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Abstract: Leishmaniasis is a neglected tropical disease endemic primarily to low- and middle-income countries, for which there has 
been inadequate development of affordable, safe, and efficacious therapies. Clinical manifestations of leishmaniasis range from self- 
healing skin lesions to lethal visceral infection with chances of relapse. Although treatments are available, secondary effects limit their 
use outside the clinic and negatively impact the quality of life of patients in endemic areas. Other non-medicinal treatments, such as 
thermotherapies, are limited to use in patients with cutaneous leishmaniasis but not with visceral infection. Recent studies shed light to 
mechanisms through which Leishmania can persist by hiding in cellular safe havens, even after chemotherapies. This review focuses 
on exploring the cellular niches that Leishmania parasites may be leveraging to persist within the host. Also, the cellular, metabolic, 
and molecular implications of Leishmania infection and how those could be targeted for therapeutic purposes are discussed. Other 
therapies, such as those developed against cancer or for manipulation of the ferroptosis pathway, are proposed as possible treatments 
against leishmaniasis due to their mechanisms of action. In particular, treatments that target hematopoietic stem cells and monocytes, 
which have recently been found to be necessary components to sustain the infection and provide a safe niche for the parasites are 
discussed in this review as potential field-deployable treatments against leishmaniasis. 
Keywords: leishmaniasis, field-deployable therapies, hematopoietic stem cells, monocytes, ferroptosis, repurposing drugs

Introduction
Leishmaniases are chronic, neglected tropical diseases with three major clinical manifestations: cutaneous, mucocutaneous, 
and visceral leishmaniasis. These diseases are all caused by the Leishmania parasite which is endemic to 88 countries 
spanning tropical and subtropical regions.1 Leishmania parasites are spread by the bite of an infected sandfly, and the species 
of parasite transmitted to the host largely determines clinical outcomes.2 Cutaneous leishmaniasis (CL) is characterized by 
papules which progress to ulcerative lesions that may result in permanent disfigurement or scarring.2–6 In the Old World, CL 
is largely caused by L. major and L. tropica, while New World cases typically arise from L. mexicana infections.7 Visceral 
leishmaniasis (VL), the chronic, fatal form of disease primarily manifests through fevers, spleen and liver enlargement, 
weight loss, and multiple hematological changes as parasites spread systemically through the host.4–6,8,9 VL is caused by 
L. donovani and L. infantum in the Old and New World, respectively.7 Individuals with visceral infections may later present 
with post-kala-azar dermal leishmaniasis (PKDL) even after apparent cure. PKDL is characterized by a widespread 
maculopapular rash due to immune responses against parasites persisting in the skin.4,9 A rare form of disease, mucocuta
neous leishmaniasis (MCL), presents in an estimated 1–10% of individuals with prior CL infection, and is primarily caused 
by L. braziliensis infection in the New World.2,7 This particular manifestation progresses as destructive lesions or ulcers of 
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the mucosa, particularly surrounding the nose and mouth and, like CL, may lead to permanent disfigurement.2 While 
cutaneous versus visceral pathologies are largely species-specific, hybrid Leishmania parasite infections and their associated 
clinical manifestations are more arbitrary with complicated clinical portraits and heightened disease severity. In Sri Lanka, 
a hybrid L. donovani parasite is responsible for causing thousands of cases of cutaneous leishmaniasis, although L. donovani 
is typically a visceralizing parasite.10 In Peru and Bolivia, hybrid L. braziliensis strains harboring endosymbiotic Leishmania 
RNA viruses are associated with an increased risk of treatment failure.11 The need to inhibit both Leishmania and its 
associated endosymbionts through antiviral therapies has been considered.12,13 The complexities surrounding atypical 
pathologies and worsened symptomology of hybrid Leishmania parasites raises concerns for current field-deployable 
treatments and emphasizes the importance of therapeutic advancement in the realm of leishmaniases.

