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Abstract

The leaf economics spectrum (LES) describes multivariate correlations in leaf

structural, physiological and chemical traits, originally based on diverse C3

species grown under natural ecosystems. However, the specific contribution of

C4 species to the global LES is studied less widely. C4 species have a CO2

concentrating mechanism which drives high rates of photosynthesis and

improves resource use efficiency, thus potentially pushing them towards the

edge of the LES. Here, we measured foliage morphology, structure, photo-

synthesis, and nutrient content for hundreds of genotypes of the C4 grass

Miscanthus× giganteus grown in two common gardens over two seasons. We

show substantial trait variations across M.× giganteus genotypes and robust

genotypic trait relationships. Compared to the global LES, M.× giganteus

genotypes had higher photosynthetic rates, lower stomatal conductance, and

less nitrogen content, indicating greater water and photosynthetic nitrogen use

efficiency in the C4 species. Additionally, tetraploid genotypes produced thicker

leaves with greater leaf mass per area and lower leaf density than triploid

genotypes. By expanding the LES relationships across C3 species to include C4

crops, these findings highlight that M.× giganteus occupies the boundary of the

global LES and suggest the potential for ploidy to alter LES traits.
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1 | INTRODUCTION

The leaf economics spectrum (LES) describes striking relationships

among leaf functional traits and reflects fundamental trade‐offs that

underpin key ecological strategies for resource acquisition and use in

plants (Reich et al., 1997; Wright et al., 2004). Fast‐growing species

are characterized by a quick potential rate of return on leaf nutrients

and dry mass investments with low leaf mass per unit area (LMA),

high nitrogen and phosphorus content per unit leaf mass (Nm and Pm,

respectively), and high rates of respiration and photosynthesis per

unit dry mass (Rm and Am, respectively). In contrast, slow‐growing

species with the opposite traits have high LMA, low Nm, Pm and Am

representing a slow return on investment of resources (Reich, 2014;

Wright et al., 2005). Initially, the LES explained across‐species

variation in leaf morphology and function in a broad diversity of

species found in their natural ecosystems (Wright et al., 2004).

However, an increasing number of studies revealed variability in leaf

functional traits and trait relationships within species and large

discrepancies between the global LES and within‐species trait data

(Albert et al., 2010; Anderegg et al., 2018; Blonder et al., 2013, 2015;

Niinemets, 2015). Recent studies also demonstrated that crops in

agroecosystems tend to deviate from the general pattern of the

global LES (Hayes et al., 2019; Martin et al., 2017, 2018; Xiong &

Flexas, 2018). However, these studies used data compiled from

global and regional databases covering a wide range of climatic

conditions and failed to distinguish between genetic and phenotypic

plasticity of trait variation.

Strong trait variation within or across species is both a

consequence of plastic responses to environmental gradients and

evolutionary genetic changes. For example, polyploidy or whole

genome duplication, often contributes to dramatic changes in leaf

morphology and physiology and confers enhanced tolerance to biotic

and abiotic stress and adaptation to capricious or novel environments

(Chao et al., 2013; Soltis & Soltis, 2000). Studies demonstrate that

leaf size and thickness, stomatal size and photosynthesis often

increase with polyploidy in both C3 and C4 species (Baker et al., 2017;

Hao et al., 2013; Masterson, 1994; Vyas et al., 2007; Warner &

Edwards, 1989; Warner et al., 1987). Tetraploids exhibit higher

uptake of potassium (K) than diploids in Arabidopsis (Chao et al.,

2013). Bagheri and Mansouri (2015) reported calcium (Ca) and

phosphorus (P) concentrations were significantly increased and

sulphur (S) content was decreased in tetraploid cannabis (Cannabis

sativa L.) leaves compared with their diploid counterparts. These

studies suggest polyploidization plays a substantial and overlooked

role in plant resource use strategy, and, as a result, in coordination of

leaf functional traits. A better understanding of the effect of

polyploidy on leaf traits and trait relationships within species requires

common garden experiments that highlight the genetic contribution

to phenotypes found when plants are grown in identical

environments.

While the global LES explains the trade‐offs of leaf functional

traits in C3 species, co‐variation in leaf chemical, structural and

physiological properties in C4 species has been largely unstudied. C4

plants comprise ∼3% of land plant species, but account for nearly

25% of global terrestrial primary productivity (Sage et al., 1999; Still

et al., 2003). C4 plants are widely distributed from the tropics to the

warm‐temperate zone within 50° of the Equator and dominate

grasslands and savannas in these regions (Ehleringer et al., 1997; Still

et al., 2003). C4 plants include major sources of food and biofuels

worldwide, such as maize (Zea mays), sorghum (Sorghum bicolour) and

Miscanthus (Heaton et al., 2008; Lewandowski et al., 2000; Ranum

et al., 2014; Rooney et al., 2007). Therefore, the lack of C4 leaf traits

in the global LES limits our understanding of overall plant functional

strategies and ecosystem function. C4 photosynthesis involves a

series of anatomical and biochemical modifications to concentrate

CO2 around Rubisco. Most C4 leaves are characterized by Kranz

anatomy, in which mesophyll cells surround bundle sheath cells and

bundle sheath cells further surround the vascular bundle (Hatch,

1987; Sage, 2004). The initial fixation of atmospheric CO2 occurs in

mesophyll cells by phosphoenolpyruvate carboxylase (PEPCase),

followed by decarboxylation and refixation of CO2 by Rubisco in

bundle sheath cells (Hatch, 1987; Sage, 2004). Higher activity of

PEPCase effectively concentrates CO2, leading to a high CO2/O2

ratio around Rubisco, thereby increasing photosynthetic efficiency

and decreasing photorespiration (Ehleringer & Monson, 1993). C4

species typically exhibit superior efficiencies of carbon fixation, water

and nutrient use, and increased resistance to environmental stress

compared to C3 species (Ehleringer & Monson, 1993; Leakey et al.,

2019; Li et al., 2022; Montes et al., 2022). As a result, multivariate

correlations among leaf functional traits in C4 species may not be

consistent or may differ greatly from the general trends observed in

the global fundamental leaf trait relationships.

