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Abstract
Although Alzheimer’s disease (AD) is the most common form of dementia in the United States, development of therapeutics 
has proven difficult. Invertebrate alternatives to current mammalian AD models have been successfully employed to study 
the etiology of the molecular hallmarks of AD. The marine snail Aplysia californica offers a unique and underutilized system 
in which to study the physiological, behavioral, and molecular impacts of AD. Mapping of the Aplysia proteome to humans 
and cross-referencing with two databases of genes of interest in AD research identified 898 potential orthologs of interest 
in Aplysia. Included among these orthologs were alpha, beta and gamma secretases, amyloid-beta, and tau. Comparison of 
age-associated differential expression in Aplysia sensory neurons with that of late-onset AD in the frontal lobe identified 59 
ortholog with concordant differential expression across data sets. The 21 concordantly upregulated genes suggested increased 
cellular stress and protein dyshomeostasis. The 47 concordantly downregulated genes included important components of 
diverse neuronal processes, including energy metabolism, mitochondrial homeostasis, synaptic signaling, Ca++ regulation, 
and cellular cargo transport. Compromised functions in these processes are known hallmarks of both human aging and AD, 
the ramifications of which are suggested to underpin cognitive declines in aging and neurodegenerative disease.
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Introduction

Aging in humans is often accompanied by progressive 
declines in cognitive capabilities that can result in the ina-
bility to perform basic tasks, known clinically as dementia 
(Weller and Budson 2018). By far the most common of these 
dementias is Alzheimer’s disease (AD), accounting for up 
to 80% of dementia cases (Crous-Bou et al. 2017). In addi-
tion to neurodegeneration, AD is distinguished from other 
dementias by the presence of two types of protein aggre-
gates, amyloid-beta (Aβ) plaques and hyperphosphorylated 
tau protein neurofibrillary tangles, in addition to neurode-
generation (Jack et al. 2018). As of 2014, despite more than 
30 years of clinical research, only five drugs had been identi-
fied as sufficiently safe and effective for international mar-
keting approval, and these provide mostly modest clinical 

effects (Schneider et al. 2014). The difficulty in studying 
this illness in living patients coupled with a complex etiol-
ogy are major hurdles to the study of AD and development 
of effective drugs to treat it.

One factor that may contribute to the difficulty in AD 
research thus far is the inability of many model systems to 
recapitulate the complex nature of the disease. Medina and 
Avila (2014) assert that an ideal AD model should be able 
to integrate the genetic, environmental, and aging factors 
that contribute to AD disease progression. Unfortunately, 
many current models often address only one factor in isola-
tion (Medina and Avila 2014). However, invertebrate models 
offer possible alternatives in modeling the complex states 
which give rise to AD (Calahorro and Ruiz-Rubio 2011; 
Fernandez-Funez et  al. 2015; Sharma et  al. 2017). Not 
only are these models often faster, cheaper, and in line with 
ethical efforts to reduce the use of vertebrates in research, 
but they also offer unique investigative techniques or more 
amenable environments for study when compared to verte-
brate models (Alexander et al. 2014; Gotz and Ittner 2008; 
Link  2005; Moloney et  al.  2010; Prussing et  al.  2013; 
Sharma et al. 2017; Surguchov 2021).
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Invertebrate models have provided an alternative 
approach to traditional mammalian models and have been 
instrumental in elucidating key components of disease pro-
gression in AD and AD-related dementias (ADRD). The 
tractability of behavioral phenotypes and molecular tech-
niques in Drosophila melanogaster and Caenorhabditis 
elegans have made these two popular invertebrate models 
effective tools in investigating disease mechanisms of AD 
and ADRD and for drug target discovery in AD and ADRD. 
For example, the molecular basis for Aβ and tau aggrega-
tion and toxicity were elucidated via these model systems 
(Fernandez-Funez et al. 2015; Hannan et al. 2016).

An underutilized model system in which to study AD  
and ADRD is the marine gastropod Aplysia californica 
(Aplysia). Among the preeminent models for learning, 
Aplysia is a well-described neural model ideal for the  
integrated study of learning and behavior at the molecular,  
cellular, neural-circuit, and whole organism levels (Baxter 
and Byrne 2006; Carew et al. 1983; Castellucci et al. 1970; 
Cleary et al. 1998; Kindy et al. 1991; Klein et al. 1982; 
Kupfermann 1974; Moroz 2011; Moroz et al. 2006). Due 
to an annual life span and a well-mapped nervous system,  
Aplysia has also proven to be an excellent model for  
investigating the effects of aging on learning, cognitive 
function, and neuronal physiology (Bailey et  al.  1983; 
Hallahan et al. 1992; Kempsell and Fieber 2014, 2015a, 
b, 2016; Papka et al. 1981; Peretz et al. 1984; Rattan and 
Peretz 1981; Srivatsan and Peretz 1996). Molecular studies  
of the effects of aging on the transcriptomes of sensory 
neurons (SN) revealed similar aging signatures as those 
of other animals, including metabolic, proteostatic, and 
neuro-synaptic impairments similar to those that also occur 
in AD and ADRD (Greer et al. 2019; Greer et al. 2018;  
Kron et al. 2020). Furthermore, transcriptomic profiling of 
individually identified giant neurons in Aplysia have allowed 
for the investigation of the effects of aging on specific  
neurons (Kadakkuzha et al. 2013; Moroz and Kohn 2010, 
2013). As a powerful neural aging model, Aplysia offers 
a unique system in which to study AD and ADRD in the  
context of the greatest risk factor for AD development.

Previously, cultured Aplysia neurons have been demon-
strated to recapitulate AD-like taupathies when transfected 
with mutant human tau (Shemesh and Spira 2010). These 
neurons were subsequently used to investigate the efficacy 
of a potential AD therapeutic (Shemesh and Spira 2011). 
Similarly, exposure of cultured neurons from closely related 
A. kurodai to mutant human Aβ elucidated the inhibitory 
effects of Aβ on GABA-induced chloride currents (Sawada 
and Ichinose  1996). Furthermore, cultured A. kurodai 
sensory-motor neuron co-cultures were used to investigate 
the formation and deleterious effects of cofilin-actin rods, 
hypothesized to be the precursors to the protein aggregates 
that typify AD and ADRDs like Parkinson’s disease and 

amyotrophic lateral sclerosis, via overexpression of the 
native cofilin gene (Jang et al. 2005). Together these studies 
highlight the applicability of the Aplysia model system to 
allow for the study of AD in the context of behavior, genet-
ics, and aging.

In this study, we further demonstrate that Aplysia offers a 
suitable model for the study of AD and ADRD by combing 
the Aplysia genome for potential orthologs of genes of inter-
est in AD and ADRD. We also compare available molecular 
aging data of Aplysia sensory neurons (SN) to those of late-
onset AD (LOAD) to demonstrate the capacity of Aplysia 
neurons to naturally recapitulate the preconditions and risk 
factors that are believed to contribute to AD development 
in human aging.

Methods

Aplysia Genome Annotation

The RefSeq proteome for the latest Aplysia genome build (Apl-
Cal3.0) was downloaded from the NCBI FTP site (https://​ftp.​
ncbi.​nlm.​nih.​gov/​genom​es/​all/​annot​ation_​relea​ses/​6500/​101/​
GCF_​00000​2075.1_​AplCa​l3.0/). The human UniProt proteome 
(UP000005640) was downloaded from the UniProt website 
(https://​www.​unipr​ot.​org/​prote​omes/​UP000​005640) and used 
to construct a local blast database using the BLAST + command 
line tool (version 2.6.0; Camacho et al. 2009). The Aplysia pro-
teome was then blasted against the human proteome, selecting 
only the top hit with an e value of ≤ 0.001. These Aplysia-to-
human protein annotations were then imported into the R sta-
tistical environment and further annotated to the transcript and 
gene level for Aplysia using the latest gene feature format (gff, 
version 1.21) file available for AplCal3.0 at the NCBI FTP site. 
Human proteins were annotated to the gene level by mapping 
UniProt protein identifiers to human gene symbols using the 
org.Hs.eg.db R package (Carlson 2019; R Core Team 2013; 
Wickham et al. 2019).

