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Abstract

Thousands of pseudogenes exist in the human genome and many are transcribed, but their functional potential remains
elusive and understudied. To explore these issues systematically, we first developed a computational pipeline to identify
transcribed pseudogenes from RNA-Seq data. Applying the pipeline to datasets from 16 distinct normal human tissues
identified ,3,000 pseudogenes that could produce non-coding RNAs in a manner of low abundance but high tissue
specificity under normal physiological conditions. Cross-tissue comparison revealed that the transcriptional profiles of
pseudogenes and their parent genes showed mostly positive correlations, suggesting that pseudogene transcription could
have a positive effect on the expression of their parent genes, perhaps by functioning as competing endogenous RNAs
(ceRNAs), as previously suggested and demonstrated with the PTEN pseudogene, PTENP1. Our analysis of the ENCODE
project data also found many transcriptionally active pseudogenes in the GM12878 and K562 cell lines; moreover, it showed
that many human pseudogenes produced small RNAs (sRNAs) and some pseudogene-derived sRNAs, especially those from
antisense strands, exhibited evidence of interfering with gene expression. Further integrated analysis of transcriptomics and
epigenomics data, however, demonstrated that trimethylation of histone 3 at lysine 9 (H3K9me3), a posttranslational
modification typically associated with gene repression and heterochromatin, was enriched at many transcribed
pseudogenes in a transcription-level dependent manner in the two cell lines. The H3K9me3 enrichment was more
prominent in pseudogenes that produced sRNAs at pseudogene loci and their adjacent regions, an observation further
supported by the co-enrichment of SETDB1 (a H3K9 methyltransferase), suggesting that pseudogene sRNAs may have a role
in regional chromatin repression. Taken together, our comprehensive and systematic characterization of pseudogene
transcription uncovers a complex picture of how pseudogene ncRNAs could influence gene and pseudogene expression, at
both epigenetic and post-transcriptional levels.
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Introduction

Pseudogenes are genomic sequences with high sequence

similarity to functional genes but have been presumed to be

‘‘non-functional’’ [1–3]. By definition, pseudogenes derived from

protein-coding genes have lost their protein-coding capacity due to

deleterious disruptions (e.g., premature stop codons or frame shift

mutations) in their hypothetical open reading frames. Based on

distinct generation mechanisms, pseudogenes are separated into

processed pseudogenes (generated by retrotransposition) and

duplicated pseudogenes (from gene duplication). This separation

is primarily based on examination of sequence features, with the

lack of introns as strong evidence for retrotransposition, whereas

older pseudogenes with extensive structure degeneration are

sometimes classified as pseudogene fragments due to ambiguity.

The functional gene with the ‘‘highest’’ sequence similarity to a

pseudogene is often operationally referred as its parental gene,

which is also used in the current study.

Thousands of pseudogenes are found in the human genome;

some of them have been suggested to have critical regulatory

functions [4–7]. Historically, pseudogenes are considered to be

mostly transcriptionally inactive because they are presumably

lacking either a functional promoter or auxiliary regulatory

elements. However, recent studies have found that a substantial

portion of pseudogenes can actually be transcribed to stable RNAs

[8–12]. Furthermore, accumulating lines of evidence suggest that

pseudogenes, via their non-coding RNA (ncRNA) products, may

play regulatory roles in modulating the expression of their parental

genes, as well as non-parental genes [1,3,13–21]. For example,

short interfering RNAs (siRNAs) derived from pseudogenes,

through their complementary interactions with mRNAs of the

parental genes, were found to down regulate parental gene

expression in mouse oocytes by a Dicer-dependent RNAi process

[22,23]. Our recent analysis of millions of small RNAs from

multiple rice tissues also supports the idea that high eukaryotic

pseudogenes can produce endogenous siRNAs (endo-siRNAs) that

are mostly tissue and development-stage specific [24]. Moreover,
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many of those pseudogene-derived endo-siRNAs share similar

features with plant repeat-associated siRNAs that can mediate

RNA-directed DNA methylation and heterochromatin formation

[24]. Whether mammalian pseudogenes can play a similar role in

modulating epigenetic repression at pseudogene loci (i.e., cis-effect)

has not yet been investigated, although trans-effects have been

suggested. For example, the Oct4 pseudogene ncRNA was shown

to direct epigenetic remodeling complexes to the Oct4 parent gene

[25].

Pseudogene transcripts functioning by other mechanisms have

also been reported [8,14,19,20,26–29], including acting as

antisense transcripts [25,30]. PTENP1, a pseudogene derived from

the tumor suppressor gene PTEN, was first shown to act as a

competitive decoy for several miRNAs that target PTEN mRNA,

thus stabilize expression of its parental PTEN gene [28]. The

recent discovery of antisense ncRNAs from PTENP1 and their role

in regulating PTEN [31], furthermore, indicates that functional

interaction between pseudogenes and their parents can be

complex and multilayered. Given the wide range of biological

functions potentially carried out by ncRNAs [32–34], and the high

sequence similarity between pseudogenes and their protein-coding

paralogs, it is conceivable that pseudogene-derived ncRNAs may

also have a variety of molecular and cellular effects on normal cell

growth, human disease, and cancer [12,19,35–37].

In this study, we have surveyed the landscape of pseudogene

transcription across a large number of human tissues and cell lines

and begun to explore potential functional and cellular activities of

pseudogene ncRNAs from several perspectives. We found that a

few thousand human pseudogenes were transcribed and their

transcription was overall correlated with increased expression

levels and expression diversity of their parental genes. Some

pseudogenes, on the other hand, displayed evidence of siRNA

production and function, potentially by either interfering with

parental gene expression or mediating local epigenetic silencing.

Taken together, our results suggest that pseudogene transcription

is likely an important process that has provided novel ncRNA

elements for modulating the transcriptional fluctuation of protein-

coding genes.

Results

Identification of transcribed pseudogenes from RNA-Seq
data

A major challenge in detecting transcribed pseudogenes is how

to map RNA-Seq reads back to their genuine origins when both

pseudogenes and their parents are candidates because of their high

sequence similarity. The lack of introns may even make a

processed pseudogene the preferred candidate for reads originat-

ing from exon-exon junctions of the parent. To address these

issues directly, we have designed a new computational method to

filter out RNA-Seq signals that are likely to have originated from

coding genes but can be mapped to pseudogenes due to ambiguity

(Fig. 1A, see Material and Methods). For examples, exon-exon

junction reads originated from parental genes were removed from

pseudogene loci by our method even though their mapping to a

processed pseudogene could have a greater alignment score.

Without filtering, reads were overwhelmingly mapped to pseudo-

gene regions with .80% sequence identity to their parents, and a

positive correlation existed between the number of reads mapped

to a pseudogene region and the parental-pseudogene sequence

identity (Fig. 1B, top panels). This pattern disappeared after our

filtering (Fig. 1B, bottom), indicating that the resulting RNA-Seq

signals used for our subsequent pseudogene analyses to be

described below were unlikely affected significantly by reads

arisen from parental genes. It also suggests that careful filtering of

RNA-Seq reads by an extra step of read alignment to the human

transcriptome (see Methods) is critical. This has not been explicitly

considered in previous identification of transcribed pseudogenes,

although in those studies investigators performed other down-

stream analysis to reduce the contribution of parental transcription

signals to pseudogenes [11,12]. In addition, the majority of current

annotated pseudogenes (87.3% out of a total of 11, 205) share

,90% sequence identity to their parents (Fig. S1), which would

provide on average of $5 informative mismatching sites for

distinguishing a true pseudogene read from a presumably parent-

originating read, given that the length of our RNA-Seq reads is

50–75 bases. In summary, these results indicate that the RNA-Seq

signals attributed to pseudogenes by our new computational

method are reliable.

To determine pseudogene transcription systematically, we first

applied our method to analyze RNA-Seq data from 16 normal

human tissues in the Illumina Human Body Map 2 Project, and

then to the data from GM12878 and K562 cell lines (see below) in

the ENCODE project [16,38,39]. After read filtering, we applied

the TopHat/Cufflinks package [40] to compute expression level

(in FPKMs, Fragments Per Kilobase of transcript per Million

mapped reads). Of the total of 11,205 human pseudogenes

annotated by the GENCODE [11], 3,773 (33.7%) and 982 (8.8%)

had a value of .1 and .10 FPKM in at least one of the 16 human

tissues, respectively (Fig. 1C). By comparison, the corresponding

numbers of 77.8% and 47% for protein coding genes are

significantly larger (Fig. 1D). To our surprise, the majority of the

transcribed pseudogenes were processed pseudogenes (78.6% and

76.2% for FPKM .1 and .10, respectively), even though

duplicated pseudogenes would be expected to more likely retain a

‘‘functional’’ promoter. The bias, however, is present in the

GENCODE annotation, as 77% of the pseudogenes are annotated

as processed, indicating that processed pseudogenes are as likely to

produce ncRNAs as duplicated ones. Using the maximal FPKM in

the 16 tissues for each pseudogene (or lincRNAs), we found that

the median transcription levels of all transcribed pseudogenes and

lincRNAs (FPKM .1) were 22- and 11-fold lower than that of

protein-coding genes, respectively, indicating that both pseudo-

genes and lincRNAs were transcribed at significantly lower levels

than protein coding genes (Fig. 1D).