In this study, we collected leaf functional traits from more than 200

genotypes of Miscanthus× giganteus grown in two common garden

experiments in 2018 and 2019. Miscanthus, a tall and high‐yielding

perennial C4 grass which originated in East Asia, was successfully

introduced and cultivated in North America and in Europe in the second

half of the 19th century (Clark et al., 2015, 2019; Lewandowski et al.,

2000; Quinn et al., 2010).M.× giganteus is a highly productive interspecific

hybrid of tetraploid Miscanthus sacchariflorus and diploid Miscanthus

sinensis and has been widely recognized as an emerging and promising

feedstock for bioenergy production (Heaton et al., 2008; Hodkinson et al.,

2002; Hodkinson & Renvoize, 2001; Lewandowski et al., 2000). Owing to

its low nutrient requirements and high water‐use efficiency,M.× giganteus

can produce high biomass yields across a variety of soil and climatic

conditions on marginal lands without competing with food crops (Clifton‐

Brown et al., 2017; Lewandowski et al., 2000). M.× giganteus genotypes

display considerable phenotypic variation, which exists within and

between cultivars and an abundant cytotype diversity that ranges in

ploidy from diploid to hexaploid (Clark et al., 2019; Głowacka et al., 2015).

Therefore,M.× giganteus is an excellent model for exploring the LES in C4

species. Specifically, we ask the following questions: (1) what is the

genotypic range of leaf functional traits in M.× giganteus? (2) to what

extent do the traits and relationships change with ploidy levels? (3) is the

C4 LES trait covariation consistent with the general pattern of the

global LES?
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2 | METHODS AND MATERIALS

2.1 | Site description

This study was conducted in 2018 and 2019 at the Energy Farm (EF)

(referred to as 2018 IL and 2019 IL, respectively) of University of

Illinois in Urbana, Illinois (40°03′56"N, 88°12′21"W, elevation 219m)

and in 2019 at the Mississippi Agricultural and Forestry Experiment

Station (MAFES) (referred to as 2019 MS) of Mississippi State

University in Starkville, Mississippi (33°23′43"N, 88°44′31"W,

elevation 56m). The EF receives an average of 1009mm of rainfall

per year (30‐year average, 1981–2010, data from https://www.ncdc.

noaa.gov/cdo-web/datatools/normals) with ca. 50% falling during

the growing season from May to September. The mean annual

temperature is 10.9°C ranging from a mean monthly winter minimum

of −8.2°C to a mean monthly summer maximum of 29.0°C. At EF, the

2018 and 2019 growing seasons (May–September) experienced total

rainfall of 523.7 and 455.4mm, respectively, and slightly higher air

temperatures than observed historically. The soils at EF are Mollisols

with Dana silt loams, Drummer silty clay loams, and Flanagan silt

loams texture (Soil Survey Staff, 2015). At MAFES, long‐term

(1981–2010) mean annual precipitation is ∼1403mm, of which

871mm falls from March to October, and the mean annual

temperature is 16.9°C with a minimum of −0.67°C in winter and a

maximum of 33.1°C in summer (https://www.ncdc.noaa.gov/cdo-

web/datatools/normals). However, the 2019 growing season

(March–October) receives total precipitation of 1587mm which

was considerably above the 30‐year mean. Soil type at MAFES is

Kipling silty clay loam.

2.2 | Plant materials

Field trials were established on 18–19 June 2018 at EF, and on

8–11 October 2018 at MAFES. Each M.× giganteus genotype was

vegetatively propagated by planting rhizome divisions into 72‐cell

trays (T.O. Plastics, Clearwater) and grown in a greenhouse before

planting in the field. The field trials were randomized complete block

designs with three replications at each site. Plots consisted of single

rows of eight plants spaced 0.91 m within and between rows. At the

EF, the aboveground portions of all plants were maintained over

the winter of 2018–2019 and removed in the spring of 2019 before

tiller emergence. However, 49 genotypes were damaged and not

available at EF in 2019 due to poor overwintering ability (Dong

et al., 2019). In total, 216 genotypes were studied at EF in 2018 and

167 genotypes in 2019; at MAFES 202 genotypes were studied in

2019 (Supporting Information: Table S1). Among these, 167

genotypes were studied at EF in both 2018 and 2019, 180

genotypes were measured at both EF in 2018 and MAFES in

2019, and 141 genotypes were studied at both EF and MAFES in

2019 (Supporting Information: Table S1). Hence, 141 genotypes

were measured at both EF and MAFES in both years (Supporting

Information: Table S1).