Overlap with Alzheimer’s Genes of Interest

The putative Aplysia-human orthologs generated in the pre-
vious section were then intersected with two genome-wide 
association meta-analysis-derived gene sets of Alzheimer’s-
associated genes: Alzgset (Hu et al. 2017) and AlzGene 
(Bertram et al. 2007).

Comparison of Aplysia Sensory Neuron Aging 
and LOAD in the Frontal Lobe

Gene sets previously identified as differentially expressed 
in aging in Aplysia SN (Greer et al. 2018; Kron et al. 2020) 
were collected and compared with genes identified as 
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differentially expressed in LOAD via meta-analysis of six 
different frontal lobe data sets (Li et al. 2015). In their 
meta-analysis, Li et al. (2015) considered genes that were 
identified as significant and had concordant direction of 
expression change in at least five of the six data sets used. 
In our comparison with Li et al. (2015), we selected all genes 
marked as DE and exhibited concordant expression direc-
tion in at least two of the three Aplysia data sets (PVC from 
Greer et al. 2018, and PVC and BSC from Kron et al. 2020), 
and exhibited concordant expression direction in at least five 
human data sets from Li et al. (2015).

Results

Aplysia Proteome Annotation

Out of 26,658 unique proteins in the Aplysia RefSeq data-
base, 20,495 proteins mapped to 9116 unique UniProt iden-
tifiers, equaling on average 2.3 Aplysia proteins per human 
protein. Each UniProt protein is mapped to one gene in the 
UP000005640 reference proteome; thus the ~ 20,500 Aplysia 
proteins were mapped to ~ 9000 human genes.

Among these putative orthologs were several human 
genes involved in AD and ADRD. An ortholog of amyloid 
precursor protein (APP) was identified in Aplysia previ-
ously, and here we identified two potential APP orthologs 
(Moroz and Kohn 2010). Similar to Drosophila, but unlike 
C. elegans, we identified putative Aplysia orthologs of 
both beta-secretase 1 (BACE1) and all components of the 
gamma-secretase complex: presenilin (PSEN), nicastrin 
(NCSTN), presenilin enhancer 2 (PSENEN), and two puta-
tive orthologs of anterior pharynx-defective 1 (APH1A). 
We also identified several potential Aplysia orthologs to the 
primary alpha secretase A disintegrin and metalloprotein-
ase (ADAM) family members including three orthologs of 
ADAM10, two orthologs of ADAM12, and seven orthologs 
of ADAM17. Two potential orthologs of the tau protein gene 
MAPT were also identified.

Of interest in Parkinson’s disease, six potential orthologs 
of leucine-rich repeat kinase 2 (LRRK2/PARK8), along with 
putative orthologs of other Parkinson’s disease-associated 
genes such as protein deglycase DJ-1 (PARK7/DJ-1), Par-
kin (PRKN), Parkin coregulated gene protein (PACRG), and 
synphilin (SNCAIP), were identified. However, a potential 
ortholog for alpha-synuclein (SNCA/PARK1) was not 
identified.

Overlap with Alzgset and AlzGene

Of the 9000 putative orthologs, 219 were present in Alzg-
set and 364 were present in AlzGene. Alzgset and AlzGene 
share 295 genes, of which 166 were among the ~ 9000 

Aplysia-human orthologs. Considering genes from either 
data set, a total of 418 AD genes of interest with putative 
orthologs in the Aplysia genome were identified (Fig. 1). 
This corresponds to 1207 Aplysia transcripts from 898 
Aplysia genes. As noted in the above section, orthologs of 
PSEN1, APP, and MAPT were present, along with several 
other Aβ- and tau-associated proteins (Table 1). The full 
mapping is available in Supplemental Data 1.

Comparison to LOAD Frontal Cortex Study

Comparison of differential expression in three aging Aply-
sia SN data sets with a meta-analysis of six frontal cortex 
LOAD (FL LOAD) data sets identified 68 putative gene 
orthologs concordantly differentially expressed in at least 
five of the FL LOAD studies and two Aplysia data sets. Of 
these genes, 21 were concordantly upregulated and 47 con-
cordantly downregulated. Commonly upregulated genes 
included cellular stress-induced genes such as ANKZF1, 
BTG1, DDIT4L, and SSR1, as well as elements of the proin-
flammatory toll/interleukin receptor signaling pathways such 
as MYD88, NFKBIA, MAP3K8, and BIRC3 (Fig. 2 and 
Table 2). Commonly downregulated genes were representa-
tive of diverse processes including synaptic vesicle dynam-
ics (SYN2, EXOC8, NAPG, SVOP, ARF3), transport of cel-
lular cargo (DCTN6, KIFAP3, RAB6A), energy metabolism 

Fig. 1   Gene set overlap of putative human orthologs found in the 
Aplysia genome with Alzheimer’s disease (AD)-associated gene data-
bases Alzgset and AlzGene. Aplysia RefSeq proteins were mapped 
to the UniProt human protein database using the BLAST + command 
line tool. The two AD genes-of-interest data sets shared 295 genes. 
Of the more than 9000 Aplysia-human orthologs identified, 418 were 
present in either Alzgset, or AlzGene, or both. A smaller subset of 
166 genes was identified as common to all three gene sets

289Journal of Molecular Neuroscience (2022) 72:287–302



1 3

Ta
bl

e 
1  

S
el

ec
tio

n 
of

 A
β-

 a
nd

 ta
u-

as
so

ci
at

ed
 g

en
es

 p
re

se
nt

 in
 b

ot
h 

th
e 

A
lz

G
en

e 
an

d 
A

lz
gs

et
 d

at
ab

as
es

 th
at

 h
av

e 
pu

ta
tiv

e 
Ap

ly
si

a 
ge

ne
 o

rth
ol

og
s. 

H
um

an
 g

en
e 

sy
m

bo
ls

 a
re

 m
ap

pe
d 

to
 g

en
e 

na
m

e,
 

pu
ta

tiv
e 

Ap
ly

si
a 

or
th

ol
og

 ID
s, 

U
ni

Pr
ot

 a
cc

es
si

on
, G

en
e 

O
nt

ol
og

y 
ID

s, 
an

d 
G

en
e 

O
nt

ol
og

y 
na

m
es

. G
en

es
 re

pr
es

en
te

d 
w

er
e 

an
no

ta
te

d 
fo

r G
O

 B
P 

or
 M

F 
as

so
ci

at
ed

 w
ith

 A
β 

or
 ta

u,
 p

re
se

nt
 in

 th
e 

A
lz

G
en

e 
an

d 
A

lz
gs

et
 g

en
e 

se
ts

, a
nd

 a
nn

ot
at

ed
 to

 p
ut

at
iv

e 
Ap

ly
si

a 
ge

ne
 o

rth
ol

og
s b

y 
B

LA
ST

 +
 w

ith
 a

n 
e-

va
lu

e 
of

 ≤
 0.