Pattern of pseudogene transcription in normal human
tissues

We next examined pseudogene transcription patterns across

normal tissues using two complementary methods. We first

compared the expression of pseudogenes that were highly

transcribed in at least one tissue (i.e., maximal FPKM .10,

n = 982). A hierarchical clustering analysis showed that a subset of

pseudogenes was nearly exclusively transcribed in testis (Fig. 2A).

White blood cells, ovary, liver, and brain tissues also produced

many pseudogene transcripts that were much less abundant in

other tissues, but overall every tissue has its own unique set of

highly transcribed pseudogenes (see Fig. S2 for examples). The

pattern in Fig. 2A was reproducible if pseudogenes of FPKMs

either .5 or .1 were clustered (data not shown). In order to

better quantify tissue specificity of transcription, we have applied a

statistical method recently introduced to characterize lincRNA

transcription profiles [41]. The method computes JS (Jensen-

Shannon) scores to determine tissue specificity (larger numbers

indicating higher tissue specificity; see Methods). We determined

JS scores for the pseudogenes of maximal FPKM.1, which we

considered as ‘‘transcribed pseudogenes’’ (Table S1, n = 3,773).

The results indicated that pseudogene transcription (from all three
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types: processed, duplicated and unitary) exhibited significantly

higher tissue specificity than the expression of protein coding

genes, measured against either all parental genes or all protein

coding genes without a pseudogene relative (referred to hereafter

as ‘‘coding genes’’) (p,2.2e-16, Wilcoxon test) (Fig. 2B). LincR-

NAs showed the highest tissue specificity by this measurement

(Fig. 2B). The tissue-specific JS scores were negatively correlated to

expression values (Fig. 2C).

To determine to what extent the high JS scores for pseudogenes

could be explained by their low transcription, we computed JS

scores for randomly selected coding genes with maximal FPKMs

matched to those of pseudogenes. We found that the JS scores of

processed pseudogenes remained lower than their expression-

matching coding genes (p,0.005, Wilcoxon test), but for

duplicated pseudogenes the difference was more significant at

high expression level (Fig. S2), suggesting that we cannot fully

untangle the underlying correlation. Low JS scores, however, were

unlikely a result of a few mapped reads in few tissues, since JS

scores from full RNA-Seq datasets were highly similar and

correlated to those computed with only one half of the RNA-Seq

data (Fig. S2). Interestingly, parents of all transcribed pseudogenes

also displayed lower tissue-specific transcription than coding genes

without any pseudogene relatives (Fig. 2B,C), which is probably

explained by the fact that housekeeping genes are a major source

of processed pseudogenes [4]. In light of this and to reduce

potential systematic bias of pseudogenes from broadly expressed

parents, we have selected only transcribed pseudogenes (n = 1,270)

derived from parents that had a JS score .0.1 for all studies

described below unless mentioned otherwise, which effectively

excluded nearly all (n = 745) pseudogenes derived from ribosomal

protein genes.

In summary, the above results for the extent of pseudogene

transcription and their tissue expression pattern are consistent with

previous reports [8,9,11,42–44], suggesting that our analyses and

the results that will be described below reflect general properties of

pseudogene ncRNAs but not specific to our set of transcribed

pseudogenes. We should also mention the primary goal of the

current study is not simply to compile a list of all human

transcribed pseudogenes, but to characterize those that have

robust and consistent evidence of transcription.

Tissue specificity vs transcription factor binding
To explore transcriptional regulation potentially contributing to

tissue specificity, we examined the number of transcription factor

(TF) binding events in the promoters (22 kb to transcription start

sites (TSS)) of pseudogenes and protein coding genes, using the

Figure 1. Identification of transcribed pseudogenes from RNA-Seq data. A) A schematic illustration of the key concept of filtering out reads
not-uniquely matched to pseudogenes. Black and gray arrows represent perfectly matched and mismatched RNA-Seq reads, respectively, and the
matched locations were kept. Yellow arrows represent a read initially put on a processed pseudogene but mapped back to the parent, based on
aligning reads to coding sequences, because it is from an exon-exon junction. Green lines denote identical short sequences shared between gene
and pseudogene. The left and right cartoons represent processed and duplicated pseudogenes, respectively. The bottom plots final read coverage on
a pseudogene (red) and its parent (black), indicating that RNA-Seq signals have largely been resolved. B) Filtering effectively reduces the correlation
between the number of mapped reads and sequence identity of a pseudogene to its parental gene. The number of mapped reads (y-axis) within
every 200-bp region of a pseudogene is plotted against this region’s sequence identity (x-axis) to the parental gene. Representative data for two
tissues (brain and heart) were shown (top, before filtering; bottom, after filtering). C) Distributions of transcription values (i.e., FPKMs) of pseudogenes
in all 16 tissues (the two vertical dash lines mark 1 and 10 FPKM, respectively). D) Distributions of the maximal FPKMs for lincRNAs, pseudogenes, their
parents, and the rest of coding genes.
doi:10.1371/journal.pone.0093972.g001
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integrated ChIP-Seq data from the ENCODE project [16]. More

specifically, the data contain 2,750,490 ChIP-seq peaks merged

from 690 ChIP-seq datasets representing the genomic occupancy

of 161 unique regulatory factors (both generic and sequence-

specific factors) in 91 human cell types. We found that both

pseudogenes and genes of lower tissue specificity (JS,0.2) were

bound by more transcription factors (multiple binding events of

the same factor were counted as one) than their counterparts with

higher JS scores (JS$0.2) (Wilcoxon test, p,0.02 and ,2.2e-16 for

pseudogenes and genes, respectively; data not shown). The

difference remained statistically significant (p values ,0.04) when

the JS score cutoff was set to 0.25 or 0.35. In addition, changing

the promoter definition slightly from 62 kb to 65 kb or 610 kb

produced similar statistics (e.g., p,0.01 and ,5e-14 for pseudo-

genes and genes when 65 kb was used). Since the data capture a

mixture of TF events in 91 cell types, this result suggests that

pseudogenes transcribed more broadly contain more potential

regulatory sites, but the functional importance of this observation

needs further investigation.

Positive transcriptional relationship between
pseudogenes and coding genes

The evidence of pervasive pseudogene transcription is compel-

ling, but more important questions are what kinds of biological

functions pseudogene ncRNAs can have. Note that the term

‘‘biological function’’ in this report is used in a loose sense, whereas

‘‘biochemical activity’’ may arguably be more appropriate, in

accordance with the source of our experimental data and the

computational nature of our work. The first obvious question is

how pseudogene and parent gene transcription are related, as this

information may shed light on how pseudogenes could regulate

their most conceivable targets. To this end, we computed the

Spearman rank correlation of the 16 tissue transcription levels for

each of the 1,270 pseudogene-parent pairs (rpg:g). The resulting

correlation coefficients for both processed and duplicated pseudo-

genes showed a distribution that was deviated from the theoretical

normal distributions (p = 0.05, Kolmogorov-Smirnov (KS) test)

and biased towards positive numbers (rpg:g median = 0.42 and

0.12 for duplicated and processed pseudogenes, respectively,

Fig. 3A). The skew was statistically significant, when compared to

the distribution of the r between transcribed pseudogenes and

randomly selected coding genes (Fig. 3A and Fig. S3). In addition,

128 and 95 of the positive rpg:g values for processed and

duplicated pseudogenes were statistically significant (p,0.05).