2.3 | Ploidy assessment

Flow cytometry was used to determine DNA content and infer ploidy

following previously described protocols (Chae, 2012; Clark et al.,

2015; Rayburn et al., 2009). Briefly, using a razor blade, 1 cm2

samples of young fully emerged leaves of each Miscanthus genotype

were co‐chopped with 1 cm2 leaf samples of S. bicolour as an internal

standard in an extraction buffer consisting of 10mM Tris, 10 mM

MgCl2, 0.5% Triton X‐100, 13% hexylene glycol. Extracts were

passed through 50 µm nylon filters and kept on ice before

centrifugation at 2100 RPM for 20min at 4°C. Pellets were

resuspended in 300 μl of propidium iodide (Sigma‐Aldrich) stain,

then incubated at 37°C for 20min in the dark. Following incubation,

300 μl of propidium iodide salt solution was added to each tube and

stored on ice in the dark for at least 1 h. A minimum of 20 000 nuclei

per sample were analyzed on a flow cytometer (model BD LSR II, BD

Biosciences) at the Roy J. Carver Biotechnology Center (https://

biotech.illinois.edu/cmto/services‐eqiupment). The excitation wave-

length was set to 488 and a 570 nm emission filter was used. The

mean fluorescence of the Miscanthus G1 peak was divided by the

G0/G1 peak of sorghum, multiplied by 1.74 pg/2C and expressed in

pg/2C nucleus. DNA contents were estimated for known diploid

M. sinensis, tetraploid M. sacchariflorus (including the parents of the

M.× giganteus progenies if available), and triploid and tetraploid

M.× giganteus genotypes, which were used as references for inferring

ploidy of M.× giganteus genotypes for which estimates had not

previously been obtained.

We were unable to identify ploidy levels in group 14UI‐037 due to

very low DNA content (Supporting Information: Table S1). Group 14UI‐

037 is a hybrid between tetraploid M. sacchariflorus ‘Hokkaido Univ‐

selection‐1’ and diploid M. sinensis ‘Silberturm (Silver Tower)’, and has 59

genotypes in total. Additionally, the ploidy levels of 22 genotypes

measured at EF and MAFES in both years were undetermined. In this

study, two genotypes (UI10‐00110 at EF and 14UI‐016R.020 at MAFES)

were identified as pentaploid and four genotypes (UI10‐00109, UI10‐

00111, UI10‐00114 and UI10‐00115) at EF were identified as hexaploid

(Supporting Information: Table S1). Therefore, only triploid and tetraploid

genotypes at both sites and years were included in the analysis of ploidy

level effect on variation in leaf traits and LES. In sum, 97 triploid and 35

tetraploid genotypes were studied at EF in 2018, 90 triploids and 27

tetraploids were studied at EF in 2019, and 89 triploid and 40 tetraploid

genotypes were measured at MAFES in 2019 (Supporting Information:

Table S1).

2.4 | Phenotyping

The leaf physiological and morphological measurements at EF were

carried out in September of 2018 and 2019, and the measurements at

MAFES were performed in July 2019. To avoid the potential influence of

leaf age on trait values (Mason et al., 2013; McKown et al., 2013), we

selected the youngest fully expanded sun‐exposed leaves, typically the

third or fourth leaf from the shoot apex, for the measurements. One or
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two leaves from each of one or two individuals per genotype in each

block were randomly selected and sampled, and the same leaf was used

for all physiological, morphological and nutrient measurement.

2.4.1 | Gas exchange

Simultaneous gas‐exchange and chlorophyll fluorescence were measured

in the field using infrared gas analyzers in 2018 (LI‐6400XT, LICOR

Biosciences) and in 2019 (LI‐6800, LICOR Biosciences). Both LI‐6400XT

and LI‐6800 were equipped with a 2 cm2 chlorophyll fluorometer

chamber. All measurements at EF and MAEFS were performed on sunny

days between 9.00 and 14.00h, at a photosynthetic photon flux density

(PPFD) of 1800–1900µmolm−2 s−1 and relative humidity between 60%

and 70%. Leaf temperatures ranged from 29 to 36°C at EF, and from 34

to 38°C at MAFES. CO2 concentration within the block was maintained

at 410µmolmol−1 in 2018 and 420µmolmol−1 in 2019. Area‐based leaf

maximum photosynthetic rate (Aa, see Supporting Information: Table S2

for abbreviations) and stomatal conductance (gsa) were recorded after

stabilization of gas exchange rates. The leaf was further illuminated with a

saturating irradiance (ca. 10000µmolm−2 s−1 PPFD) to determine

chlorophyll fluorescence including quantum yield of PSII (ΦPSII), electron

transport rate (ETR), PSII maximum efficiency (Fv′/Fm′), and coefficient of

photochemical quenching (qP). Instantaneous water use efficiency (iWUE,

µmolmol−1) was calculated from iWUE=Aa/gsa.

2.4.2 | Leaf morphology and LMA

Following gas exchange measurements, the same leaf was used to

measure leaf area (La, cm
2), length (Ll, cm) and width (Lw, cm) with a

portable leaf area metre (LI‐3000C, LICOR Biosciences). We further

estimated leaf chlorophyll concentration with a portable chlorophyll

metre (SPAD 502; Minolta corporation, Ltd) and leaf thickness (Tleaf, µm)

with a low‐force micrometre (MDH‐1"MB, Mitutoyo Co). For each leaf,

6–8 readings were taken across the lamina and the average value was

recorded. SPAD values were measured in 2019 at EF and MAFES. All

leaves in both years and locations were then harvested and dried at 70°C

for at least 72 h. LMAwas calculated as leaf dry mass divided by leaf area.

Leaf density (ρleaf, g cm−3) was calculated as LMA/Tleaf (Witkowshi &

Lamont, 1991). LMA was then used to derive mass‐based photosynthetic

rates (Am, nmol g−1 s−1) and stomatal conductance (gsm, mol g−1 s−1) by Aa

and gsa, respectively, divided by LMA.

