade 1 nuclei (grade 1, 
grades 1 and 2, and grades 1, 2, and 3) were not con-
sidered because of the low numbers of patients in 
each of these categories.

Authors contributions
D.E.A. acquired the data, was involved in design of 
the study, analysis and interpretation of results, draft-
ing and preparing the final manuscript. J.W.C. was 
involved in design of the study, analysis and inter-
pretation of results, drafting and preparing the final 
manuscript. N.M. was involved in design of the 
study, pathological review of specimens, interpreta-
tion of results, and preparing the final manuscript. 
W.C.-B. wrote the software used to extract the image 
features and reviewed the manuscript. J.Q., Y.Y and 
Y.F. were involved in analysis of data and reviewed 
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Figure 1. Schema of t-tests for Table 2. For each patient, image features 
for nuclei of the same grade were compared by pair-wise t-tests. In this 
example for Patient A, ducts with grade 2 nuclei (only one nucleus in a 
duct is shown) are compared. The number of ducts of the same grade 
that were compared in different tests are 5 (top), 4, 3, and 2 (bottom).
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the manuscript. H.L. was involved in acquisition of 
specimens through surgical management of patients 
and reviewed the manuscript.

Results
In order to determine the reliability of the data 
extracted by image analysis of nuclei, two kinds of 
measurements were made. First, repeated measure-
ments were made of one feature (i.e. area) of one 
nucleus. The coefficient of variation of 150 measure-
ments was 3.4%. Second, for 10 nuclei of each of 7 
patients, duplicate measurements were made of all 39 
features. Duplicate measurement were made at differ-
ent times. The percent of features in pairs of measure-
ments that were not statistically different (two tailed 
paired t-test, 0.05 level of significance) ranged from 
90% to 97% for different nuclei.

The distribution of the number of patients and their 
nuclear grade, or grades, is shown in Table 1. Of the 
total of 81 patients, 47 had a single grade and 34 had 

more than one grade. Figure 3 shows an example of 
more than one grade in the same patient. Where there 
was more than one grade in the same patient, the dif-
ferent grades were in different ducts in some cases or 
in the same duct in other cases.

Comparisons were made between image features 
of nuclei from different ducts of the same nuclear 
grade(s) in the same patient. Some patients had a 
single grade and other patients had more than one 
grade. Figure 1 illustrates an example of comparisons 
in a patient with only one grade. Table 2 shows the 
results of pair-wise comparisons for 2, 3, 4 or 5 ducts 
with the same grade (grade 2 compared with grade 
2, and grade 3 compared with grade 3), along with 
the number of significant t-test that were expected 
and observed. For each of the comparisons, except 
that with 2 ducts, the observed number of significant 
features exceeded the expected. Therefore, statisti-
cally significant differences were detected between 
nuclei of the same grade in different ducts of the same 
patient.

Comparisons were made between image features 
for grade 2 nuclei in patients with only grade 2 nuclei 
with grade 2 nuclei in different patients with both 
grades 2 and 3, Figure 2. All 39 image features were 
significantly different, P # 0.05 in two sided t-tests. 
Similarly, comparisons were made between grade 3 
nuclei in patients with only grade 3 with grade 3 nuclei 
in patients with both grades 2 and 3. There were sig-
nificant differences in 28 of the 39 image features. 
There were significant differences in each type 
of image feature assessed: 6/7  morphometric, 5/7 

PATIENT B PATIENT BPATIENT C PATIENT D

Duct Duct DuctDuct 1?
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?
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Duct 2
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3 3

Single grade Single gradeMixed grades Mixed grades

Figure 2. Schema of t-tests for Table 2. Image features in nuclei with the same grade in different patients were compared by pooled t-tests. Nuclei of 
grade 2 are compared between Patient types B and C, and Patient types B and D. In this example, Patient C has nuclei of grade 2 and nuclei of grade 3 
in different ducts, whereas Patient D has nuclei of grade 2 and nuclei of grade 3 in the same duct. Table 2 also includes comparison of images features of 
nuclei of grade 3, not shown in this figure.

Table 1. Number of patients by nuclear grade.*

Nuclear grade or grades Number of patients
Grade 1 only 1
Grade 2 only 27
Grade 3 only 19
Grades 1 and 2 8
Grades 2 and 3 25
Grades 1, 2, and 3 1
Total 81

*Lumpectomy alone patients with image analysis feature data used in 
assessments of DCIS heterogeneity.
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densitometric, and 17/25 texture features. Therefore, 
statistically significant differences were detected 
between nuclei of the same grade in ducts of differ-
ent patients.