Since some pseudogenes are close to their parents on chromo-

somes (e.g., those from tandem duplications) and adjacent genes

tend to be co-regulated [41], we computed and used the

chromosomal distances of transcribed pseudogenes to the nearest

coding gene to separate transcribed pseudogenes within 20 kb of a

gene (‘‘group t1’’; n = 712 and 236 for processed and duplicated,

respectively) from the rest (‘‘group t2’’; n = 167 and 78 for

processed and duplicated, respectively). We found that rpg:g values

for the t2 group remained skewed to positive for both processed

and duplicated pseudogenes (rpg:g median = 0.42 and 0.41 for

group t1 and t2 duplicated, and 0.08 and 0.25 for processed

pseudogenes; Fig 3A). Interestingly, this breakdown indeed

Figure 2. High tissue specificity of pseudogene transcription. A) Heatmap for the transcription levels of 982 highly transcribed pseudogenes
(maximal FPKM .10). B) Violin plots showing tissue-specificity JS scores of lincRNAs, transcribed pseudogenes, their parents, and the coding genes
without pseudogenes. C) Comparison of JS scores at different transcription levels. The white dots mark median and the thick boxes mark the first and
third quartile values.
doi:10.1371/journal.pone.0093972.g002
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revealed that group t2 processed pseudogenes showed even larger

correlations with their parents (Wilcoxon test, p,0.002). These

results suggest that our observation of positive rpg:g values for most

pseudogenes did not arise from co-regulation of pseudogenes and

their parents due to their close chromosomal proximity. We noted

that the difference between t1 and t2 processed pseudogenes

remained significant when longer distances were applied

(p,0.002, 0.008 and 0.02 for 20 kb, 50 kb and 100 kb,

respectively). In summary, our results indicate that pseudogene

transcription is positively correlated with the expression of their

parents.

Although our observation is based on correlation, it is consistent

with the ceRNA hypothesis [45] that pseudogene ncRNAs can act

as miRNA sponges and thus positively regulate the expression of

their parents by titrating cellular miRNAs that are otherwise

targeted to protein coding genes. This novel ncRNA functional

mechanism was demonstrated elegantly in the study detailing the

miRNA decoy functions of two pseudogenes, PTENP1 and

KRAS1P [28]. To explore the generalization of this mechanism

globally, we examined how the number of miRNA sites within a

pseudogene influenced its transcriptional correlation with its

parent. Although pseudogenes with more putative miRNA

binding sites exhibited on average larger rpg:g values than those

with fewer sites, the difference is not significant if the pseudogene

lengths were factored in (data not shown).

Three additional lines of evidence, however, supported the idea

that the positive correlation between pseudogene ncRNAs and

parental mRNAs could be due to miRNA binding competition, at

least partially. First of all, the competing interactions are expected

to be stronger if pseudogene ncRNAs are sense to the parental

mRNAs. Since the transcriptional direction of a pseudogene could

be different from the annotated one and our current RNA-Seq

data did not contain strand information, we used strand-specific

RNA-Seq dataset (GEO: GSE32307) from a previous study [46] to

infer transcription direction (see Methods), with the assumption

that the strand of pseudogene transcription maintains the same

from one tissue/cell to another. When the resultant information

was included, interestingly but as predicted, processed pseudo-

genes generating sense ncRNAs had a significantly higher rpg:g

values than those producing antisense ncRNAs (median of 0.19

and 20.03 for sense and antisense, respectively), while duplicated

pseudogenes followed the same trends (median of 0.34 and 0.19

for sense and antisense, respectively; Fig. 3B). Secondarily, we

analyzed the transcriptional profiles of parent genes, pseudogenes

and miRNAs by integrating a miRNA microarray expression

dataset collected for 15 out of 16 analyzed tissues (no data for

white blood cells) in a previous study [47]. For every parental gene,

we computed its expression correlation (rmiRNA:g) to each of the

miRNAs that it can putatively bind. Likewise, we calculated

rmiRNA:pg. This produced three-way pairwise correlations. To plot

the data, we binned genes to groups based on rmiRNA:g numbers

(Fig. 3C, x-axis) and then for each group we computed the mean

(and standard deviation, y-axis) of rpg:g. This analysis revealed a

negative correlation between rpg:g (i.e., the co-transcriptional

relationship of pseudogenes and their parents) and rmiRNA:g (i.e.,

the co-transcriptional relationship of miRNAs and parents)

(Fig. 3C, p = 1.5e-06, r = 20.1). This pattern implies that the

miRNA sponge effect of a pseudogene ncRNA is potentially more

significant, manifested as a large and positive rpg:g, if the shared

miRNA shows a larger inhibition to the parent, indicated by a

Figure 3. Transcriptional correlations (rpg:g) between pseudogenes and their parents. A) A heatmap for distribution of rpg:g, including data
from separation of processed and duplicated pseudogenes into two groups based on the presence of a coding gene within 20 kb. The coefficients
between transcribed pseudogenes and randomly chosen coding genes (top) were used as a control for p-value estimation. Colors represent relative
numbers of pseudogenes in each rpg:g range (in Z-score transformation). B) Pseudogenes transcribed in the sense direction (S) exhibited higher rpg:g

than those in the antisense (A). C) The transcriptional correlation between pseudogenes and their parents (rpg:g) is inversely correlated to the
transcriptional correlation between miRNAs and their putative targets (rmiRNA:g). Genes were binned on their rmiRNA:g values (x-axis) and then the
mean and standard deviation of rpg:g (y-axis) for each group of genes was plotted. D) Expression of parental genes targeted by miRNAs was less
affected by miRNA KD than the targeting genes without pseudogenes. Only genes in response to KD (up .1.3 fold) were analyzed here. Y-axis shows
the fold change of KD over control. The miRNA targets were experimentally determined by the CLASH analysis [49]. The middle line in the boxplots
mark median and the box lines mark the first and third quartile values (same for boxplots below).
doi:10.1371/journal.pone.0093972.g003
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small and negative rmiRNA:g, further supporting the idea that a

miRNA sponge effect could partially contribute to the observed

transcriptional correlation between pseudogenes and their parents,

especially in the cases when miRNA regulatory effects were large

(i.e., rmiRNA:g,20.5, Fig. 3C).

To seek additional experimental support, we examined a total of

19,184 high confident in vivo miRNA target sites in HEK293 cell

line as determined by AGO and TNRC6 occupancy using the

PAR-CLIP technology [48]; AGO and TNRC6 are two key

components of miRNA-containing ribonucleoprotein complexes.

Out of the 1,270 pseudogenes, 18 were found to contain at least

one AGO/TNRC6 binding site, 11 of which located towards the

end of pseudogenes, with an additional 10 pseudogenes containing

sites in their 1 kb flanking regions (binomial test, p,0.05). Even

more interestingly, our reanalysis of the microarray expression

data upon knockdown (KD) of the top 25 different miRNAs

expressed in HEK293 [48] revealed that, among the genes up-

regulated .1.3-fold by KDs, the parents of pseudogenes and

especially those targeted by the 25 miRNAs showed smaller

increases than the coding genes that were targeted by these

miRNAs but did not have a pseudogene relative (Fig. 3D). The

different responses to miRNA KDs remained if 1.2-, 1.5-, or 2-fold

change was applied (data not shown). For this analysis, the miRNA

targets were extracted from the experimentally determined

miRNA-mRNA interactions by the CLASH analysis [49].

Notably, the CLASH study reported that 4.9% of the identified

miRNA-RNA interactions were mapped to pseudogenes [49].

These results provide strong evidence for a miRNA sponge effect

of pseudogene ncRNAs. We provide the five pseudogenes that

were most likely to function as miRNA decoys in Table 1,

including PTENP1, and other candidates in Table S1.

Pseudogene transcription increases the mRNA
abundance of their parental genes

Having demonstrated the positive transcriptional relationship

between pseudogenes and their parents, we next set out to confirm

that parental genes were indeed expressed at higher levels in the

same tissues where more pseudogene ncRNAs were found. First of

all, using FPKM .1 as a simple threshold for calling the presence

of pseudogenes in a tissue, we found that for .70% of cases the

parent was also detected with .1 FPKM in the same tissue in

which a pseudogene was transcribed. Next, we split the 16 tissues

into two groups of eight each by the transcriptional levels of a

pseudogene, and then examined how its parent gene was

differently expressed between the two groups (Fig. 4A). Note that

this splitting was performed for each of the 1,270 pseudogenes

independently. The resulting between-group difference in both

means and variances for all pseudogenes are shown in Figure 4. Q-

Q plot analysis indicated that both the mean differences and

variance differences exhibited a non-normal distribution (Fig. S4).

More interestingly, for the parent-pseudogene pairs with positive

rpg:g, both the means and variances of parental gene expression

were greater in the tissues where pseudogene ncRNA levels were

higher (Fig. 4B,C, red lines). For those pairs of negative rpg:g, the

trends were reversed (Fig. 4B,C, blue lines). These results suggest

that pseudogene transcription may play a role in both the level and

diversity of their parental gene expression, but not to a great

extent. This hypothesis was further supported by the comparison

of gene expression across all 16 tissues (without splitting) for

parents whose corresponding pseudogenes were transcribed at

different levels (Fig. S4).