2.4.3 | Nutrient content

Dried leaves were ground into a fine powder using a 2000 Geno/

Grinder (Spex Sample Prep) for 10min at 2000 stroke/min, and 3mg

of leaf tissue was weighed and analysed for mass‐based leaf carbon

(Cm) and nitrogen (Nm) concentrations using a Costech 4010

elemental analyzer (Costech Analytical Technologies, Inc). Leaf C:N

ratio was calculated from C:N = Cm/Nm. Mass‐based phosphorus

content was measured in triploid and tetraploid samples in 2019 with

61 triploids and 25 tetraploids at EF, and 58 triploids and 25

tetraploids at MAFES by using inductively coupled plasma optical

emission spectroscopy (ICP‐OES, OPTIMA 3300 DV, Perkin–Elmer)

after nitric acid digestion. Nutrient concentrations per unit area were

calculated by multiplying mass‐based nutrient concentrations by

LMA. Photosynthetic nitrogen and phosphorus use efficiency (AN and

AP) were calculated as Am divided by Nm and mass‐based phosphorus

concentration (Pm), respectively.

2.5 | Statistical analyses

All statistical analyses were performed on the R platform (version 4.0.3)

using the mean trait values of each genotype except analyses in

Supporting Information: Table S4 which were done using individual values

of LES traits. Trait differences between different sites and years, and

between triploid and tetraploid genotypes at each site and year were

compared by analysis of variance (one‐way analysis of variance [ANOVA])

followed by Tukey's post hoc test. LES trait data was also explored using

two‐way ANOVA analyses to confirm variances associated with

genotypic versus phenotypic plasticity. Correlations among leaf traits

for all M.× giganteus data pooled and for different subset data were

analyzed on a mass and an area basis using the Pearson's correlation

analysis with the R package corrplot. The slope and intercept of bivariate

relationships of key leaf traits were calculated with standardized major

axis (SMA) analysis using the ‘sma’ function of the smatr R package

(Warton et al., 2012). To understand how different ploidy levels altered

the intraspecific leaf trait relationships and whereM.× giganteus leaf traits

fell within the global LES, the differences in the slope and intercept of

bivariate relationships of key leaf traits were compared between triploid

and tetraploid genotypes and between M.× giganteus and the global LES

data set (Glopnet database) using SMA. To further assess the contribution

of site, year and ploidy level effects on multivariate trait relationships and

covariation, SMA was also performed independently for each site and

year. Although the Glopnet data set comprised 2548 species, only 23 C4

species with three species having the full range of leaf traits (LMA,

photosynthesis, N and P content) were included (Wright et al., 2004). As

such, the entire set of Glopnet data was used for all analyses. To further

test whether the distribution in M.× giganteus was similar to other C4

energy crops and different from the global LES, we compared the range

of traits in M.× giganteus with data from 869 photoperiod‐sensitive

S. bicolour lines (Ferguson et al., 2021). All data were log10‐transformed

before SMA analyses.

3 | RESULTS

3.1 | Genotypic leaf trait variation

Leaf traits varied spectacularly amongM.× giganteus genotypes. Across all

sites and years, leaf morphological traits (leaf area, La; leaf length, Ll; and

leaf width, Lw; see all abbreviations in Supporting Information: Table S2)
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varied 4.5‐fold (Ll) to 19‐fold (La), leaf anatomical traits (leaf thickness,

Tleaf; LMA; and leaf density, ρleaf) varied ∼2‐fold and LMA ranged from c.

41 to 100 gm−2 (Table 1, Supporting Information: Table S3). M .×

giganteus photosynthetic rates varied 6.2‐fold for Aa and 8.1‐fold for Am,

whereas the variations in stomatal conductance were 11‐fold for gsa and

13‐fold for gsm, respectively (Table 1). iWUE, nitrogen (Na and Nm) and

phosphorus (Pa and Pm) varied 2‐ to 3‐fold across all genotypes (Table 1).

Leaf traits also varied considerably among genotypes at each site and in

each year (Supporting Information: Table S3).

In comparison, M.× giganteus showed a broader distribution of leaf

traits than sorghum (Table 1 and Figure 1). Specifically, M.× giganteus

showed higher LMA but lower photosynthesis, Nm and AN compared to

sorghum (Table 1). Although most of the leaf traits fell in the range of

values reported in Glopnet, C4 crops exhibited a lower mean LMA and

higher mean photosynthesis, iWUE, Nm and AN than the C3 species

represented in Glopnet. The mean Pa, Pm and AP in M.× giganteus were

generally the same as those for Glopnet (Table 1). As a result,

M.× giganteus and sorghum occupied a distinct niche in the global LES

and tended to have high Am and Aa at a given LMA or Nm (Figure 1).

Leaf traits in M.× giganteus also respond strongly to environmental

drivers and stand age. In the 2019 season, plants produced larger and

thinner leaves than in the 2018 season at the EF of the University of

Illinois (Supporting Information: Table S3). The 2018 and 2019 plants also

differed in photosynthesis and nutrient content, with the 2018 plants

showing lower Am and higher stomatal conductance and nitrogen

concentration. Genotypes at the MAFES of Mississippi State University

showed smaller and thicker leaves with lower Am and stomatal

conductance than that at EF, perhaps because of greater precipitation

and higher temperatures in Mississippi (Supporting Information: Table S3).

However, no significant differences (p>0.05) were detected in Aa

measured at the EF in different years or gsa measured at different sites in

2019 (2019 IL vs. 2019 MS) (Supporting Information: Table S3). When

using the same genotypes studied at two sites in both years, similar site

and year effects on leaf traits were discovered (Supporting Information:

Figures S1–S3). Genotypic variation, year/site effect and their interactions

were found in LES traits (Supporting Information: Table S4).