00
01

. G
en

es
 o

f h
ig

h 
in

te
re

st 
in

 A
D

 a
re

 b
ol

de
d

G
en

e 
sy

m
bo

l
G

en
e 

na
m

e
Ap

ly
si

a 
ge

ne
U

ni
Pr

ot
 ID

s
G

O
 ID

s
G

O
 n

am
es

A
D

A
M

10
A

D
A

M
 m

et
al

lo
pe

pt
id

as
e 

do
m

ai
n 

10
LO

C
10

18
59

46
2,

LO
C

10
18

51
96

3,
LO

C
10

18
45

37
3

O
14

67
2

G
O

:0
,0

34
,2

05
, G

O
:0

,0
42

,9
87

A
b 

fo
rm

at
io

n,
 a

m
yl

oi
d 

Pr
ec

ur
so

r p
ro

te
in

 c
at

a-
bo

lic
 p

ro
ce

ss

A
PH

1A
ap

h-
1 

ho
m

ol
og

 A
, g

am
m

a-
se

cr
et

as
e 

su
bu

ni
t

LO
C

10
18

56
73

4
Q

96
BI

3
G

O
:0

,0
34

,2
05

, G
O

:0
,0

42
,9

87
, G

O
:0

,0
42

,9
82

A
b 

fo
rm

at
io

n,
 a

m
yl

oi
d 

pr
ec

ur
so

r 
pr

ot
ei

n 
C

at
ab

ol
ic

 p
ro

ce
ss

, a
m

yl
oi

d 
pr

ec
ur

so
r 

pr
o-

te
in

 m
et

ab
ol

ic
 p

ro
ce

ss
N

C
ST

N
N

ic
as

tr
in

LO
C

10
05

33
53

2
Q

92
54

2
G

O
:0

,0
34

,2
05

, G
O

:0
,0

42
,9

87
, G

O
:0

,0
42

,9
82

A
b 

fo
rm

at
io

n,
 a

m
yl

oi
d 

pr
ec

ur
so

r 
pr

ot
ei

n 
ca

ta
bo

lic
 p

ro
ce

ss
, a

m
yl

oi
d 

pr
ec

ur
so

r 
pr

o-
te

in
 m

et
ab

ol
ic

 p
ro

ce
ss

PS
EN

1
Pr

es
en

ili
n 

1
LO

C
10

05
33

34
4

P4
97

68
G

O
:0

,0
34

,2
05

, G
O

:0
,0

42
,9

87
, G

O
:0

,0
42

,9
82

A
b 

fo
rm

at
io

n,
 a

m
yl

oi
d 

pr
ec

ur
so

r p
ro

te
in

 
ca

ta
bo

lic
 p

ro
ce

ss
, a

m
yl

oi
d 

pr
ec

ur
so

r p
ro

te
in

 
m

et
ab

ol
ic

 p
ro

ce
ss

PS
EN

EN
Pr

es
en

ili
n 

en
ha

nc
er

, g
am

m
a-

se
cr

et
as

e 
su

bu
ni

t
LO

C
10

18
54

68
4

Q
9N

Z4
2

G
O

:0
,0

34
,2

05
, G

O
:0

,0
42

,9
87

, G
O

:0
,0

42
,9

82
A

b 
fo

rm
at

io
n,

 a
m

yl
oi

d 
pr

ec
ur

so
r 

pr
ot

ei
n 

ca
ta

bo
lic

 p
ro

ce
ss

, a
m

yl
oi

d 
pr

ec
ur

so
r 

pr
o-

te
in

 m
et

ab
ol

ic
 p

ro
ce

ss
D

Y
R

K
1A

D
ua

l-s
pe

ci
fic

ity
 ty

ro
si

ne
 p

ho
sp

ho
ry

la
tio

n-
re

gu
la

te
d 

ki
na

se
 1

A
LO

C
10

60
13

83
6

Q
13

62
7

G
O

:0
,0

34
,2

05
, G

O
:0

,0
48

,1
56

A
b 

fo
rm

at
io

n,
 ta

u 
bi

nd
in

g

A
D

R
B

2
A

dr
en

oc
ep

to
r b

et
a 

2
LO

C
10

18
55

54
1,

 L
O

C
10

18
51

89
4,

LO
C

10
18

52
65

0,
 L

O
C

11
84

78
76

5,
 A

po
a

P0
75

50
G

O
:0

,0
01

,5
40

A
m

yl
oi

d-
be

ta
 b

in
di

ng

A
PB

B
2

A
m

yl
oi

d-
be

ta
 p

re
cu

rs
or

 p
ro

te
in

-b
in

di
ng

 fa
m

ily
 

B
 m

em
be

r 2
LO

C
10

18
47

02
8

Q
92

87
0

G
O

:0
,0

01
,5

40
A

m
yl

oi
d-

be
ta

 b
in

di
ng

B
C

H
E

B
ut

yr
yl

ch
ol

in
es

te
ra

se
LO

C
10

18
62

16
4,

 L
O

C
10

18
60

24
6,

LO
C

10
18

62
86

9,
 L

O
C

10
18

51
18

8,
 

LO
C

10
18

56
26

4,
 L

O
C

10
18

62
41

4,
 

LO
C

10
18

61
95

4,
 L

O
C

10
18

46
73

8,
 

LO
C

10
18

62
65

7,
 L

O
C

10
18

59
86

7,
 

LO
C

10
60

13
05

1,
 L

O
C

10
18

51
39

0,
 

LO
C

10
18

54
06

8,
 L

O
C

11
84

79
13

6

P0
62

76
G

O
:0

,0
01

,5
40

A
m

yl
oi

d-
be

ta
 b

in
di

ng

C
ST

3
C

ys
ta

tin
 C

LO
C

10
18

57
42

0
P0

10
34

G
O

:0
,0

01
,5

40
A

m
yl

oi
d-

be
ta

 b
in

di
ng

EP
H

A
4

EP
H

 re
ce

pt
or

 A
4

LO
C

10
18

61
45

6
P5

47
64

G
O

:0
,0

01
,5

40
A

m
yl

oi
d-

be
ta

 b
in

di
ng

G
R

IN
2B

G
lu

ta
m

at
e 

io
no

tro
pi

c 
re

ce
pt

or
 N

M
D

A
 ty

pe
 

su
bu

ni
t 2

B
LO

C
10

05
33

24
4

Q
13

22
4

G
O

:0
,0

01
,5

40
A

m
yl

oi
d-

be
ta

 b
in

di
ng

H
SP

G
2

H
ep

ar
an

 su
lfa

te
 p

ro
te

og
ly

ca
n 

2
LO

C
10

18
57

84
7,

 L
O

C
10

18
59

11
6,

LO
C

10
18

61
97

1,
 L

O
C

10
18

55
44

8,
LO

C
10

18
47

38
2

P9
81

60
G

O
:0

,0
01

,5
40

A
m

yl
oi

d-
be

ta
 b

in
di

ng

LR
PA

P1
LD

L 
re

ce
pt

or
-r

el
at

ed
 p

ro
te

in
 a

ss
oc

ia
te

d 
pr

ot
ei

n 
1

LO
C

10
18

47
79

8,
 L

O
C

10
18

60
96

5
P3

05
33

G
O

:0
,0

01
,5

40
A

m
yl

oi
d-

be
ta

 b
in

di
ng

N
G

FR
N

er
ve

 g
ro

w
th

 fa
ct

or
 re

ce
pt

or
LO

C
10

60
12

91
8

P0
81

38
G

O
:0

,0
01

,5
40

A
m

yl
oi

d-
be

ta
 b

in
di

ng
SO

R
L1

So
rti

lin
-r

el
at

ed
 re

ce
pt

or
 1

LO
C

10
18

57
91

4,
 L

O
C

11
84

77
25

1,
LO

C
10

18
46

10
5

Q
92

67
3

G
O

:0
,0

01
,5

40
A

m
yl

oi
d-

be
ta

 b
in

di
ng

TL
R

4
To

ll-
lik

e 
re

ce
pt

or
 4

LO
C

10
18

47
81

7,
 L

O
C

10
18

50
80

9,
LO

C
10

18
60

76
1

O
00

20
6

G
O

:0
,0

01
,5

40
A

m
yl

oi
d-

be
ta

 b
in

di
ng

LD
LR

Lo
w

-d
en

si
ty

 li
po

pr
ot

ei
n 

re
ce

pt
or

LO
C

11
84

78
46

5
P0

11
30

G
O

:0
,0

01
,5

40
, G

O
:0

,0
97

,2
42

A
m

yl
oi

d-
be

ta
 b

in
di

ng
, A

m
yl

oi
d-

be
ta

 c
le

ar
an

ce

290 Journal of Molecular Neuroscience (2022) 72:287–302



1 3

Ta
bl

e 
1  

(c
on

tin
ue

d)