Pseudogene derived small RNAs and their potential roles
The above studies address the potential roles of pseudogenes as

a novel source of long ncRNAs (lncRNAs), but pseudogene

transcripts can also be used to produce small RNAs, which can

potentially execute a variety of functions [50–53]. In particular, it

has previously been suggested that pseudogene ncRNAs may form

double stranded RNAs (dsRNAs) with cellular mRNAs from their

parental genes, and the dsRNAs can in turn be processed by the

cellular siRNA generation machinery to produce functional small

interference RNAs (siRNAs) [2,15,54]. This has been shown

experimentally in mouse oocytes [22,23], Trypanosoma brucei [18],

and recently in human hepatocellular carcinoma [30]. To explore

this, we analyzed the sequencing data of small RNAs (,200 bp)

from two cell lines, GM12878 and K562, from the ENCODE

project [39,55], and relate sRNA production with gene expression

in these two cell lines, since small RNA-Seq data have not become

available for the 16 normal human tissues used by the Body Map

project. We first compared the overall densities of small RNAs

mapped to pseudogenes and coding genes. The data indicated that

processed pseudogenes exhibited significantly higher sRNA

density than duplicated pseudogenes and coding genes in both

GM12878 and K562 (Fig. 5A; Wilcoxon test, p,2.2e-16;).

Notably, parents of pseudogenes appeared to have greater sRNA

production capacity than the other coding genes.

To investigate the potential functions of pseudogene-derived

sRNAs, we analyzed pseudogenes that produced relatively large

numbers of sRNAs (average .5 sRNAs per kb in the exonic

regions of pseudogenes; information and data about their

transcription in the aforementioned 16 normal human tissues

were not considered here). Two subsets of such pseudogenes were

selected for comparison, based on whether sRNAs were also

detected in the flanking regions (Fig. 5B), with the assumption that

they represent two fundamentally distinct biogenesis/functional

mechanisms (see Method for details). We reasoned that ‘‘group I’’

likely represents pseudogenes that produced sRNAs via dsRNA

intermediates formed either between pseudogene ncRNAs and

parental mRNAs, or in the hairpin loops of pseudogene ncRNAs,

whereas ‘‘group II’’ pseudogenes probably can generate sRNAs

independent of their parents in a manner similar to repeats and

transposons located at heterochromatin regions (Fig. 5B). Inter-

estingly, comparison of data in GM12878 and K562 indicated that

sRNAs from the group I pseudogenes were more likely to be cell

specific than sRNAs from group II (Fisher exact test, p,2.2e-16).

We hypothesized that the parental genes of group I pseudogenes

would be expressed at lower levels than the parents of both group

II pseudogenes and the pseudogenes that did not produce sRNAs

(‘‘Control’’ in Fig. 5), based on previous reports that pseudogene-

derived siRNAs could function as endo-siRNAs and reduce

parental gene expression in mouse oocytes [22,23] and the

assumption that the biogenesis of this group of sRNAs from the

dsRNAs formed between parental mRNAs and pseudogene

ncRNAs would result in sRNA detection in both genes and

pseudogenes. As shown in Fig. 5C, the data are indeed consistent

with this hypothesis; in both GM12878 and K562, the parents of

group I pseudogenes exhibited the lowest expression (Wilcoxon

test, p,0.05 for all comparisons). This trend persisted if the

threshold was changed to .10 sRNA per kb (Fig. 5C), although

smaller numbers of pseudogenes would meet this criterion. While

siRNA biogenesis and functional mechanisms are complex, and

the exact molecular process in human cells remains unclear, we

did observe that 8% and 13% of group I pseudogenes exhibited

evidence of either antisense or both stranded transcription,

respectively. The strand information was inferred as described

above, because neither the small RNA-seq nor the RNA-seq data
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from GM12878 and K562 recorded transcription direction. As

expected, the parents of the antisense transcribed group I

pseudogenes showed further decreased expression (Fig. 5C). In

Table 1, we list the five pseudogenes that were most likely to

produce functional antisense siRNAs, includingyPPM1K [30]. We

should, however, caution that the precursors for sRNAs could be

transcribed distinctly from the lncRNAs detected in the strand-

specific RNA-Seq datasets. In addition, some of these sRNAs

could be derived from the hairpin RNA loops in the pseudogene

ncRNAs, as reported previously [22–24,30], but more studies are

required to address this in the future.

For the small RNAs generated from pseudogenes independently

of their parents (i.e., inferred from sRNA presence beyond the

parent-pseudogene aligned regions; group II in Fig. 5B), we are

interested in their potential involvement in recruiting chromatin

modifiers and mediating epigenetic silencing. This is motivated by

the requirement of piRNAs for repressing transposons [56], the

involvement of endo-siRNAs in repressing long interspersed

nuclear element-1 (LINE-1) activity [57,58], and the facts that

(a) many sRNAs in our dataset were mapped to repetitive elements

in the human genome (data not shown), (b) siRNAs from both

pseudogenes and transposons in plants have been implicated in

RNA-directed DNA methylation, and (c) mammalian ncRNAs

have emerged as key epigenetic regulators [59,60]. Very

interestingly, we found that sRNAs from the group II pseudogenes

(median size 24–27 bp) were 2–6 bp longer than the group I

sRNAs; this difference was significant in both GM12878 and

K562 but a greater difference was seen from K562 data (KS test,

Table 1. Top pseudogene candidates of three different types of predicted functional potentials (ND, not determined). The full lists
can be found in Table S1.

Pseudogene Genomic Location Parental gene Transcribed strand rpg:g Note

A. miRNA decoy

PTENP1 chr9:33673502-33677497 (2) PTEN sense 0.87 Compete with PTEN for miRNA binding [28].

FAM92A1P1 chr15:41455322-41456695 (+) FAM92A1 sense 0.80

MYLKP1 chr3:75377700-75388222 (2) MYLK sense 0.94 Promote cell proliferation [100], but miRNA
involvement unknown.

CROCCP3 chr1:16802411-16817802 (2) CROCC sense 0.70

ABCC6P2 chr16:14914649-14918526 (2) ABCC6 NA 0.50

RP11-321E8 chr7:63929563-63931031 (+) ZNF680 sense 0.39

B. siRNA repressing coding gene

yPPM1K chr4:89179936-89180414 (2) PPM1K antisense ND Target both NEK8 and PPM1K gene and
suppress cell growth [30]. Not annotated by
GENCODE.

ATP8A2P1 chr10:37537046-37604729 (+) ATP8A2 antisense 20.22 KD inhibited cell proliferation [12]

HMGA1P7 chr6:134435733-134436628 (2) HMGA1 antisense 20.25

CNN2P1 chr22:30442265-30443182 (2) CNN2 antisense 20.32

RP11-553K8.3 chr1:198648263-198649162 (2) PEBP1 NA 20.56

MSNP1 chr5:25909612-25911343 (+) MSN sense 20.5 Antisense ncRNA was reported [19]

RP11-159C21.4 chr1:53237865 -53238320(2) RPS13 sense 0.52

C. siRNA mediating H3K9me3 enrichment

MTND4P12 chr5:134262350-134263726(2) MTND4 both ND

RP5-857K21.6 chr1:566454-567996(+) MT-CO1 sense ND

SDHAP2 chr3:195384967-195412775(+) SDHA ND 0.54

FTLP3 chr20:4004564-4005091(+) FTL sense ND

RP11-7G23.4 chr9:45729709-45730417(+) FAM27A ND ND

doi:10.1371/journal.pone.0093972.t001

Figure 4. Pseudogene transcription increases the mean and
variance of parental gene expression. A) A cartoon illustrating the
computational procedure. For each pseudogene, we computed the
means (mh and ml) and variances (Sh and Sl) of its parental gene
expression values in the 8 tissue samples with more pseudogene
transcripts and the 8 with fewer pseudogene transcripts. Distribution of
mean (B) and variance (C) differences for all transcribed pseudogenes,
pseudogenes with positive (rpg:g.0.2) and negative (rpg:g,20.2)
transcriptional correlation with their parents.
doi:10.1371/journal.pone.0093972.g004
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p,0.0002; Fig. S5), providing an empirical support to our

discrimination of the two pseudogene groups. Note that it has

been shown that pseudogenes and repeats derived sRNAs involved

in epigenetic silencing in plants were ,24 bp [24].