3.2 | Correlations among leaf traits

Pearson's correlation analysis revealed broad relationships among

leaf morphology, anatomy, photosynthesis and nutrient composition

inM.× giganteus genotypes. Smaller and narrower leaves tended to be

thicker, with higher LMA but lower photosynthetic rate and stomatal

conductance (Figure 2, Supporting Information: Figure S4). Both Aa

and Am were negatively associated with Tleaf and LMA, and the

TABLE 1 Key foliage traits measured in Miscanthus× giganteus in this study and comparison of M.× giganteus with Sorghum bicolour and
Glopnet

Trait
M.× giganteus S. bicolour Glopnet
Range Mean Range Mean Range Mean

LMA 41.0–99.6 67.1 29.2–43.2 34.5 14.4–1509.5 127.7

Aa 6.6–41.0 23.7 19.8–35.0 28.0 1.0–42.0 11.5

Am 93.3–758.2 369.8 550.1–1019.3 812.5 4.8–662.3 127.8

gsa 0.046–0.507 0.189 0.17–0.41 0.25 0.035–2.272 0.310

gsm 0.53–6.85 2.92 4.8–12.3 7.3 0.062–44.719 3.299

iWUE 72.6–227.8 136.8 107.5–150.8 128.8 6.5–172.7 50.7

Na 0.80–2.41 1.45 0.76–1.98 1.30 0.26–9.14 1.94

Nm 1.1–3.2 2.2 2.39–4.25 3.49 0.25–6.36 1.93

C:N 14.4–42.9 21.7 9.4–17.2 12.5 ‐ ‐

Pa 0.087–0.293 0.171 ‐ ‐ 0.02–0.88 0.13

Pm 0.071–0.157 0.110 ‐ ‐ 0.01–0.60 0.11

AN 5.41–35.0 16.9 25.8–37.2 23.5 0.63–25.55 6.37

AP 0.051–0.506 0.227 ‐ ‐ 0.01–1.02 0.24

Reference Present study Ferguson et al., 2021 Wright et al., 2004

Note: Trait abbreviations and units of measurement are provided in Supporting Information: Table S2. Further details about other leaf traits in

M.× giganteus are given in Supporting Information: Table S3. Dashes (‐) represent unavailable data.

Abbreviations: Aa, maximum photosynthetic rate per unit leaf area; Am, maximum photosynthetic rate per unit leaf dry mass; AN, photosynthetic nitrogen
use efficiency; AP, photosynthetic phosphorus use efficiency; C:N, leaf carbon‐to‐nitrogen ratio; gsa, stomatal conductance per unit leaf area; gsm, stomatal

conductance per unit leaf dry mass; iWUE, instantaneous water‐use efficiency; LMA, leaf mass per unit area; Na, nitrogen concentrations per unit leaf
area; Nm, nitrogen concentration per unit leaf dry mass; Pa, phosphorus concentration per unit leaf area; Pm, phosphorus concentration per unit leaf
dry mass.
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correlations were stronger when photosynthetic rate was expressed

per unit leaf dry mass rather than per unit area (Figure 2, Supporting

Information: Figure S4). There was a significant correlation between

gsm and LMA (Figure 2), but gsa was not correlated with LMA

(Supporting Information: Figure S4). Nm and Pm were negatively

related to LMA but positively correlated with Am (Figure 2). Aa was

independent of area‐based nutrient content, which scaled positively

with LMA (Supporting Information: Figure S4). Notably, AN and AP

increased with increasing Aa and Am but decreasing Tleaf and LMA

(Figure 2, Supporting Information: Figure S4). Chlorophyll fluores-

cence parameters were not correlated with leaf morphology,

anatomy or nutrient content (Figure 2, Supporting Information: -

Figure S4). When individual sites and years were analyzed indepen-

dently, similar patterns were observed, but the correlations among

traits were less pronounced (Supporting Information: Figure S5).

Although environmental conditions and stand age altered the

absolute value of LES traits (Supporting Information: Figures S1–S3;

Table S3), their correlations were largely consistent regardless of

environment (Supporting Information: Figure S5).

3.3 | Comparison between triploids and tetraploids

Triploid and tetraploid M.× giganteus genotypes differed in most leaf

traits (Table 2, Supporting Information: Table S5). Pooling all sites and

years, tetraploids had thicker leaves with greater LMA and lower ρleaf
than triploids (Table 2). Tetraploid leaves tended to have a lower Am

and iWUE but a higher gsa, Ci, chlorophyll fluorescence and Na

compared to those of triploids (Table 2). However, no significant

differences in Aa, gsm, Nm and P content were found between triploids

and tetraploids (Table 2). We observed a similar difference in leaf

traits between triploids and tetraploids when sites and years were

analyzed independently (Supporting Information: Table S5).

Pooling all M.× giganteaus data together, Am, Nm and Pm scaled

negatively with LMA in both triploid and tetraploid genotypes

(Figure 3a–c). Triploids showed a significantly lower intercept but a

parallel slope to that of tetraploids in the correlation between Am

and LMA, indicating that at a given LMA, tetraploids have a higher

photosynthetic rate (Figure 3a). For Nm versus LMA, the differences

in both slope and intercept between triploid and tetraploid

genotypes were substantial (Figure 3b). The significant difference

in slope (p < 0.005) was detected in Pm versus LMA between

triploids and tetraploids (Figure 3c). Positive relationships between

Am and Nm, between Pm and Nm, and between Am and Pm were

observed in both triploid and tetraploid genotypes and no

significant differences (p > 0.05) in slopes or intercepts in any

relationships were observed (Figure 3d–f). The bivariate relation-

ships remained robust in triploids at different sites/years (Support-

ing Information: Figures S6–S8). However, the small sample size for

leaf functional traits in tetraploids at each site or in each year

reduced the statistical power of the bivariate relationships

(Supporting Information: Figures S6–S8).