Nuclei of the same grade in the same patient had 
differences in image features regardless of whether 
there was a single grade in the duct or multiple grades 
in the duct. In addition, nuclei of the same grade in 
different patients differed by whether the ducts had a 
single or multiple grades.

Discussion
There is increasing recognition of heterogeneity 
within tumors of many different tissues,16 including 
heterogeneity within DCIS of the breast.16,17 This 
study extends the previous observations on intratu-
moral heterogeneity of DCIS by documenting that 
quantitative differences can exist even between ducts 
that appear to have the same nuclear grade.

We compared image features for nuclei in ducts 
with the same nuclear grade within the same patient 
and found statistically significant differences. 
Also, differences were detected between ducts of the 

same nuclear grade in different patients, in which one 
patient had a single grade and the other patient had 
more than one grade. Image analysis of digital images 
of biopsy specimens was able to extract quantitative 
subvisual information about nuclei that was found to 
be statistically different.

The high replicability of repeated measurements 
of nuclear features by image analysis implies that 
the statistically significant differences reported in 
this study are unlikely to be due to measurement 
error, but rather represent real differences between 
nuclei.

Nuclear grade has been found to be associated 
with both risk of DCIS recurrence,3,19,20 and pro-
gression to invasive carcinoma.19,21 Based on such 
results, nuclear grade is a required component of the 
pathologic evaluation and reporting of DCIS.1,22 Tra-
ditional nuclear grading depends on visual inspec-
tion and subjective judgement. Image cytometry 
can detect additional subvisual information and the 
extracted data is amenable to objective statistical 
analysis. This additional information has been used 
in the assessment of biopsy specimens of many tis-
sues, including in situ and invasive carcinoma of 
the breast.21,23–31 In previous studies, we showed that 
image cytometric features were significantly associ-
ated with risk of DCIS recurrence,11 and development 
of invasive cancer.12

Here we show that image cytometry can character-
ize interductal heterogeneity, the difference between 
ducts with the same nuclear grade. Since nuclear grade 
is one of the factors considered in the management of 
DCIS,32–34 not accounting for interductal heterogeneity 
may have clinical implications. This may explain the 

Table 2. Significant differences in image features between 
ducts with same nuclear grade.

Number of  
ducts same  
nuclear grade

No. t-tests  
per patient

Significantly different 
t-tests per patient*
Expected Observed

5 390 20 46–110
4 234 12 28–77
3 117 6 11–26
2 39 2 1–20

*Two-sided t-tests, with 5% significance level.

Figure 3. Example of more than one grade in the same patient. Left, nuclei of grade 1. Right, nuclei of grade 3.
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lack of association between nuclear grade and patient 
outcome in a previous report.4

Interductal heterogeneity also has implications 
for studies of DCIS at the molecular and cellular 
levels. Some of these studies are based on analysis 
of a single patient sample, either a mixture of cells 
from a “representative” region, or a small number of 
selected cells from a region obtained by laser cap-
ture microdissection. Several studies have compared 
DCIS to normal tissue, to invasive carcinoma, or to 
metastatic carcinoma from the same patient by gene 
expression,35–39 protein expression,40 microsatellite 
markers,40,41 loss of heterozygosity,43,44 gene ampli-
fication or deletion (CGH),45,46 and nuclear image 
features.29 Many of these studies included paired 
samples of DCIS and other lesions from the same 
patient; however, it is often not clear how many sam-
ples of DCIS were assessed and therefore whether 
the sampling method would account for the kind 
of interductal heterogeneity reported here. Without 
characterizing multiple samples from different ducts 
from the same patient, it is not clear if the differ-
ences found between the single DCIS sample and 
the other invasive or metastatic lesion of the same 
patient would also have been found between mul-
tiple samples of DCIS of the same patient.

Interductal heterogeneity can also be a concern 
in analysis of samples in tissue microarrays. Tissue 
microarrays often include multiple samples from the 
same patient. The reproducibility of measurements of 
pairs of samples has been demonstrated.47,48 However, 
if the samples analyzed in tissue microarrays come 
from the same region of tissue, these samples may 
not reflect the heterogeneity existing in the patient’s 
tumor.49

Our results suggest that studies of DCIS at the 
molecular and cellular levels should incorporate anal-
ysis of multiple samples from different areas of tissue 
demonstrating DCIS in order to account for the range 
of molecular and cellular diversity that may exist 
between the different ducts within each patient.

In summary, digital image analysis, previously 
used to quantitatively characterize premalignant and 
malignant specimens, may reveal subvisual informa-
tion useful for diagnosis and prognosis of breast and 
other tumors. In this communication, we used image 
analysis to reveal heterogeneity between ducts of 
breast DCIS of the same nuclear grade.
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