We began with a comparison of transcribed vs non-transcribed

pseudogenes with respect to several types of histone modifications,

using the ChIP-Seq and RNA-Seq data only from GM12878 and

K562. Globally, we observed a clear distinction between

transcribed and non-transcribed pseudogenes with respect to

H3K36me3 (Fig. 6A), a histone modification associated with

transcription elongation. This pattern provided strong epigenetic

support for our method to reliably identify transcribed pseudo-

genes, as the H3K36me3 enrichment extended to pseudogene

adjacent regions. Other active chromatin marks, including

H3K4me3, H3K4me1, H3K4me2, H3K9ac and H3K27ac, were

also significantly more enriched in transcribed pseudogenes than

non-transcribed ones (Fig. S6), while the repressive marker

H3K27me3 was depleted, in agreement with results from the

GENCODE study [11]. To our surprise, H3K9me3, a repressive

chromatin mark most often found in transcriptionally inactive

repeats or heterochromatin [61,62], was more abundant in

transcribed pseudogenes than the non-transcribed ones (Fig. S6,

p = 3.7e-05 and 2.4e-08 for GM12878 and K562, respectively).

Furthermore, the extent of H3K9me3 within 15 kb of the

transcription start sites showed a clear enrichment that was

dependent on pseudogene transcription levels (Fig. 6B). The

association of transcribed pseudogenes with H3K9me3 enrich-

ment was not restricted to cancer cell lines, since 9.3%, 7.3% and

4% of the transcribed pseudogenes (FPKM .1) in adipose, liver

and skeletal muscle, respectively, intersected with the H3K9me3

enriched regions determined in a recent study of chromatin states

for multiple human tissues [63].

Figure 5. Pseudogene-derived sRNAs and their relationship to parental gene repression. A) Processed pseudogenes had higher sRNA
read densities than any other annotated genomic elements and randomly chosen genomic regions in both GM12878 and K562 cell lines. B)
Pseudogenes with mapped sRNA reads ($5 reads per kb) were separated into two groups based on the abundance of sRNA reads in the adjacent
non-pseudogene regions (61 kb, orange). Group I was considered to produce sRNA interactively with their parents while group II produced sRNA
independently. Venn diagrams show the data comparison between GM12878 (red) and K562 (green). C) The parental genes of group I pseudogenes
showed significantly lower expression than either those of the pseudogenes without sRNA (control) or those of the group II pseudogenes, in both
GM12878 (red) and K562 (green). The parents of antisense transcribed pseudogenes (.5 sRNA/kb) exhibited even lower expression. The same trends
held when the analysis was carried out for pseudogenes with .10 sRNA/kb. Parents not expressed in the 16 normal tissues (i.e., FPKM = 0) were not
included in these plots.
doi:10.1371/journal.pone.0093972.g005
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In order to address whether H3K9me3 enrichment was related

to pseudogene-derived sRNAs, we compared the H3K9me3 levels

between the two groups of sRNA-producing pseudogenes (Fig. 5B).

As shown in Figure 6, the group II pseudogenes, which likely

produced sRNAs independently from their parents, exhibited a

significantly higher level of H3K9me3 than group I pseudogenes,

as well as those pseudogenes without detectable sRNAs (‘‘Con-

trol’’), in both GM12878 (Fig. 6C,F) and K562 cells (Fig. 6D,G).

This distinction was not seen for H3K27me3 (Fig. 6C,D; green),

indicating that our observation was specific to H3K9me3 and not

due to either overall transcription repression or ChIP-Seq

experimental artifacts. An example is illustrated in Fig. 6E, which

shows broad H3K9me3 enrichment around a region on chromo-

some 5 containing multiple pseudogenes that produced an

extensive number of sRNAs. To further support the idea that

the pseudogene sRNA-related H3K9me3 enrichment was inde-

pendent of the dsRNAs formed with parental mRNAs, we

analyzed unitary pseudogenes, which do not have obvious

paralogous coding genes. We found that unitary pseudogenes

with detectable sRNAs (n = 28) also had increased H3K9me3

levels when compared to those (n = 381) with no sRNAs (p = 6.7e-7

for GM12878 and p = 0.0052 for K562). We hypothesize that

Figure 6. Enrichment of H3K9me3 modification at transcribed pseudogene loci. A) Heatmap of H3K36me3 near the transcription start sites
(TSS) and transcription end sites (TES) of transcribed (bottom) and non-transcribed pseudogenes (top). The color scheme is based on column-based
normalization data in GM12878, whereas each row is a pseudogene. B) Transcription level dependent enrichment of H3K9me3 at transcribed
pseudogenes. Y-axis shows the average number of H3K9me3 ChIP-Seq reads per 500 bp. C) & D) The level of H3K9me3 (red) but not H3K27me3
(green) was significantly higher at group II pseudogenes (Fig. 5) than at group I pseudogenes or at pseudogenes loci producing no sRNAs (‘‘C’’,
controls). The H3K9me3 level at a randomly selected set of LINE (blue) was also plotted as positive controls. Y-axis plots ChIP-Seq reads at
pseudogene bodies, normalized to per 500-bp sequences. E) The densities of H3K36me3, H3K27me3, and H3K9me3 ChIP-Seq reads and sRNA-Seq
reads at a region with multiple pseudogenes derived from a gene encoding NADH dehydrogenase. F–H) The average ChIP-Seq profiles, anchored on
pseudogene centers, of H3K9me3 in GM12878 (F) and in K562 (G) and of SETDB1 in K562 (H) for the three groups of pseudogenes. Y-axes show the
average numbers of ChIP-Seq reads per 100 bp.
doi:10.1371/journal.pone.0093972.g006
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these results suggest pseudogene-derived sRNAs can play an active

role in the establishment of broad but local silencing chromatin

environment for repressing pseudogene transcription, a phenom-

enon that has been documented in yeast and plants [64] (see

Discussion). If so, one would expect similar enrichment of H3K9

methyltransferase (e.g., SETDB1) in the group II pseudogenes.

Using the only SETDB1 ChIP-Seq data currently available (for

K562), we found that the SETDB1 ChIP-Seq signal was indeed

significantly higher at the group II pseudogenes (Fig. 6F). To add

further support to the potential existence of sRNA-mediated

chromatin repression in human cells, we found that LINEs with

more (.5/kb) sRNAs were marked by significantly higher levels of

H3K9me3 than LINEs with hardly any sRNAs (,1/kb) in both

GM12878 and K562 cells (Wilcoxon test, p,2.2e-16). Higher

level of H3K9me3 at the group II pseudogenes, however, is not a

result of more repetitive elements within them. Neither were

repeats (e.g, LINEs, LTRs, and ALUs) enriched at transcribed

pseudogenes (in comparison to adjacent genomic regions; Fig.

S6C), nor was there a higher density of repeats in the group II than

the group I pseudogenes, which were analyzed on either full

pseudogene bodies or with 5-, 10- or 25-kb extensions to the

flanking regions (all p values .0.2, Wilcoxon test).

Evolutionary constraints on transcribed pseudogenes
Our findings suggest that many human pseudogenes are

transcribed and the transcripts exhibit evidence for various

biological activities. It is possible that the human transcriptome

and its regulation are sufficiently robust to tolerate the small

perturbation introduced by pseudogene transcription. If so,

transcribed pseudogenes would not show significantly different

evolutionary constraints compared with non-transcribed ones.

Therefore, we analyzed nucleotide diversity (based on two

population datasets from the HapMap project) and cross-species

conservation (based on 46 way phastcon scores) within pseudo-

genes. The data show that transcribed pseudogenes exhibit

significantly higher evolutionary constraints than non-transcribed

ones, as suggested by the lower degree of polymorphism and

greater phastcon scores (Wilcoxon test, p,0.001, Fig. 7). While

the assessment of sequence conservation in pseudogenes could be

confounded by difficulties in cross-genome alignment and ortholog

assignment, the nucleotide diversity data derived from two distinct

human populations were highly similar and correlated (Fig. S7),

indicating that our result is not a simple consequence of some

genomic sequences that have only recently lost their protein

coding functions. In addition, extremely young pseudogenes, such

as the human specific ones [65,66], would not be called as

transcribed pseudogenes by our method. Therefore, we conclude

that some transcribed pseudogenes experienced evolutionary

constraints and likely have cellular functions, consistent with the

results described above. This conclusion is consistent with similar

finding by the GENCODE group [11] and is in line with a recent

study reporting that some unitary pseudogenes may have lost their

coding potential but retain their ncRNA function [67].