F IGURE 1 Relationships among leaf economics spectrum traits in
Miscanthus× giganteus, Sorghum bicolour and all species in the full
Glopnet database. (a) Leaf maximum photosynthetic rate per unit dry
mass (Am), leaf dry mass per area (LMA) and leaf nitrogen content per
mass (Nm). (b) Leaf phosphorus content per mass (Pm), LMA and Nm.
(c) Leaf maximum photosynthetic rate per unit area (Aa), LMA and leaf
nitrogen content per area (Na). M.× giganteus data are shown in
orange points, S. bicolour data (Ferguson et al., 2021) are represented
by grey points, and the Glopnet data (Wright et al., 2004) are shown
in cyan points. The linear fits toM.× giganteus data and to the Glopnet
database are given in Figure 4. Slopes and intercepts were estimated
by standardized major axis regression and are provided in Table 3.
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3.4 | Comparison between M.× giganteus and the
global LES

Although the bivariate LES trait correlation patterns in M. × giganteus

were generally similar with the relationships observed across natural

species in the Glopnet database, M.× giganteus showed a distinguishable

niche in the global LES (Figure 1). Specifically,M.× giganteus had a lower r2

of significant trait–trait relationships (p<0.0001) than those in the species

in Glopnet, suggesting less constraint in functional trait trade‐offs

(Figure 4). A summary of the results of all SMA analyses of M.× giganteus

is given in Table 3. The slopes and intercepts of the major bivariate

correlations of the leaf traits inM.× giganteus genotypes were significantly

different from the Glopnet database (Table 3). For instance, the

correlation between Am and LMA inM.× giganteus exhibited a significantly

higher intercept but lower slope than the Glopnet species (Figure 4). The

SMA analysis also revealed that there were significant differences in the

slopes and intercepts of bivariate LES trait relationships between triploids

and the Glopnet database and between tetraploids and the Glopnet

database (Table 4; Supporting Information: Figures S9 and S10). More-

over, bivariate relationships among LMA, Am, Nm and Pm of studied

M.× giganteus at different sites/years and the species in Glopnet differed

significantly in terms of their slopes and intercepts (Supporting

Information: Table S6).

4 | DISCUSSION

M.× giganteus has become an emerging and promising C4 feedstock

for bioenergy and bioproducts owing to its broad adaptation, high

biomass productivity and low nutrient input requirement (Clifton‐

Brown et al., 2017; Heaton et al., 2008; Lewandowski et al., 2000).

Greater understanding of leaf functional traits and trait relationships

will help to guide efforts to further improve resource use efficiency

and productivity in M.× giganteus. Here, we constructed a large

database of leaf functional traits including 585 observations for

239M.× giganteus genotypes in two common gardens in 2018 and

2019 (Supporting Information: Table S1). We compared leaf

functional traits of M.× giganteus with published values from sorghum

and the global LES. Our results reveal substantial genotypic trait

variation in M.× giganteus and highlight significant differences in leaf

trait and trait relationships between triploids and tetraploids. In

comparison with the global data set of species, the C4 species,

M.× giganteus and sorghum, displayed higher photosynthetic rate,

greater water and nitrogen use efficiency and deviation in LES trait

relationships.

The global LES was developed with data from species in natural

ecosystems and originally did not include crops grown in agricultural

environments. More recently, studies demonstrated that the

F IGURE 2 Pearson's correlations of leaf
traits (mass basis) using the full data set from
Miscanthus× giganteus. The ellipses correspond
to the significant correlations (p < 0.05) with
colours from blue (positive correlation) to red
(negative correlation) indicating strength of
correlation. Trait abbreviations and units are
provided in Supporting Information: Table S2.
[Color figure can be viewed at
wileyonlinelibrary.com]
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relationships among LES traits in crop species in agricultural systems

were similar to the universal LES worldwide (Hayes et al., 2019;

Martin et al., 2017, 2018; Xiong & Flexas, 2018). These previous

analyses focused on C3 crops such as rice, wheat and soybean. To

date, the only C4 species studied for LES is maize, where very limited

observations were included (Martin et al., 2018). In this study, we

compared LES trait relationships between two C4 bioenergy species,

M.× giganteus and sorghum, and the Glopnet database (Figure 1). We

found a similar trend in LES trait relationships between the two data

sets, suggesting principles of leaf design behind trait–trait associa-

tions in C4 species have similarities with those in C3 species. There

was greater variation within the 239 M.× giganteus genotypes than

within 869 sorghum genotypes (Figure 1), despite the representation

of four major races from three continents in the sorghum collection

(Valluru et al., 2019). This perhaps reflects less selection in

M.× giganteus. However, it should be noted that sorghum leaf‐level

gas exchange was taken from excised leaves in laboratory conditions

which were less variable than measurements conditions in the field

(Ferguson et al., 2021). In the global LES, Am, Nm and Pm negatively

correlated with LMA, indicating “fast‐slow” resource strategies. This

is particularly true for C3 species, where species with higher LMA

tend to have thicker leaves and greater tissue density resulting in

more self‐shading of chloroplasts, greater CO2 diffusive resistance

and longer CO2 diffusion pathways from stomata to chloroplasts,

resulting in lower photosynthetic rates (Hikosaka, 2004; Niinemets,

1999; Onoda et al., 2017; Poorter et al., 2009). In addition, leaves

with higher LMA tend to have lower Nm and Pm, and lower AN and AP,

which act as a constraint on plant growth (Hikosaka, 2004; Reich &

Schoettle, 1988). The robust leaf trait relationships in M.× giganteus

indicate the important role of leaf anatomy in determining leaf

function in C4 species (Figure 2, Supporting Information: Figure S4).