G
en

e 
sy

m
bo

l
G

en
e 

na
m

e
Ap

ly
si

a 
ge

ne
U

ni
Pr

ot
 ID

s
G

O
 ID

s
G

O
 n

am
es

LR
P1

LD
L 

re
ce

pt
or

-r
el

at
ed

 p
ro

te
in

 1
LO

C
10

18
49

04
1,

 L
O

C
10

18
49

28
1,

LO
C

10
18

59
51

3,
 L

O
C

10
05

33
54

5,
LO

C
11

84
78

80
4,

 L
O

C
11

84
78

80
5,

LO
C

10
60

13
81

3,
 L

O
C

10
60

13
82

5

Q
07

95
4

G
O

:0
,0

01
,5

40
, G

O
:0

,0
97

,2
42

A
m

yl
oi

d-
be

ta
 b

in
di

ng
, A

m
yl

oi
d-

be
ta

 c
le

ar
an

ce

ID
E

In
su

lin
-d

eg
ra

di
ng

 e
nz

ym
e

LO
C

10
18

45
82

0
P1

47
35

G
O

:0
,0

01
,5

40
, G

O
:0

,0
97

,2
42

, G
O

:0
,0

50
,4

35
A

m
yl

oi
d-

be
ta

 b
in

di
ng

, A
m

yl
oi

d-
be

ta
 c

le
ar

an
ce

, 
A

m
yl

oi
d-

be
ta

 m
et

ab
ol

ic
 p

ro
ce

ss
BA

C
E1

Be
ta

-s
ec

re
ta

se
 1

LO
C

10
18

59
12

9
P5

68
17

G
O

:0
,0

01
,5

40
, G

O
:0

,0
50

,4
35

A
m

yl
oi

d-
be

ta
 b

in
di

ng
, A

m
yl

oi
d-

be
ta

 m
et

a-
bo

lic
 p

ro
ce

ss
C

H
R

N
A

7
C

ho
lin

er
gi

c 
re

ce
pt

or
 n

ic
ot

in
ic

 a
lp

ha
 7

 su
bu

ni
t

LO
C

10
18

51
08

2,
 L

O
C

10
18

56
22

7,
LO

C
10

18
62

54
1,

 L
O

C
10

18
56

48
4,

LO
C

10
18

52
52

6,
 L

O
C

10
18

56
94

6,
LO

C
10

18
52

97
4,

 L
O

C
10

60
12

54
7,

LO
C

10
60

13
35

7,
 L

O
C

10
18

53
76

3,
LO

C
10

18
45

98
7,

 L
O

C
10

18
45

83
5,

LO
C

10
18

57
86

4,
 L

O
C

10
18

58
25

4,
LO

C
10

18
60

24
3,

 L
O

C
10

18
45

23
8,

 
LO

C
10

18
45

23
8,

 L
O

C
10

18
56

89
9,

 
LO

C
10

18
56

89
9,

 L
O

C
10

18
58

49
5,

 
LO

C
10

18
60

34
4,

 L
O

C
10

18
60

58
3,

 
LO

C
10

60
12

37
0,

 L
O

C
10

18
60

11
4,

 
LO

C
10

18
60

35
2,

 L
O

C
10

18
53

25
0,

 
LO

C
10

18
53

47
9,

 L
O

C
10

18
61

14
9

P3
65

44
G

O
:0

,0
01

,5
40

, G
O

:1
,9

04
,6

45
A

m
yl

oi
d-

be
ta

 b
in

di
ng

, r
es

po
ns

e 
to

 a
m

yl
oi

d-
be

ta

PI
CA

LM
Ph

os
ph

at
id

yl
in

os
ito

l-b
in

di
ng

 c
la

th
rin

 a
ss

em
bl

y 
pr

ot
ei

n
LO

C
10

18
48

71
5

Q
13

49
2

G
O

:0
,0

01
,5

40
, G

O
:0

,0
48

,1
56

A
m

yl
oi

d-
be

ta
 b

in
di

ng
, t

au
 b

in
di

ng

M
M

E
M

em
br

an
e 

m
et

al
lo

en
do

pe
pt

id
as

e
LO

C
10

18
61

63
6,

 L
O

C
10

18
53

86
9,

LO
C

10
18

54
75

1
P0

84
73

G
O

:0
,0

97
,2

42
, G

O
:0

,0
50

,4
35

A
m

yl
oi

d-
be

ta
 c

le
ar

an
ce

, A
m

yl
oi

d-
be

ta
 m

et
ab

ol
ic

 
pr

oc
es

s
A

C
E

A
ng

io
te

ns
in

-c
on

ve
rti

ng
 e

nz
ym

e 
I

LO
C

10
18

50
55

8,
 L

O
C

10
18

62
11

5,
LO

C
10

18
49

40
0,

 L
O

C
10

18
63

14
0

P1
28

21
G

O
:0

,0
50

,4
35

A
m

yl
oi

d-
be

ta
 m

et
ab

ol
ic

 p
ro

ce
ss

A
PP

A
m

yl
oi

d-
be

ta
 p

re
cu

rs
or

 p
ro

te
in

LO
C

11
84

78
80

1,
 L

O
C

10
05

33
42

6
P0

50
67

G
O

:1
,9

90
,0

00
A

m
yl

oi
d 

fib
ril

 fo
rm

at
io

n
M

A
PT

M
ic

ro
tu

bu
le

-a
ss

oc
ia

te
d 

pr
ot

ei
n 

ta
u

LO
C

10
18

64
32

5,
 L

O
C

10
60

10
96

7
P1

06
36

G
O

:1
,9

90
,0

00
A

m
yl

oi
d 

fib
ril

 fo
rm

at
io

n
A

B
C

G
1

A
TP

-b
in

di
ng

 c
as

se
tte

 su
bf

am
ily

 G
 m

em
be

r 1
LO

C
10

18
62

51
6

P4
58

44
G

O
:0

,0
42

,9
87

A
m

yl
oi

d 
pr

ec
ur

so
r p

ro
te

in
 c

at
ab

ol
ic

 p
ro

ce
ss

D
H

C
R

24
24

-D
eh

yd
ro

ch
ol

es
te

ro
l r

ed
uc

ta
se

LO
C

10
18

64
54

2,
 L

O
C

10
18

64
54

2,
LO

C
10

18
49

31
0

Q
15

39
2

G
O

:0
,0

42
,9

87
A

m
yl

oi
d 

pr
ec

ur
so

r p
ro

te
in

 c
at

ab
ol

ic
 p

ro
ce

ss

B
IN

1
B

rid
gi

ng
 in

te
gr

at
or

 1
LO

C
10

18
56

16
6

O
00

49
9

G
O

:0
,0

48
,1

56
Ta

u 
bi

nd
in

g
C

D
K

5
C

yc
lin

-d
ep

en
de

nt
 k

in
as

e 
5

LO
C

10
18

53
43

7,
 L

O
C

10
18

64
02

3
Q

00
53

5
G

O
:0

,0
48

,1
56

Ta
u 

bi
nd

in
g

G
SK

3B
G

ly
co

ge
n 

sy
nt

ha
se

 k
in

as
e 

3 
be

ta
LO

C
10

05
33

53
4

P4
98

41
G

O
:0

,0
48

,1
56

Ta
u 

bi
nd

in
g

PI
N

1
Pe

pt
id

yl
-p

ro
ly

lc
is

/tr
an

s i
so

m
er

as
e,

 N
IM

A
-

in
te

ra
ct

in
g 

1
LO

C
10

18
58

15
5

Q
13

52
6

G
O

:0
,0

48
,1

56
Ta

u 
bi

nd
in

g

291Journal of Molecular Neuroscience (2022) 72:287–302



1 3

(GOT1 and 2, MDH1, CYCS, NDUFV1, PCCB), cyclic-
AMP response element-binding protein (CREB)-mediated 
learning and memory (MAP2K1, PRKACA, CAMK4, 
ELAV4, Fig. 3) and mitochondrial homeostasis (GDAP1, 
TUSC2), among others (Table 3). The full gene list is avail-
able in Supplementary Data 2.

Discussion

In our screening of the Aplysia genome for orthologs to 
Alzheimer’s-associated genes we identified 418 putative 
orthologs. Among these were orthologs of hallmark players 
in AD progression such as Aβ and tau.

The quintessential hallmark of AD is the formation 
of Aβ plaques in the nervous system. Aβ is a cleavage  
product of APP by the single protein beta secretase and 

the multi-protein gamma secretase enzymes. In contrast to  
beta and gamma secretases, alpha secretases process APP 
in a manner that does not produce Aβ. The alpha secretase 
ADAM10 has been demonstrated to compete with beta 
and gamma secretases for APP and confers protection  
from Aβ accumulation and tau hyperphosphorylation 
(Peron et al. 2018; Yuan et al. 2017). While Aβ plaques 