Discussion

The prevalence of pseudogenes is a key feature of the human

genome and other mammalian genomes, but the potential

functional importance remains unclear. In this study, we have

found several thousand pseudogenes transcribed at different levels

across human tissues and cell lines based on RNA-Seq data. Our

detailed characterizations of transcribed pseudogenes demonstrate

that pseudogene ncRNAs share many features with lincRNAs,

including high tissue specificity and low abundance. Our study of

the transcriptional relationship between pseudogenes and protein-

coding genes suggests that pseudogene transcripts could play

important roles in regulating gene expression directly by at least

two distinct mechanisms: small RNA interference or miRNA

competition.

One confounding factor in detecting pseudogene transcription is

the high sequence similarity between pseudogenes and their

coding paralogs. We believe that our approach has reduced the

possibility of mistakenly assigning RNA-Seq reads originated from

coding genes to pseudogenes, but some level of ambiguity due to

sequencing errors or polymorphism, etc., probably remains. The

fraction (,1/3) of human pseudogenes found to be transcription-

ally active in the current study is consistent with previous estimates

[8–12], which supports the reliability of our method. Furthermore,

the enrichment of active histone modifications near our tran-

scribed pseudogenes is good evidence for bone fide pseudogene

transcription, since the regions analyzed for histone modifications

include sequences immediately adjacent to pseudogenes and thus

not shared between pseudogenes and their parents (Fig. S6).

Nevertheless, more computational and experimental approaches

are certainly required to fully address this issue, for example, by

Figure 7. Selection constraints on transcribed pseudogenes. Comparison of nucleotide diversities in human population (A) and cross-species
conservations (B) between non-transcribed (‘n’) and transcribed pseudogenes (‘y’). AluY, a young repeats that emerged recently in primates, was used
as control. For duplicated pseudogenes, the median diversities for transcribed and non-transcribed are 0. 00051 and 0.00054 (p,0.02, Wilcoxon test),
the values for processed pseudogenes are 0.00055 and 0.00064 (p,3e-06, Wilcoxon test).
doi:10.1371/journal.pone.0093972.g007
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the analysis of longer RNA-Seq reads or full-length sequencing

data from single RNA molecules [68], or the usage of a

probabilistic method for resolving ambiguously mapped reads.

Although our approach contains a read-filtering step that was not

used in previous methods [11,12], a direct comparison of these

methods for their performance in identifying transcribed pseudo-

genes is beyond the scope of current study. Nevertheless, we have

identified 493 (56%) of the 876 transcribed pseudogenes annotated

by the GENCODE team [11]; moreover, of the subset (344) based

on the same Body Map data, we found 266 (77%). Those missed

by our method typically had a very small FPKM values. Likewise,

we identified 822 (62%) of the 1,326 pseudogenes that were

actively transcribed in various cancers [12] and present in the

GENCODE pseudogene annotation. In terms of validation, 321 of

our transcribed pseudogenes were included in the RT-PCR-Seq

experiments conducted by the ENCODE project and transcrip-

tion for 268 (83%) was confirmed [11].

We should point out that pseudogenes with sequences identical

to their parents would not have any mapped RNA-Seq reads and

thus would be treated as non-transcribed by our current approach,

even though they may well be transcribed in the tissue samples.

Another caveat of our approach is potential underestimation of

expression levels for certain pseudogenes, because some bona fide

pseudogene-originating reads could be removed. Although further

detailed assessment is needed when new computational algorithms

or experimental technologies for better quantifying pseudogene

expression become available, we believe these factors have not

introduced significant bias to our results. For instance, we

examined the expression levels of 161 pairs of pseudogenes, in

which each pair were derived from the same parental gene but

they had distinct identities to the parent. These pseudogene pairs

exhibited no expression difference in all the 16 tissues except two

(lung and lymph node; paired t-test, multiple test corrected

p,0.05), with larger FPKMs for the pseudogenes that were more

similar to their parents. We also found that pseudogenes with

higher sequence similarity to their parents had lower JS scores and

greater rpg:g values, indicating that young pseudogenes are more

widely transcribed than the old ones, perhaps due to less decay of

their promoters.

Our study has systematically explored the potential functional

activities of transcribed pseudogenes from several perspectives.

Our finding of transcription-dependent H3K9me3 enrichment in

some pseudogenes suggests that pseudogene-derived sRNAs may

play a role in modulating epigenetic repression of pseudogene

transcription, probably by the same molecular mechanism(s)

underlying sRNA-mediated heterochromatin formation [69,70].

While this kind of function has been more extensively studied for

plant pseudogenes and found to involve both RNA-dependent

RNA polymerases (RdRP) and the RNA-directed DNA methyl-

ation (RdDM) pathway [64,71], it has not been determined

whether a similar RdRP-dependent process is also required for

repressing mammalian pseudogenes or retrotransposons. Never-

theless, dsRNAs can potentially be generated from human

pseudogene ncRNAs since a mammalian enzyme with RdRP

activity was identified recently [72,73], and small RNAs derived

from pseudogene ncRNAs with inverted complementary sequenc-

es have been reported [22,23]. In addition, our reanalysis of small

RNA expression data before and after Dicer KD (GEO:

GSE31069) [74] found a reduction of sRNAs for ,80% of the

360 pseudogenes that contained at least one uniquely mapped

sRNA read in the control treatment of a MCF-7 cell line,

including the one shown in Fig. 6E. For the pseudogenes with .5

sRNA reads, all had fewer sRNA reads in Dicer KD. This

observation suggests that the biogenesis of pseudogene-derived

sRNAs may be affected by Dicer in human cells. Note that

mammalian Dicer has previously been implicated in the formation

of centromeric heterochromatin [75,76]. The pseudogene-derived

sRNAs can then potentially suppress pseudogene transcription by

various means [22,51,77,78], such as those described previously

for epigenetic repression in other contexts: promoter-associated

RNAs directing epigenetic silencing complexes to their targets

[79], L1-derived siRNAs suppressing L1 retrotransposition [57],

Xist modulating X chromosome inactivation [80], or piRNA

targeting transposon repression [56]. Although our data cannot

distinguish between these possibilities, our findings suggest that a

feedback loop could be involved in transcriptional silencing of

pseudogenes. Perhaps this is an active repression mechanism that a

host genome uses to suppress pseudogene transcription; conse-

quently, this leads to our observation that pseudogene transcrip-

tion overall occurs at a very low level, whereas low transcription is

needed for the recruitment of epigenetic modifying complexes.

Indeed, in both yeast and plants, the sRNAs and chromatin

structure constitute a feed-forward loop: sRNAs are needed for

establishing specific chromatin modifications, while the distinct

chromatin structure is required for the recruitment of cellular

machinery for sRNA generation [81]. Moreover, we observed that

the pseudogene-derived sRNA mediating repression could also

repress neighboring genes in addition to pseudogenes themselves

(data not shown).

We should point out that high levels of H3K9me3 have also

been observed in transcriptionally active genes, particularly at the

39 exons of zinc finger genes [82], but this enrichment could be

related to the presence of tandemly repeated domains and a

potential role of H3K9me3 in preventing inappropriate recombi-

nation [83]. On this note, we noticed that our group II sRNA-

producing pseudogenes showed slightly higher sequence similarity

to their parents than group I pseudogenes, on average 90% vs 86%

(p = 0.001, Wilcoxon test).

In addition to silencing pseudogenes, pseudogene-derived

ncRNAs could be a good source of endogenous siRNAs that

interfere with the expression of protein-coding genes. We

uncovered evidence for this (Fig. 5), but this has been well

addressed previously [24,27,84] and recently demonstrated for the

human pseudogeneyPPM1K [30].

We were unable to address whether human pseudogene-derived

sRNAs could function as siRNAs to interfere with parental gene

expressions or to mediate epigenetic silencing under normal

physiological conditions, since the necessary sRNA-Seq and

histone modification ChIP-Seq data had not been available for

all the 16 tissues in our current study. It will be interesting to revisit

this critical issue when the relevant data become available for all or

a subset of these tissues, so that data from the same tissues can be

studied in order to reduce biological variations.

Our study indicates that the predominant effect of pseudogene

transcription, however, appears to be related to the increase in the

expression levels and diversity of the parental coding genes.