Given the severity of the diseases and the barriers for treatment of impoverished patients, especially in rural endemic 
areas of the world, developing and advancing field-deployable treatments to combat leishmaniases is imperative. In the 
present review, field-deployable therapies are defined as those that are largely accessible, easy to administer, and able to 
be deployed in areas of endemicity without the requirement of high costs and recurrent clinic visits. While the spread of 
Leishmania parasites is global, the greatest burden lies in low- and middle-income countries, where both quality of life 
and economic growth are negatively impacted as a result of disease. Therefore, the use of field-deployable therapies, 
novel treatments targeting parasite persistence, and repurposed drugs such as those developed against other diseases, 
where there is more funding and economic interest, is warranted in populations affected by Leishmania. Here, such 
current treatments against leishmaniases are summarized (Figure 1) and possible future perspectives and cellular targets 
for new treatments which have potential as improved field-deployable therapies are explored.

Current Therapies and Field-Deployable Therapies
Chemotherapies
Current treatments for leishmaniasis include various modes of chemotherapy, thermotherapy, and other localized treatments 
(summarized in Table 1). Pentavalent antimonial drugs are the first line of treatment with other chemotherapies available 

Figure 1 Current field deployable treatments for leishmaniasis. Current field deployable therapies include chemotherapies which are the first-line treatment. Other 
mechanical therapies such as cryotherapy and thermotherapy can be operated in the field to treat skin lesions. Finally, future treatments include immunotherapies, 
nanocarriers and repurposing drugs to target the specific cellular niches of the parasite.
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Table 1 Current Treatments Against Leishmaniasis. Administration routes, and therapeutic characteristics including use against which manifestation of leishmaniasis and other diseases, 
if repurposed

Treatment Admin 
Route

Type of 
Therapy

Therapeutic Activity Active 
Against

Benefits Associated 
with Treatment

Complications 
Associated with 
Treatment

Repurposed 
From

Refs

Pentavalent 
antimonials 
(SSG, MA)

IM, 
IV parenteral

Chemotherapy Promotes macrophage 
activity against parasites, 

promotes oxidative stress 

within parasites, inhibits 
trypanothione reductase 

leading to parasite death

VL, CL, 
MCL

Relatively low cost in 
shortened regimens, 

generic versions 

available

Severe side effects, 
toxicity, efficacy against 

MCL is variable, parasite 

resistance, costly, lengthy 
regimen, contraindications 

in multiple patient cohorts

– [3,5,6,14–17,27–30]

L-AmB Parenteral, 

IL, IV

Chemotherapy Binds to parasitic 

ergosterol, promotes 

oxidative stress

VL, CL, 

MCL

Good for use when 

antimonial resistance 

is relevant, less toxic 
than AmB, good for 

use in HIV patients, 

regimen can be short

Lengthy regimen, 

availability, costly

Fungal diseases [3,5,6,14–17,22,28]

Pentamidine Parenteral, 

IM

Chemotherapy Inhibits parasitic 

mitochondrial activity, 
blocks active transport 

function

VL, CL Good for use when 

antimonial resistance 
is relevant

Toxicity, risk of parasite 

resistance, efficacy in 
immunodeficient 

populations varies

Other parasitic 

diseases 
(especially 

trypanosomiasis)

[3,5,6,14,15,17,23,24,28]

Miltefosine Oral Chemotherapy Damages parasite 

mitochondrial membrane, 

decreases cytochrome-c 
oxidase activity, prompts 

apoptotic cell death

VL, CL, 

MCL

Good for use when 

antimonial resistance 

is relevant

Contraindicated during 

pregnancy, relatively 

lengthy regimen, parasite 
resistance, efficacy varies 

(including in 

immunodeficient 
populations)

Cancer [3,5,6,14–17,26,28]

Paromomycin Parenteral, 
topical, IM

Chemotherapy Binds to parasitic 
ribosomes to inhibit 

normal protein synthesis, 

damages membranes

VL, CL, 
limited 

efficacy 

against 
MCL

Low cost, can treat 
co-infections

Toxicity, costly, relatively 
lengthy regimen, risk of 

parasite resistance

Bacterial 
diseases

[3,5,6,14–17,27,28]

(Continued)
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Table 1 (Continued). 