associated with AD in humans are not known to occur in 
invertebrates, endogenous orthologs of APP and associated 
secretases in Drosophila and C. elegans have been used to 
investigate the mechanisms by which these enzymes and 
cleavage byproducts function in normal and pathological 
conditions. This approach has shed light on the mechanisms  
of Aβ-related AD pathology, suggesting that Aplysia can 
be used similarly (Alexander et al. 2014; Calahorro and 
Ruiz-Rubio 2011; Fernandez-Funez et al. 2015; Link 2005; 
Prussing et al. 2013).

Fig. 2   Commonly upregulated orthologs in the toll/interleukin sign-
aling pathway between Aplysia SN aging and FL LOAD. Each box 
represents a gene and is subdivided into nine sections corresponding 
to analyzed data sets; the first three are Aplysia SN data sets and the 
latter six are FL LOAD results from Li et  al. (2015) as demarcated 
in the Key. Each section is colored to indicate whether the genes 
were upregulated (red), downregulated (blue), or exhibited no change 
(gray) in the corresponding data set. Solid line arrows represent a 

direct interaction, while dotted lines signify indirect interaction via 
intermediaries. Example genes known to be upregulated by NF-kB 
that were common to both Aplysia SN aging and FL LOAD are listed 
at the bottom of the figure. Commonly upregulated genes include toll/
interleukin signaling adapter protein MYD88 and several components 
of the NF-kB signaling cascade (IκΒα, NF-κΒ1, TPL2), suggesting  
that increased proinflammatory signaling is a common feature of 
Aplysia SN aging and FL LOAD

292 Journal of Molecular Neuroscience (2022) 72:287–302



1 3

Neurofibrillary tangles of hyperphosphorylated tau  
protein are also a hallmark of AD and several ADRDs. Tau  
neurofibrillary tangles do not naturally occur in invertebrate 
models; thus previous studies of tau hyperphosphorylation  
using Drosophila and C. elegans expressed altered 
human tau in invertebrate  neurons to determine its  
detrimental effects (Alexander et al. 2014; Calahorro and 
Ruiz-Rubio 2011; Fernandez-Funez et al. 2015; Hannan  
et  al.  2016; Link  2005; Moloney et  al.  2010; Prussing  
et  al.  2013; Sharma et  al.  2017). These invertebrate  
models have been particularly useful in screening for 
the effects of taupathies in the nervous system (Hannan 
et al. 2016). Similarly, Aplysia SN do not naturally form 
tau neurofibrillary tangles; however, expression of mutant 
human tau also has been performed in Aplysia SN, which 
resulted in recapitulation of AD-like taupathies (Shemesh  

and Spira 2010, 2011). The presence of endogenous MAPT 
orthologs and the demonstrated capacity to induce taupathies  
in cultured neurons suggest that Aplysia SN may also offer 
an effective screening tool for the effects of hallmark AD 
proteinopathies on neurons.

The roughly 400 other orthologs of interest in Aplysia  
offer a broad landscape for functional investigation of the 
effects of amyloidopathies and taupathies on individual 
neurons and simple neural circuits. Given the success of 
translating molecular mechanisms of learning and memory 
from Aplysia to higher vertebrates and humans, the potential  
for investigation of AD mechanisms in Aplysia appears 
promising (Abrams 2012; Bailey et al. 1983; Ezzeddine and  
Glanzman 2003; Glanzman 2006; Kupfermann 1974; Lin and  
Glanzman 1994; Martin et al. 1997; Moroz 2011). This notion 
is further supported by the shared differential expression of 

Table 2   Gene orthologs upregulated in both Aplysia SN aging and 
FL LOAD. All genes upregulated in two or more aging Aplysia SN 
differential expression data sets and five or more in meta-analysis of 
human frontal lobe Late Onset AD (FL LOAD) samples by Li et al. 
(2015). Aplysia RefSeq transcript identifiers, their BLAST-assigned 
putative human orthologs, and the e-value of the match are listed 

in the first three columns, with alternative names for each human 
gene in the fourth. The number of data sets in which these orthologs 
were upregulated is listed in columns 5 (Aplysia data sets) and 6 (Li 
et al. 2015 human FL LOAD data sets). Column 6 groups orthologs 
into broad categories relevant to aging and AD found in the discus-
sion

Aplysia RefSeq Transcript e-value Human gene symbol Other names Aplysia 
data 
sets

FL 
LOAD 
data sets

Major category

XM_005091054 9.3E-70 ANKZ1 ANKZF1, ZNF744 3 5 Stress response (ER, ROS)
XM_013084296 5.3E-09 BIRC3 API2, MIHC, cIAP 3 6 Inflammation
XM_013088003 7.2E-12 BIRC3 API2, MIHC, cIAP 3 6 Inflammation
XM_005111747 5.3E-08 BIRC3 API2, MIHC, cIAP 2 6 Inflammation
XM_005102233 6.5E-22 BMP1 mTlD, PCP, TLD 2 5 Inflammation, cholesterol 

metabolism
XM_005112068 4.2E-20 BTG1 BTG1 2 6 Stress response (metabolic, 

ER, ROS)
XM_013080222 1.4E-86 CP3A5 CYP3A5 2 5 Lipid metabolism, cholesterol 

metabolism
XM_005102749 1.1E-19 DDT4L DDIT4L, REDD2 2 6 Stress response (metabolic)
XM_013089385 5.6E-17 GA45G GADD45G, DDIT-2, CR6 3 5 Stress response
XM_005111489 3.2E-34 IKBA NFKBIA, MAD3, NFKBI 3 5 Inflammation
XM_013089050 4.9E-37 M3K8 MAP3K8, COT, TPL2 2 5 Inflammation
XM_005095469 0 MA2B1 MAN2B1, LAMAN, MANB 2 5 Proteostasis
NM_001204684 1.4E-135 MKNK2 MNK2, GPRK7 2 6 Inflammation
XM_005108634 2.2E-25 MLXIP MONDOA 3 5 Energy metabolism
XM_005089580 6.6E-05 MUC1 CD227, PEM, EMA, EMA, 