The key question is why is photosynthesis tightly associated with

LMA in C4 species? In M.× giganteus, Tleaf and ρleaf increased with

increasing LMA (Figure 2), suggesting that increased LMA resulted in

increased mesophyll thickness, bundle sheath size and CO2 diffusion

pathways within leaf. However, CO2 concentration and diffusion

within the leaf are unlikely to be a major limitation to photosynthesis

in C4 species because of the CO2‐concentrating mechanism in bundle

sheath cells (Hatch, 1987; Leakey et al., 2006; Sage, 2004). Thicker

leaves and larger bundle sheath size resulting from high LMA may

contribute to non‐uniform light distribution within a leaf. The

presence of shade on the lower side of bundle sheath cells strongly

TABLE 2 Comparison of leaf
functional traits between triploid and
tetraploid Miscanthus × giganteus
genotypes

Trait
Triploid Tetraploid

p ValueRange Mean Range Mean

Tleaf 129.2–226.4 166.2 132.4–239.9 190.7 <0.001

LMA 41.0–91.9 63.2 46.0–90.2 69.4 <0.001

ρleaf 0.29–0.57 0.38 0.26–0.46 0.36 0.001

Aa 7.8–41.0 24.2 7.1–36.5 24.9 0.32

Am 99.5–733.8 398.0 94.9–758.2 372.1 0.07

gsa 0.048–0.436 0.184 0.046–0.507 0.211 <0.001

gsm 0.53–6.50 3.00 0.62–6.85 3.12 0.35

Ci 77.6–267.7 156.8 30.9–256.3 177.1 <0.001

iWUE 72.6–196.0 141.6 82.4–227.8 127.7 <0.001

ΦPSII 0.067–0.327 0.209 0.093–0.313 0.231 <0.001

ETR 52.0–247.4 164.8 72.1–243.2 181.6 <0.001

Fv′/Fm′ 0.27–0.58 0.43 0.30–0.59 0.44 0.017

qP 0.20–0.69 0.49 0.27–0.67 0.52 0.001

Na 0.83–2.01 1.42 0.82–2.41 1.53 0.001

Nm 1.35–3.09 2.28 1.16–3.13 2.23 0.29

Pa 0.071–0.151 0.107 0.074–0.157 0.108 0.66

Pm 0.096–0.255 0.172 0.087–0.293 0.166 0.22

Note: Means between triploid and tetraploid genotypes were compared with one‐way analysis of
variance followed by Tukey test. There was no significant differences between triploid and tetraploid
genotypes in other leaf traits not shown in this table. Trait abbreviations and units are provided in
Supporting Information: Table S2.

Abbreviations: Ci, intercellular CO2 concentration; ETR, electron transport rate; Fv′/Fm′, photosystem II
maximum efficiency; LMA, leaf mass per unit area; ΦPSII, quantum yield of photosystem II; qP,
coefficient of photochemical quenching.

C4 LEAF ECONOMICS SPECTRUM | 3469



reduces Rubisco content and activity, ATP production and ribulose‐

1,5‐bisphosphate (RuBP) regeneration capacity (Bellasio & Lundgren,

2016; Tazoe et al., 2006), decreasing photosynthesis. Although

Rubisco content per unit leaf area was not significantly associated

with LMA (Onoda et al., 2017), the negative correlation between

LMA and photosynthesis normalized by Rubisco was amongst the

most stable relationships (Poorter et al., 2014). This further supports

that the leaf internal environment, metabolic processes and enzyme

activities underpin the leaf structural and physiological tradeoffs.