Treatment Admin 
Route

Type of 
Therapy

Therapeutic Activity Active 
Against

Benefits Associated 
with Treatment

Complications 
Associated with 
Treatment

Repurposed 
From

Refs

Antifungal azoles 
(Fluconazole, 
ketoconazole, 

itraconazole)

Oral, topical Chemotherapy Leishmanicidal activity 

against promastigote 
stages, inhibits growth

CL, VL Safe Costly, variable efficacy, 

lengthy regimen

Fungal diseases [3,5,6,14,17–20,28]

Thermotherapy 
(Infrared light, 

lasers, 
radiofrequency 

waves)

Local Thermotherapy Directly targets infection 

site to decrease parasite 

multiplication, collagen 
contraction may play 

a role, enhances 

elimination by 
macrophages

CL No toxicity or severe 

side effects, battery- 

operated, regimen can 
be quick, lesion size 

specific

Costly, burns possible, 

local anesthesia may be 

needed, scarring

– [3,5,14,17,27,28,31–34]

Cryotherapy 
(Liquid 

nitrogen, 

carbon dioxide 
solids)

Local Cryotherapy Directly targets infected 
tissue, exact leishmanicidal 

activity unknown

CL No toxicity or severe 
side effects, regimen 

can be quick, low cost

Painful, burns possible, risk 
of secondary infections in 

treated tissue, risk of 

scarring, risk of 
depigmentation

– [3,5,14,17,27,28,31,35,36,48]

Abbreviations: SSG, Sodium stibogluconate; MA, Meglumine antimonate; L-AmB, Liposomal amphotericin B; IM, intramuscular; IV, intravenous; IL, intralesional.
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including liposomal amphotericin B (L-AmB), pentamidine, miltefosine, paromomycin, and antifungal azole drugs.3,5,6,14–20 

Antimonials currently in use against CL include sodium stibogluconate (SSG) and meglumine antimonate (MA).17 Cure rates 
of up to 100% have been documented with this class of drugs but vary based on geographical location, treatment duration, and 
the species of parasite responsible for infection.17,21 Liposomal amphotericin B is an alternative treatment for VL that has 
demonstrated cure rates ranging from 50% to 85% and is primarily used when antimonial-resistant parasites are the causative 
agents of infection.17,22 Pentamidine, while recommended for only a minimal number of Leishmania species, has led to CL 
cure rates of up to 96%.17,23 Paromomycin is an antibiotic typically used against intestinal parasitic infections but when 
administered to treat CL has reportedly resulted in cure rates of 50–85%.17,24,25 Miltefosine, originally classified as an anti- 
cancer drug, is a safe and effective alternative CL treatment, yet many patients experience disease relapse following treatment 
due to the drug’s inability to achieve complete parasite clearance, or sterile immunity.17,26 Azoles are also used to treat CL, but 
varying treatment outcomes and rates of parasite clearance have been documented given their primary activity as an antifungal 
agent.17

In general, chemotherapies are largely outdated with high levels of toxicity, and many are non-specific for Leishmania 
parasites.3,5,14,15,17,27 Additional barriers related to chemotherapeutics include the emergence of drug-resistant parasites. 
Drug resistance further complicates treatment efficacy, with cases in some regions being completely unresponsive to first- 
line treatments.16,17 Other challenges related to chemotherapeutics include drug costs and accessibility, treatment length 
and adverse effects leading to noncompliance, and variability in host genetics and immune responses.3,5,15,17,20 

Additionally, most drugs like pentavalent antimonials and L-AmB may require numerous injections over the course of 
days to weeks, further hindering treatment feasibility and their implication as field-deployable treatments.28,38 To lower 
toxicity, improve drug tolerability, and reduce drug resistance, combination therapies may be administered. By delivering 
drugs in tandem, the dosage of each individual drug can be decreased, and treatment time may be shortened, which are 
both desirable factors with regard to field-deployable therapies.5 Current combination treatments include amphotericin 
B with miltefosine or paromomycin, and other drugs or immunomodulators in supplement with pentavalent 
antimonials.5,29,30 Further, to overcome negative drug effects, new drugs have been recently developed or repurposed 
against leishmaniasis.39 This includes drugs entering Phase 1 clinical trials such as DNDi-0690, an antitubercular 
nitroimidazole-class drug with potential use against VL.40 Other drug candidates in pre-clinical trials phase are DNDi- 
6174 and DNDi 6148, with the interesting characteristic of being effective against drug-resistant strains of Leishmania.41 

Other promising treatments on the trajectory to clinical trials include oligonucleotides, proteasome inhibitors of the 
triazolopyrimidine class, and drugs of the imadozopyrimidine and pyrazolopyrimidine class.39 While these novel and 
repurposed therapies are currently not approved and largely experimental, they are promising options for the future of 
Leishmania treatments.