PEMT
2 5 Stress response (ER), inflam-

mation
XM_013081198 2.2E-15 MYD88 MYD88 3 5 Inflammation
XM_005097661 4.4E-49 NEO1 NGN, IGDCC2 2 5 Iron accumulation, inflam-

mation
XM_005108885 4.1E-21 NFIL3 E4BP, IL3BP1 2 5 Inflammation
XM_005096173 1.7E-12 NFKB1 EBP1 2 5 Inflammation
XM_005091237 1.1E-77 SSRA SSR1, TRAPA 2 5 Stress response (ER)
XM_005110832 7.2E-43 TISB ZFP36L1, BRF1, ERF1, 

TIS11B, BERG36, 
RNF162B

3 6 Inflammation, cholesterol 
metabolism
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genes which are involved in processes known to play key 
roles in both neuronal aging and AD, including learning and 
memory, neuronal signaling, transport of cellular cargo, energy 
metabolism, proteostasis, and neuroinflammation.

Memory impairment associated with AD has been 
suggested to be the result of synergistic toxicity between 
Aβ plaques and tau neurofibrillary tangles in cognitive 
centers like the frontal lobe and hippocampus. Gene  
transcription as a result of CREB activation is essential 
for memory formation across Metazoa (Silva et al. 1998). 
Disruption of CREB signaling in cognitive centers has 
been observed in AD brains as well as rodent and neuronal  
models of AD and is suggested to be a major component  
of AD-associated cognitive impairment (Puzzo et al. 2005; 
Snyder et al. 2005; Tong et al. 2001; Vitolo et al. 2002; 
Yamamoto-Sasaki et al. 1999). Similarly, Aplysia SN have 
been demonstrated to have impaired CREB signaling in  
aging (Greer et al. 2018; Kempsell and Fieber 2015a). 
As illustrated in Fig. 3, both aged Aplysia SN and human 
FL LOAD exhibited downregulation of orthologs of 
CAMKIV, MAP2K1, and PRKACA. These are critical 
components of the Ca++/calmodulin (Bito et al. 1996; 
Hardingham et al. 1998), MEK/ERK (Grewal et al. 2000; 
Li et  al.  2019), and PKA (Turnham and Scott  2016) 
signaling cascades, respectively, that activate CREB 
during memory formation. Furthermore, commonly  
downregulated ELAV4 is a key effector of PKC that plays 
a critical role in stabilizing the mRNA of CREB target 

genes, facilitating protein translation and the establishment  
of CREB-dependent long-term memory in both species 
(Anderson et  al.  2001; Deschenes-Furry et  al.  2006;  
Mirisis et al. 2021; Pascale et al. 2004). Decreased activity  
and expression of these genes as a result of Aβ and tau 
has been described previously in AD (Amadio et al. 2009; 
Gong et al. 2006; Hartmann et al. 2019; Vitolo et al. 2002; 
Yin et al. 2016b). This suggests that it is the dysregulation 
of key kinases and their effectors in the CREB signaling 
cascade that drives the cognitive impairments that typify 
both Aplysia SN aging and AD.

A mechanism by which AD is believed to impair  
cognitive function is via the disruption of normal vesicle 
dynamics and proper trafficking of cellular cargo (Barthet 
and Mulle 2020; Marsh and Alifragis 2018). Many of the 
putative orthologs downregulated in aging Aplysia SN 
and FL LOAD, namely NAPG (Inoue et al. 2015), ARF3 
(Kondo et al. 2012), NECP1 (Ritter et al. 2003), and SNX4 
(Traer et al. 2007), are involved in endosome formation 
and trafficking. Others, including NAPG (Stenbeck 1998), 
SYN2 (Cesca et al. 2010), SVOP (Janz et al. 1998), and 
EXOC8 (Guo et al. 1999), play key roles in vesicle docking 
and membrane fusion. Both SYN2 and NAPG have been 
shown to be disrupted in AD (Nie et al. 2017; Scheff and 
Price 2003; Sultana et al. 2006). This suggests that normal 
endo/exocytosis dynamics are affected in aging Aplysia SN  
as well as FL LOAD, possibly contributing to cognitive 
impairment. Transport of cellular cargo to and from the  

Fig. 3   Orthologs in learning 
and memory pathway down-
regulated in common between 
Aplysia SN aging and FL 
LOAD. See Fig. 2 caption for 
diagram description. Commonly 
downregulated genes included 
major kinases of CREB1 (PKA, 
CAMK4, MEK1) and ELAV4, 
which stabilizes mRNAs of 
CREB1 target genes. This 
suggests that CREB1 signaling 
disruption is a common cause of 
cognitive impairment in Aplysia 
SN and LOAD
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Table 3   Gene orthologs downregulated in both Aplysia SN aging and 
FL LOAD. All genes downregulated in two or more aging Aplysia SN 
differential expression data sets and five or more in meta-analysis of 
human frontal lobe FL LOAD samples by Li et al. (2015). See Table 2 

for column descriptions. A majority of shared downregulated orthologs 
are involved in one or more of the following processes: cellular cargo 
transport, endo/exocytosis, proteostasis, lipid metabolism, energy 
metabolism, mitochondrial homeostasis, and signaling

Aplysia RefSeq Transcript e-value Human gene symbol Other names Aplysia 
data 
sets

FL 
LOAD 
data sets

Major category

XM_005098930 0 AATM GOT2 3 5 Energy metabolism
XM_005099066 2.5E-46 ARF3 ARF3 2 6 Cellular cargo transport
XM_005112446 2.6E-25 CISD1 ZCD1, mitoNEET 2 5 Energy metabolism
XM_013080281 3.6E-21 CNRP1 C2orf32 2 6 Signaling
XM_005098434 1.3E-59 CYC​ CYCS 2 6 Energy metabolism
XM_005096347 3.9E-65 DCTN6 WS3 2 6 Cellular cargo transport
XM_005100966 1.1E-107 DECR2 PDCR, SDR17C1 2 5 Lipid metabolism
XM_005092530 2.1E-146 ELAV4 ELAVL4, HUD, PNEM 2 6 Synaptic plasticity, mRNA 

stabilization
XM_005112819 0 EXOC8 EXO84 2 5 Exocytosis
XM_005097581 5.5E-10 FABPH FABP3, FABP11, MDGI 2 5 Lipid metabolism
XM_005096727 4.0E-41 GDAP1 3 5 Mitochondrial homeostasis
XM_005111161 8.8E-44 GDAP1 2 5 Mitochondrial homeostasis
NM_001204703 0 GNAO GNAO1 3 6 Signaling, Ca++ homeostasis
XM_005102254 0 GNB5 2 5 Signaling, Ca++ homeostasis
XM_005112007 0 HMCS1 HMGCS1,HMGCS 2 5 Lipid metabolism, steroid 

metabolism
XM_005104774 4.8E-106 HPRT HPRT1, HGPRT 2 6 Nucleotide salvage
XM_005102830 2.0E-07 JUPI1 ARM2, HN1 2 5 Other
NM_001204491 0 KAPCA PRKACA, PKACA​ 2 5 Synaptic plasticity, Ca++ 

signaling, phosphorylation
XM_005106951 4.0E-65 KCC4 CAMK4, CAMK, CAMK-

GR, CAMKIV
2 5 Synaptic plasticity, Ca++ 

signaling, phosphorylation
XM_005104905 0 KIFA3 KIFAP3, KIF3AP, SMAP 3 6 Cellular cargo transport
XM_005102605 1.4E-10 LIAT1 C17orf97 2 5 Other
XM_005098563 4.0E-171 MDHC MDH1, MDHA 2 6 Energy metabolism
XM_005089329 0 MP2K1 MAP2K1, MEK1, 