Significant changes in the slope and intercept of LES trait

relationships were detected between M.× giganteus and the Glopnet

database (Table 3, Supporting Information: Table S6). At a given LMA,

M.× giganteus showed a higher Am than most of the Glopnet species

without greater increases in Nm and Pm (Figures 1 and 4), indicating

higher photosynthetic efficiency in the C4 species. M.× giganteus

genotypes also tended to have a higher Am at a given Nm or Pm when

compared to the Glopnet species, in agreement with the observations

of higher AN and AP in M.× giganteus (Table 1). Notably, M.× giganteus

genotypes have intermediate values for LMA, Aa, Am and Nm among

other studied C4 species. For example, sorghum exhibited a lower

mean LMA but high mean photosynthesis, iWUE, Nm and AN than the

M.× giganteus genotypes presented here (Table 1; Figure 1) (Ferguson

et al., 2021). In other studies, the lowest reported Aa, Am and Nm

values for five genotypes of sorghum were 44.3 µmol m−2 s−1,

1426.7 nmol g−1 s−1 and 3.76% (Li et al., 2019, 2021), beyond the

highest values of 41.0 µmol m−2 s−1, 758.2 nmol g−1 s−1 and 3.19% in

the M.× giganteus database. Concerning LMA, the highest value for

sorghum was 35.3 g m−2, which is much lower than the lowest values

of 41.0 gm−2 in M.× giganteus. However, switchgrass (Panicum

virgatum; three genotypes) had a similar mean LMA value with

M.× giganteus (67.4 vs. 67.1 gm−2), but displayed overall higher mean

values for Aa (30.6 vs. 23.7 µmol m−2 s−1), Am (456.6 vs. 369.8 nmol

g−1 s−1), and Nm (3.37 vs. 2.20%) (Li et al., 2019, 2022). A recent study

also revealed broad variation in leaf morphology across switchgrass

genotypes in common garden experiments (Lovell et al., 2021). These

results suggest that C4 species may differ in their trait–trait

relationships and resource use strategies reinforcing the importance

of trait variation in C4 species in shifting the cross‐species LES

worldwide. We also observed the bivariate relationships of both

triploids and tetraploids differ significantly from the global data set

(Table 4; Supporting Information: Figures S9 and S10). It should be

noted that a few pentaploid and hexaploid genotypes were measured

F IGURE 3 Relationships among leaf dry mass per area (LMA), Am, Nm and Pm in triploid and tetraploid genotypes ofMiscanthus× giganteus. (a)
Leaf maximum photosynthetic rate per unit dry mass (Am) versus LMA. (b) Leaf nitrogen content per mass (Nm) versus LMA. (c) Leaf phosphorus
content per mass (Pm) versus LMA. (d) Am versus Nm. (e) Am versus Pm. (f) Nm versus Pm. Differences in slopes and intercepts were compared
between triploid and tetraploid genotype by standardized major axis. Error bars show SEs. All values were log10‐transformed. [Color figure can
be viewed at wileyonlinelibrary.com]
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in the present study (Supporting Information: Table S1). Both

pentaploids and hexaploids show lower average values of Aa, Am

and Nm but higher mean value of LMA than triploids and tetraploids.

However, we cannot completely identify the leaf trait differences

from triploids to hexaploids and assess the contributions of

pentaploids and hexaploids to global LES due to the limited number

of genotypes sampled.

Leaf functional traits such as LMA and photosynthesis show

plasticity in response to different conditions such as temperature,

light, water and nutrient availability in natural environments (Poorter

F IGURE 4 Relationships among leaf economics spectrum traits inMiscanthus × giganteus compared with the global pattern using the Glopnet
database. (a) Leaf maximum photosynthetic rate per unit dry mass (Am) versus leaf dry mass per area (LMA). (b) Leaf nitrogen content per mass
(Nm) versus LMA. (c) Leaf phosphorus content per mass (Pm) versus LMA. (d) Am versus Nm. (e) Am versus Pm. (f) Nm versus Pm. In all case,
regressions to all M.× giganteus data and to the total Glopnet database were statistically significant at p < 0.0001. [Color figure can be viewed at
wileyonlinelibrary.com]

TABLE 3 Mass basis of bivariate relationships in Miscanthus × giganteus and comparison of the bivariate relationships between
M.× giganteus and Glopnet

Log LMA Log Nm Log Pm Log Am

Slope Intercept Slope Intercept Slope Intercept Slope Intercept

Log LMA −1.30 (−1.21, −1.40) 1.85 (1.81, 1.90) −1.02 (−0.90, −1.16) 1.36 (1.26, 1.46) −2.30 (−2.16, −2.45) 5.53 (5.40, 5.65)

Log Nm <0.001 <0.001 1.23 (1.11, 1.38) −1.23 (−1.25, −1.21) 1.77 (1.66, 1.90) 1.95 (1.93, 1.98)

Log Pm 0.01 <0.001 <0.001 0.012 2.41 (2.10, 2.75) 3.71 (3.60, 3.82)

Log Am <0.001 <0.001 0.44 <0.001 <0.001 <0.001

Note: TheM.× giganteus data was analyzed by standardized major axis regression analysis. Slopes and intercepts with 95% confidence intervals are given in

the upper‐right section of the matrix (x variable in column 1, y variable in row 1). The differences in slopes and intercepts between M.× giganteus and
Glopnet are given in the lower‐left section of the matrix. Significant differences (p < 0.05) are shown in boldface. Trait abbreviations and units are provided
in Supporting Information: Table S2.
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et al., 2009). Our results also showed significant site/year effects on

leaf functional traits in M.× giganteus genotypes (Supporting Informa-

tion: Table S4; Figures S1–S3) and most of the variance in

phosphorus content was associated with environment, not genotype

or genotype × environment interaction (Supporting Information:

Table S4). Previous studies of leaf functional traits also extrapolated

that phenotypic plasticity was the dominant source of within‐species

trait variability in Eucalyptus camaldulensis and Quercus ilex (Asao

et al., 2020; Niinemets, 2015; Valladares et al., 2002), although

genotypic variation explained significant variation in leaf functional

traits in nine switchgrass genotypes (Aspinwall et al., 2013).

Differences in plant/leaf age and sampling time can be another

source of within‐species trait variation in multiple species or the

Glopnet database (Mason et al., 2013; McKown et al.,

2013; Niinemets, 2015; Niinemets et al., 2005). In our study, all

genotypes were planted on the same date and all leaves used for the

measurements had similar age at each site and in each year,

minimizing the effect of plant/leaf age on leaf traits. Still, the site

and year in which measurements were made had a significant effect

on LES traits. There were explicit differences in leaf functional traits

and trait relationships between ploidy levels (Figure 3; Table 2;

Supporting Information: Table S5). However, we also found signifi-

cant variation within both triploids and tetraploids, suggesting the

contribution of ploidy levels to overall species trait variation was

limited. Nevertheless, polyploidization‐induced genotypic variation in

leaf functional traits may have practical implications for improving

photosynthetic efficiency and crop productivity.

In conclusion, our study is the first to explicitly quantify the

contributions of genotypic trait variation and ploidy levels in C4

species in agricultural systems to global LES. The large trait

variation across genotypes of M.× giganteus and correlations

between nutrient content and photosynthetic efficiency provide

an opportunity to improve photosynthetic and resource use

efficiency and crop productivity. We argue that genotypic trait

variation and ploidy levels in more C4 species may obscure or

alter the general broad LES trait relationships and therefore

needs more attention in the global trait databases. Future efforts

to investigate additional C4 species in both natural and agricul-

tural systems are required to improve data coverage in the global

database and gain further insight into universal relationships

between leaf traits and resource use strategy.
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