Approximately 64% of the ,4,000 transcribed pseudogenes

(FPKM .1) exhibited a transcriptional profile that was positively

correlated with that of their parental genes. Furthermore,

pseudogenes with higher correlation were found to have more

predicted miRNA-targeting sites. More importantly, the expres-

sion of parental genes was significantly higher and more variable

in tissue where pseudogene ncRNAs are more abundant. All of

these observations are consistent with previous reports suggesting

that cellular RNAs could serve as miRNA sponges (or ‘‘target

mimicry’’) and regulate the stability of other transcripts [28,85–

88]. The most prominent case is PTENP1, whose transcripts have

been shown by an extensive array of genetic and biochemical

Functional Impact of Pseudogene Transcription

PLOS ONE | www.plosone.org 11 April 2014 | Volume 9 | Issue 4 | e93972



experiments to compete with its parental gene PTEN for several

miRNAs [28]. The focus of our analysis is parental genes, but the

implicated mechanism is applicable to the expression of all coding

paralogs of a transcribed pseudogene. To fully decipher the

intertwined interaction between pseudogene ncRNAs and other

cellular RNAs, we need to extend our analysis using a network-

based approach [89] and to simultaneously consider genes and

pseudogenes in the same family [90] in the future. We should

mention that 39-UTRs are typically not annotated for pseudogenes

because pseudogene detection is primarily based on aligning

protein sequences to the human genome [91], but GENCODE

manual annotation includes 39-UTRs for some pseudogenes.

Inclusion of additional 39 sequences in the prediction of miRNA

binding sites within pseudogenes may further improve our

findings. Finally, our study only addresses the interaction at the

transcription level and thus misses the potential importance of

pseudogenes as miRNA decoys for regulating mRNA translation,

though it has been shown that the majority of human miRNAs

repress their targets by both reducing the level of mRNA

transcripts and curtaining translation [92,93].

In summary, consistent with previous work, our study demon-

strates that pseudogene transcription is genuine and prevalent; its

impact on other cellular RNAs appears complicated and diverse

and in some cases one pseudogene may play multiple molecular

roles. Whether these result passively from transcriptional leakage,

incomplete chromatin silencing, or represent an active process of

nurturing novel ncRNAs certainly will require a more systematic

investigation and experimental verification. Our results, on the

other hand, suggest that pseudogenes with major regulatory roles

are unlikely ubiquitous, since under normal physiological condi-

tions most of the pseudogene ncRNAs are present at much (,20x)

lower levels than their coding counterparts and the majority of

them did not display evidence of strong interaction with their

parents. Nevertheless, perturbation of pseudogene transcription

can affect the homeostasis of gene expression and lead to human

diseases and cancers as previously reported.

Materials and Methods

Data source
Our primary datasets are RNA-Seq data from the Illumina

Body Map 2.0 Project (accession no. E-MTAB-513, http://www.

ebi.ac.uk/arrayexpress), and transcriptomic and epigenomic data

from the ENCODE project (http://genome.ucsc.edu/ENCODE/

) [39]. The former is polyA+ selected mRNA sequencing data

from 16 human tissues generated by Illumina Inc. for public usage;

the paired-end reads were 50 or 75 bases long. A total of 3,775

million reads for all samples and 23.6 million reads on average per

sample were analyzed. The specific ENCODE data used here are

polyA+ RNA-Seq data as well as ChIP-Seq data of eight histone

modifications (H3K27ac, H3K27me3, H3K36me3, H3K4me1,

H3K4me2, H3Kme3, H3K9ac and H3K9me3) from the

lymphoblastoid cell line GM12878. Sequencing data of small

RNAs in two cell lines (GM12878 and K562) were also

downloaded from the ENCODE project. A total of 36.6, 37.4,

and 27.8 million reads for small RNAs derived from whole cell,

cytosol, and nuclei of GM12878 cells, respectively, and corre-

spondingly 12.7, 29.4, and 14.2 million reads for K562 cells were

analyzed. We only present results based on analysis of combined

small RNA reads, but separation of small RNAs by their cellular

localizations yielded similar numbers. The genomic coordinates of

integrated transcription factor binding sites (‘‘wgEncodeRegTfb-

sClustered’’ track in the UCSC Table Browser) were also

downloaded from the ENCODE project. Annotated lincRNAs

and their corresponding expression values were obtained from the

Human LincRNA Catalog described previously [41]. Pseudogenes

were annotated manually and described by the GENCODE team

in a recent report [11], including 8,716 processed pseudogenes,

2,158 duplicated pseudogenes, and 138 unitary pseudogenes. The

original annotation contained 11,216 pseudogenes, but eleven of

them overlapped with lincRNAs and therefore were excluded

from the current study.

Computational pipeline for screening RNA-Seq reads
derived from pseudogenes

We preprocessed the RNA-Seq reads in order to reduce

ambiguity in quantifying pseudogene transcription. This step is

critical because the high sequence similarity shared by a

pseudogene and its parental gene can lead to a great uncertainty

in determining the bona fide origins of short RNA-Seq reads when

both appeared to be equally good candidates. We first aligned all

RNA-Seq reads to the human genome (hg19) and then collected

reads mapped to pseudogene loci. These reads were then

compared to cDNA sequences of human protein coding genes,

extracted from the Ensembl database (http://www.ensembl.org/,

Build 60), using the program Bowtie (version 0.12.7) [40]. Only

reads mapped uniquely to a pseudogene (i.e., with fewer

mismatches to the pseudogene than to any other cDNAs of

annotated genes) were collected as ‘‘pseudogene reads’’. Next, we

edited the original RNA-Seq alignment files from Bowtie and

deleted any entry associated to pseudogene loci if the reads were

not in our list of pseudogene reads. Reads aligned to non-

pseudogene loci were not edited. The modified alignment files

were then used for our subsequent analysis of pseudogene

transcription (Fig. 1A). To evaluate our approach’s capability of

resolving reads, we utilized the program T-coffee (version 9.03)

[94] to align each pseudogene sequence to the corresponding

coding exons of its parent, and then analyzed numbers of RNA-

Seq reads vs sequence identities using a 200-bp window sliding

across the alignment. Noted that all pseudogenes with an

annotated parent (n = 9,459) were included in this analysis.

According to pseudogene identification strategies, the aligned

regions are essentially the ‘‘exons’’ of pseudogenes. A moderate

correlation between read numbers and identities (Pearson

correlation r = 0.202, p,2.2e-16; heart sample) was detected

before the application of our filtering process, but none existed

after filtering (r = 0.02, p = 0.48) (Fig. 1B, the same trend was

observed in other tissue samples), indicating that RNA-Seq reads

mapped to pseudogenes with our method were unlikely to have

originated from parent genes.

The selected RNA-Seq reads for pseudogenes and reads

mapped to the rest of the human genome were then used to

compute expression values of all annotated transcripts by the

program Cufflinks (version 0.9.3) [40]. Human transcript anno-

tation was collected from the Ensembl database. Transcript

abundances for each gene (or the combined gene expression) were

calculated in Fragments Per Kilobase of exon per Million

fragments mapped (FPKM). The expression values for the coding

genes were hardly affected by read filtering (Fig. S1). The read

filtering script, additional data, and other relevant scripts are

available from the authors upon requested.

The read filtering step for computing FPKMs from RNA-seq

data was not applied to either the ChIP-seq or sRNA-seq

alignment data since the alignments of those reads were not be

affected by exon-exon junction and a single and best-matched

location was kept for each of the ChIP-seq reads.
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Measurement of transcriptional tissue specificity
JS (Jensen-Shannon) divergence has been found to be a good

metric for quantifying the tissue specificity of a transcript [95]. We

used the method described previously for computing JS scores of

lincRNAs [41], which basically quantified the similarity between a

transcript’s expression across 16 tissues and a predefined extreme

case in which the transcript was only present in one of the 16

tissues. As this computing resulted in 16 JS scores for each

transcript, we picked the maximal JS score as in the previous study

[41], whereas larger JS scores represent higher tissue specificity.

Transcription correlation coefficient between
pseudogenes and their parents

We computed Spearman correlation coefficient (r) of the 16

tissue FPKMs to determine the relationship between the

transcription profiles of a pseudogene and its parent (rpg:g). As a

control, we computed r by pairing up each pseudogene with a

randomly chosen coding gene. Exclusion from this analysis were

the pseudogenes without parent information from GENCODE or

whose parents had 0 FPKMs in all the 16 tissues. The same

method was applied to compute the correlation between miRNAs

and their putative targets.