PRKMK1, MKK1, 
MAPKK1

2 6 Synaptic plasticity, phospho-
rylation

XM_005098362 3.2E-56 MPND MPND 3 5 Other
XM_005089044 7.7E-36 NDUAA​ NDUFA10, CI-42kD 2 5 Energy metabolism
XM_005097418 0 NDUV1 NDUFV1, UQOR1 2 5 Energy metabolism
XM_005099251 2.6E-103 NECP1 NECAP1 2 6 Endocytosis
XM_005097828 0 ODPB PDHB, PHE1B 3 6 Energy metabolism
XM_013084642 3.7E-89 OTUB1 OTB1, OTU1 3 6 DNA damage response
XM_013081831 0 PCCB 2 5 Lipid metabolism
XM_005089882 4.6E-28 PEX19 HK33, PXF 2 5 Lipid metabolism, proteo-

stasis
XM_005110189 0 PFKAM PFKM, PFKA, PFKX 2 6 Energy metabolism
XM_005109909 4.9E-74 PITH1 PITHD1, C1orf128 2 5 Transcription
XM_005097948 2.5E-50 PPAC ACP1, LMW-PTP 2 6 Phosphorylation
XM_005097122 4.3E-133 RAB6A RAB6 2 5 Cellular cargo transport
XM_005093164 1.7E-87 SAMC SLC25A26 3 5 Mitochondrial homeostasis
XM_005108342 9.4E-28 SCOC SCOCO 3 6 autophagy
XM_005093202 4.4E-78 SNAG NAPG, SNAPG 2 6 Cellular cargo transport, 

endocytosis
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synapse in response to synaptic activity is also central 
to synapse function and health (Guillaud et  al.  2020;  
Hafezparast et al. 2003).

Both aging Aplysia SN and FL LOAD exhibit down-
regulation of DCTN6, a component of the dynein/dynactin 
complex that mediates retrograde transport, and RAB6A, 
the small GTPase that activates dynein-mediated transport 
(Yamada et al. 2013). This suggests common impairment of 
retrograde movement of cellular cargo. Similarly, common 
downregulation of KIFAP3, a key component of the kinesin 
motor, suggests that anterograde transport is impaired as 
well (Yamazaki et al. 1996). Furthermore, previously men-
tioned STAU2 and ELAVL4 both participate in kinesin-
mediated transport of mRNAs from the nucleus to neurites 
(Bronicki and Jasmin 2013; Tang et al. 2001). Anterograde 
transport of mitochondria and mRNA via kinesins is crucial 
for synapse health, learning, and memory, and disruptions of 
this process are associated with several neurodegenerative 
disorders (Guillaud et al. 2020). Disruption of mitochondrial 
transport in neurons also impairs mitochondrial homeosta-
sis, which has been suggested to play a central role in many 
neurodegenerative disorders (Sheng and Cai 2012).

Mitochondrial dysfunction is a classic hallmark of  
neural aging and AD (Ferguson et al. 2005; Grimm and 
Eckert  2017; Ojaimi et  al.  1999). Due to the energy-
intensive activity of neurons, any disruption in metabolic 
output can adversely affect signaling and synaptogenesis. 
The downregulation of several genes in common between 
Aplysia SN aging and FL LOAD suggest similar metabolic 
impairments. Downregulation of PKFM, the enzyme of 
the first committed step of glycolysis, but upregulation 
of glucose sensor and PFKM inducer MondoA, suggests  
common perturbation of glycolysis homeostasis (Sans 
et  al. 2006). Furthermore, two components of the 

malate-aspartate shuttle (MAS), GOT2 and MDH1, are 
commonly downregulated. Disruption of MAS results in  
decoupling of cytosolic and mitochondrial NAD + /NADH 
ratios, which has been demonstrated to have adverse effects 
on mitochondrial metabolism and induce senescence 
(Bradshaw 2019; Broeks et al. 2019; Lautrup et al. 2019;  
Xu et  al.  2020). Another common downregulated 
gene, PCCB, is critical for proper functioning of the  
mitochondrial tricarboxylic acid cycle (TCA) and has  
also been shown to be downregulated in a mouse model 
of AD (Franco et al. 2019). Dysfunction of PCC results 
in altered concentrations of TCA intermediates and 
accumulation of toxic metabolites, which decreases the 
activity of pyruvate dehydrogenase (PDH), the beta  
isoform of which is also downregulated (Wongkittichote 
et al. 2017). In addition to regulators of glycolysis and the 
TCA cycle, several components of mitochondrial oxidative  
phosphorylation are also commonly downregulated.  
These include components of mitochondrial respiratory 
complex I (NDUFA10, NDUFV1), cytochrome C (CYCS), 
which links complexes III and IV, and CISD1, which  
regulates maximal mitochondrial energy output (Kalpage 
et al. 2019; Paddock et al. 2007; Wang et al. 2017). These 
transcriptional signatures suggest similar impairment of 
mitochondrial energy metabolism in both Aplysia SN 
and FL LOAD. In addition to metabolic impairment, 
mitochondrial dysfunction also contributes to disrupted  
Ca++ buffering in normal aging and AD (Pandya  
et al. 2015).

Proper mitochondrial Ca++ regulation is critical not  
only for proper mitochondrial homeostatic functions but 
also for synaptic signaling (Gleichmann and Mattson 2011; 
Marchi et al. 2018; Satrustegui et al. 1996). In neurons, 
mitochondria act as critical sinks and reservoirs for Ca++  

Table 3   (continued)

Aplysia RefSeq Transcript e-value Human gene symbol Other names Aplysia 
data 
sets

FL 
LOAD 
data sets

Major category

XM_013087712 1.4E-156 SNX4 3 6 Cellular cargo transport, 
endocytosis, proteostasis

XM_005091494 2.5E-111 SPEE SRM, SPS1, SRML1, 
SPDSY

3 5 Mitochondrial homeostasis, 
proteostasis

NM_001204727 5.4E-129 STAU2 STAU2 2 6 Cellular cargo transport
XM_013086901 5.0E-24 STUM C1orf95 3 5 Other
XM_005107969 0 SVOP 2 5 Exocytosis
NM_001204483 2.7E-151 SYN2 2 5 Exocytosis
XM_013090258 1.1E-63 TTPAL C20orf121 2 5 Other
XM_005091686 3.4E-21 TUSC2 C3orf11, FUS1, LGCC, 

PDAP2
2 6 Mitochondrial homeostasis, 

inflammation, cytokine 
signaling, ROS response

XM_005109532 8.7E-119 1433Z YWHAZ, KCIP-1, 14–3-3 
protein zeta/delta

2 5 Signaling, proteostasis
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during signaling events. The signaling pathways that target  
CREB discussed earlier are themselves dependent upon 
tightly regulated Ca++ signaling (Augustine et al. 2003). 
Impairment of mitochondrial Ca++ homeostasis has been 
shown to contribute to AD-associated proteinopathies and 
has even been suggested to be the proximal cause of AD  
(Calvo-Rodriguez et  al.  2020; Jadiya et  al.  2019; Tong 
et al. 2018). Three genes downregulated in both aged Aplysia 
SN and FL LOAD, namely, GDAP1, TUSC2, and GN5B, 
play an important role in mitochondrial Ca++ regulation, 
suggesting that aged Aplysia SN suffer similar disruptions 
of mitochondrial Ca++ dynamics as human FL LOAD  
(Gonzalez-Sanchez et al. 2019; Kang et al. 2018; Uzhachenko 
et al. 2014, 2017). Mitochondrial impairment results in energy 
deprivation, generation of reactive oxygen species (ROS), and 
elevated Ca++, which contribute to protein aggregation and 
associated endoplasmic reticulum (ER) stress. Sensors for 
these stressors converge in a single signaling process known 
as the integrated stress response (ISR) pathway.