Determination of transcriptional strands for
pseudogenes

Strand-specific RNA-Seq data were obtained from a previous

study [46]. The reads from all four samples (GEO: GSE32307)

prepared from both ECC-1 (a human endometrial cancer cell line)

and Universal Human Reference RNA library were combined

and aligned to the human genome using Bowtie [40] and the same

parameters as described [46]. After alignment data were filtered by

our read-filtering pipeline, the number of reads within individual

pseudogene loci was summed and normalized by the pseudogene

length to yield expression values for both sense and antisense

strands independently. Pseudogenes with a non-zero expression

value were defined as sense (or antisense) transcription if the

expression value for the annotated (or the opposite) strand was 10

times greater than the other strand. Those without a 10-fold

distinction were considered as transcribed from both directions,

which were likely overestimated. Among all pseudogenes with

unique reads in the dataset (28% for duplicated and 55% for

processed pseudogenes), the majority (393 and 66% for duplicated;

3122 and 65% for processed) exhibited evidence of sense

transcription, whereas 134 duplicated and 891 processed pseudo-

genes were determined to produce ncRNAs from the antisense

strand. Application of the same rules to coding genes resulted in an

estimated error rate of ,14% when the predicted strands were

compared to the annotated ones, although a slight increase of

FPKM cutoff (0.05) would result in a much smaller error rate

(,5%).

miRNA target prediction
We downloaded data of miRNA sequence families and target

prediction tools (TargetScan V5.0) from the TargetScan web site

(http://www.targetscan.org) [96]. Only the ‘‘exonic’’ sequences of

pseudogenes (or genes) were used for predicting miRNA target

sites with default parameters of TargetScan. We also analyzed the

miRNA-mRNA interactions that were experimentally determined

by the CLASH analysis [49].

Analysis of pseudogenes producing small RNAs
Using the sRNA-seq alignment data for GM12878 and K562

cells, we counted the numbers of sRNA reads within genes or

pseudogenes, and then normalized the counts by gene or

pseudogene lengths to obtain sRNA read densities, as sRNA

reads per kb. The pseudogenes with $5 sRNA reads per kb in

their ‘‘exonic’’ regions (1,549 for GM12878 and 2,092 for K562;

p,0.001, Poisson test) were considered as candidates that could

produce small RNAs. A subset of these candidates were defined as

group I or II sRNA-generating pseudogenes if the sRNA read

densities at their flanking 1 kb regions were = 0 or .5,

respectively (Fig. 5; Table S1); the rest were not analyzed further.

The rationale behind this separation is that pseudogene-derived

sRNAs may have two kinds of very distinct functions: one is to

interact and interfere with the expression of parental genes by the

small RNA inference mechanism while the other is to recruit

chromatin modifiers to repress pseudogenes in a manner similar to

repeat/transposon-derived sRNAs for heterochromatin formation.

For the former (i.e., group I), sequence complementary between

mRNAs and pseudogene ncRNAs is required and the detection of

sRNAs in both parents and pseudogenes but not in their flanking

genomic regions is expected, though the sRNA biogenesis may

arise from hairpin loops in pseudogene ncRNAs alone or between

pseudogene ncRNAs and other complementary transcripts

[22,23,30]. For the latter (i.e., group II), it is unnecessary to

observe sRNAs in the parents, but technically it would be difficult

for us to exclude them as potential origins of pseudogene-derived

siRNAs. Therefore, the assignment of group II is based on the

hypothesis that sRNAs would also be likely to originate from

pseudogene flanking regions, which are not shared between

pseudogenes and their parents, because siRNA-mediated epige-

netic silencing is often extended to a relatively large chromatin

region as shown in plants, yeast and flies [50,51,53].

Characterization of histone modifications at
pseudogenes

In the comparison of transcribed vs non-transcribed pseudo-

genes, we evaluate the difference by considering the number of

mapped ChIP-Seq reads at 62.5kb of pseudogene TSS (Fig. S6).

The significant difference was detected using either transcribed

pseudogenes from all tissues or only those from GM12878 and

K562 cells. In the analysis of the relationship between sRNAs and

H3K27me3 and H3K9me3, we considered ChIP-Seq reads at

pseudogene bodies. The patterns in Figure S6 did not change

significantly when pseudogenes TSSs overlapping with coding

exons or gene TSSs were excluded from the analysis.

Analysis of pseudogene conservation
Sequence conservation was determined by the Phastcon scores

downloaded from the UCSC genome browser; the scores were

derived from sequence comparison of 46 species including

primates, mammals and vertebrates [97]. The conservation score

for a pseudogene was measured as the mean of phastcon scores for

all base pairs within its ‘‘exons.’’ Nucleotide diversity for each

pseudogene locus was derived using the formula below with SNP

data for 161 and 160 individuals from the Yoruba (YRI) and

European (CEU) population in the International HapMap project

(http://www.hapmap.org) [98], respectively.

p~
X

ij

xixjpij

where xiand xj are the respective frequencies of the i-th and j-th

individual sequences from YRI population, pij is the number of

nucleotide differences per nucleotide site between the i-th and j-th

individual sequences in each pseudogene locus [99]. Pseudogenes
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with p = 0 in either YRI or CEU were excluded from our

comparison of transcribed vs non-transcribed pseudogenes, in

order to avoid the potential complication that some recently

emerging pseudogenes have not been fixed in human population.

The data shown in Figure 7 were derived from combined analysis

of YRI and CEU data.

Supporting Information

Figure S1 Most pseudogenes share ,90% sequence
similarity with their parents and our method for
filtering RNA-Seq reads does not affect the quantifica-
tion of parental gene expression. Left, histogram of human

pseudogene distribution shows the number of pseudogenes (y-axis)

at different levels of sequence identity to the parental genes (x-

axis). Right, the FPKM values for the parental genes is not affected

by our method of filtering and remapping of RNA-Seq reads. Data

shown is for brain sample, but results from other tissues yielded the

same pattern.

(PDF)

Figure S2 Tissue specificity of pseudogene transcrip-
tion. A) Three examples of tissue-restrictively transcribed

pseudogenes. B) Distribution of the JS scores computed with all

RNA-Seq reads (yellow, also in Figure 2B) for lincRNAs,

pseudogenes, and genes is very similar to that derived with K of

the total RNA-Seq reads (blue). To generate one half of the data,

we randomly picked one of the two replicates for each tissue. (C).

Distribution of JS scores computed for pseudogenes and randomly

selected genes with matching maximal FPKMs in the 16 tissues.

(PDF)

Figure S3 (A–B) QQ-plot analysis of transcriptional
correlation coefficients. The rpg:g values (y-axis) for tran-

scribed duplicated pseudogenes (A) and processed pseudogenes (B)

were significantly deviated from the rpg:g values (x-axis) calculated

for pairs of each transcribed pseudogenes with a randomly chosen

coding genes. C) Distinct effect on parental gene expression

between sense and antisense pseudogene ncRNAs. The parents of

the antisense transcribed pseudogenes (n = 382, green) exhibited

significantly lower expression than those of sense transcribed

pseudogenes (n = 1538, red) in all the 16 tissues (p,0.05,

Wilcoxon test).

(PDF)

Figure S4 Increased levels and variations of parental
gene expression in relation to pseudogene transcription.
QQ-plot analysis shows that both differences in mean (A) and

variance (B) of the parental gene expression between tissues of high

(mh, Sh) and low (ml, Sl) pseudogene transcription were significantly

deviated from the normal distribution; the Kolmogorov-Smirnov

(KS) statistics are shown at top. The means (C) and variances (D)

of the expression of the parent genes (x-axis) across all 16 human

tissues also increased as the transcription levels of pseudogenes

increased. Color lines plot the distributions of parental genes with

pseudogenes transcribed at different levels, defined by the maximal

FPKMs among the 16 tissues.

(PDF)

Figure S5 Size distribution of small RNAs from the
group I and II pseudogenes. The data were derived from the

sRNA reads that were perfectly matched to pseudogene sequences

without any gap. Data from GM12878 and K562 are plotted in

(A; p,1e-05) and (B; p,0.0002), respectively.

(PDF)

Figure S6 Enrichment of active histone modifications
and depletion of repressive histone modifications at
transcribed pseudogene loci. Comparison of eight histone

modifications between transcribed (‘y’) and non-transcribed (‘n’)

pseudogenes was shown by boxplot analysis. The y-axis shows

numbers of ChIP-Seq reads mapped to +/2 2.5 kb to TSS in

GM12878 (A) and K562 (B) cell lines. C). The average densities of

three types of repeats at pseudogenes transcribed in GM12878

(FPKM.1) in 500-bp bin windows, with no enrichment observed

at pseudogene loci when compared to adjacent genomic regions.

(PDF)

Figure S7 Correlation of the nucleotide diversities
computed from two distinct human populations. For

every pseudogene, we determined its nucleotide diversities in the

YRI or CEU populations and the results show a high correlation

between the data derived from these two populations, indicating

the reduction in diversity is not due to a few genes that recently

become pseudogenes in human. A), duplicated pseudogenes; B),

processed pseudogenes.

(PDF)

Table S1 List of transcribed pseudogenes and their
associated features and groups.

(XLSX)
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