Induction of the ISR results in decreased global translation 
via phosphorylation of eukaryotic initiation factor 2 (eIF2) and 
increased transcription of transcription factors in the activating 
transcription factor family, particularly ATF4 (Costa-Mattioli 
and Walter 2020; Pakos-Zebrucka et al. 2016). Increased pro-
teostatic stress in AD due to Aβ plaques and tau neurofibrillary 
tangles has been demonstrated to increase eIF2 phosphorylation, 
suggesting increased ISR activity in AD (Chang et al. 2002; 
Ferrer 2002; Hernandez-Ortega et al. 2016; Hoozemans et al. 
2005, 2009). Several putative orthologs upregulated in both aged 
Aplysia SN and FL LOAD are stress-induced genes, includ-
ing DDIT4L (Cuaz-Perolin et al. 2004; Shoshani et al. 2002; 
Wang et al. 2003), BTG1 (Cho et al. 2003; Yuniati et al. 2019), 
SSR1 (Nagasawa et al. 2007), ANKZF1 (Tran et al. 2011; van 
Haaften-Visser et al. 2017), NFIL3 (Tamai et al. 2014), MUC1 
(Olou et al. 2020), GAD45G (Liebermann and Hoffman 2008), 
and BIRC3 (Hamanaka et al. 2009; Warnakulasuriyarachchi 
et al. 2004). BTG1 enhances ISR signaling via interaction with 
ATF4 upon activation (Yuniati et al. 2016). Chronic induction 
of the ISR and resulting changes in the transcriptional and trans-
lational landscape of neurons has been suggested to play a role 
in disruptions of CREB-mediated learning and memory in AD 
(Hernandez-Ortega et al. 2016). NFIL3 has been shown to specif-
ically inhibit CREB (MacGillavry et al. 2009). Similarly, upregu-
lation of DDIT4L and NEO1 has been demonstrated to result in 
decreased neurogensis with impaired cognitive outcomes (Chen 
and Shifman 2019; Di Polo 2015; Metzger et al. 2007; Morquette 
et al. 2015; Shifman et al. 2009). Activation of the ISR also 
results in the secretion of cytokines that activate receptors in the 
toll-like and interleukin-like receptor (TIR) family (Abdel-Nour 
et al. 2019; Deng et al. 2004; Iwasaki et al. 2014). Activation of 
these TIR initiates signaling cascades that result in the transloca-
tion of transcription factors NF-kB and AP-1 to the nucleus and 
recruitment of pro-survival and proinflammatory genes.

Increased activation of proinflammatory signaling cascades  
recruited by the ISR has also been demonstrated to be increased 
in AD (Colangelo et  al.  2002). Positive feedback of this  
proinflammatory loop has been proposed to induce chronic 
neuroinflammation and contribute to neurodegenerative  
consequences in AD (Jones and Kounatidis 2017; Ju Hwang 
et al. 2019; Lindsay et al. 2021; Uddin et al. 2021). For example, 
induction of miRNAs by NF-κB in AD directly results in the 
downregulation of previously discussed SYN2 (Lukiw 2012). 
Several genes that participate in and are recruited by the  
signaling cascades downstream of TIR are upregulated in both 
Aplysia SN aging and human FL LOAD (Fig. 2), including 
MYD88, MAP3K8 (Chorzalska et al. 2017), and MKNK2 
(Bao et al. 2017; Xu et al. 2018). Furthermore, NEO1discussed 
previously exhibits strong proinflammatory effects (Chen and 
Shifman 2019; Fujita and Yamashita 2017; Shifman et al. 2009). 
Most significantly, many core components of the quintessential  
proinflammatory signaling cascade, NF-kB signaling, are 
commonly upregulated. NF-KB1, also known as p105, is an 
NF-kB family protein that, upon phosphorylation as a result of 
MYD88 activation, is degraded by the proteosome. This liberates 
MAP3K8, which initiates the AP-1 branch of proinflammatory 
signaling and produces the p50 NF-kB subunit, which is then 
recruited into homodimers or heterodimers with p65 to activate 
downstream NF-kB target genes (Beinke et al. 2004). Several 
of these target genes are commonly upregulated, including  
NFKBIA (Hay et al. 1999; Sun et al. 1993), BCL3 (Bours 
et al. 1993; Caamano et al. 1996; Edwards et al. 2015; Saito 
et al. 2010), and BIRC3 (Hu et al. 2004; James et al. 2006; Simon 
et al. 2007). Common upregulation of key genes in this pathway 
suggest that increased proinflammatory signaling as a result of 
increased cellular stress is a relevant component of Aplysia SN 
aging and FL LOAD. However, few of these relationships have 
been experimentally validated in Aplysia.

While these genes have been observed to play key roles in 
human neurodegenerative disease, orthologs of these genes 
have been demonstrated to have conserved function and stress-
associated upregulation and function in invertebrate models. 
Molluscan orthologs of BTG1 (Peng et al. 2014), NFIL3 (Li 
et al. 2017), MYD88 (Zhang et al. 2015), and BIRC3 (Wang 
et al. 2016) have been demonstrated to be activated by biotic 
and abiotic stressors in bivalves. Several other dysregulated 
orthologs, including NAPG (Clary et al. 1990), SNX4 (Nemec 
et  al.  2017), EXOC8 (Guo et  al.  1999), ANKZF1 (Tran  
et al. 2011), and DDIT4L (Reiling and Hafen 2004) have  
conserved function between humans and models considered 
more divergent from humans than Aplysia (Moroz et al. 2006), 
including ecdysozoans like Drosophila and C. elegans and even 
yeast. Thus, we believe it plausible that dysregulation of these 
genes will have similar outcomes in Aplysia SN as observed in 
human neurons.

Differential expression of genes shared between Aplysia 
SN aging and FL LOAD represents critical pathways that are 

297Journal of Molecular Neuroscience (2022) 72:287–302



1 3

disrupted in aging and neurodegenerative disease, including  
mitochondrial homeostasis, energy metabolism, vesicle  
dynamics, cellular cargo transport, Ca++ homeostasis, and 
synaptic plasticity (Di Paolo and Kim 2011; Haas 2019; Jang 
et al. 2018; Lopez-Otin et al. 2013; Martinez et al. 2017; Wong 
et al. 2020; Wu et al. 2019; Yin et al. 2016a). Although the  
hallmark pathologies of AD are only known in humans, these 
data suggest that, while the proximal source of neuronal 
stress may be different, similar transcriptional changes as  
a result of cellular stress underpin cognitive impairment in  
both Aplysia SN aging and AD. Indeed, the commonalities 
between aging Aplysia SN and FL LOAD expression patterns 
make sense in light of the current understanding that normal 
brain aging and dementias like AD are parts of a continuum of 
neurodegenerative outcomes associated with aging (Franceschi 
et al. 2018). While surface receptors and downstream effectors 
have diverged and specialized differently over the course of  
evolution, these data suggest that orthologous signaling cascades 
and their disruption as a result of age-associated stressors are 
conserved between the human frontal lobe and Aplysia sensory 
neurons. We strongly believe that these results, in addition to 
previous studies, demonstrate the excellent applicability of  
Aplysia as a multivalent model for the study of AD and ADRD.
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