Therapeutic Vaccines and Immunotherapies
Therapeutic vaccines are a promising treatment option administered post-exposure to Leishmania parasites. These 
vaccines work to boost the host immune system in an attempt to reduce parasite burden and resolve infection after it 
has already been established; therefore, therapeutic vaccines are a promising form of immunotherapy against leishma
niasis. Historically, therapeutic vaccines have generated higher CL cure rates in trials and has been favored over chemo- 
monotherapies with regard to duration, overall treatment outcomes, and adverse effects, as side effects are primarily local 
to the lesion site.28,42–47 Immunotherapy has been shown to be an effective tool in efficacy trials against PKDL, which is 
known to be difficult to treat with chemotherapies.28,45 A barrier associated with therapeutic vaccines in field-related 
settings, however, is the need for boosters or multiple doses.28 In addition to therapeutic vaccines, immunomodulators, 
like toll-like receptor (TLR) agonists and cytokines have been experimentally tested against leishmaniases, administered 
both alone and in combination with other drugs, yet efficacy must be further explored and cost remains an issue.28,30 In 
general, first- and second-generation therapeutic vaccines are currently undergoing clinical trials, yet they have room for 
advancement and will likely be a vital tool in the future of field-deployable treatments.28
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Thermotherapies and Cryotherapies
A variety of forms of thermotherapies and cryotherapies are also used in the field to treat leishmaniasis. Thermotherapies 
can be administered in the field with battery-operated machines delivering heat in the form of infrared light, lasers, hot 
water soaks, or radiofrequencies directly applied to lesions to slow growth and eradicate parasites.27,31–34 These therapies 
have been used for decades in various settings and in some cases, only require one session for cure.32 Carbon dioxide 
lasers are another form of heat therapy administered directly at the site of infection requiring minimal treatment sessions, 
emphasizing cost-effectiveness and favorability in the field.27 Thermotherapies are safe with minimal off-target effects 
and are favored for use in patients with contraindications to other drugs and in regions where healthcare infrastructure is 
not easily accessible.27 Cryotherapy is also used to treat cutaneous leishmaniasis lesions by direct application of liquid 
nitrogen or, in resource-limited settings, carbon dioxide solids at temperatures lethal to parasites.31,35,36,48 While these 
therapies have been deemed safe and effective with few side effects, cure rates vary based on a multitude of factors such 
as parasite species and lesion size. With these limitations in mind, combination therapies with chemotherapeutics may 
still be recommended, but these methods alone are especially favorable for patients who cannot receive traditional 
chemotherapies such as pregnant or immunosuppressed patients.31,35,37 In summary, the lack of sterile immunity and 
complete parasite clearance achieved following administration of current treatments emphasizes the need for new 
developments in the realm of field-based therapies.

Parasite clearance or sterile immunity may be desirable outcomes following treatment for leishmaniasis, yet current 
therapies are incapable of achieving this aim due to inadequate effectiveness or penetration. Future therapies should aim 
to reach this threshold because latent infections may lead to later reactivation and further clinical complications, as in the 
case of PKDL and MCL. These cases are responsible for continued parasite transmission and therefore promote disease 
reemergence and are considered a threat to leishmaniasis elimination in many regions.49 Likewise, the lack of parasite 
clearance following treatment increases the risk of parasite transmission in endemic and nonendemic regions via other 
modes such as blood transfusions and organ transplants.50–52 Barriers in achieving sterile immunity and mechanisms in 
which Leishmania may evade existing treatments are therefore important to discuss when considering future directions of 
Leishmania therapies.

Roadblocks to Sterile Immunity – Leishmania Refuges in the Body with 
Potential for Latent Infection
One challenge field-deployable therapies must face is the array of bodily sites and cell types which Leishmania spp. can 
reside in. This flexibility may contribute to treatment failure, latent infection, and relapse infections in some patients as 
some sites are immune-permissive or may have less drug accessibility. Furthermore, application of subcurative drug 
doses and drug resistance of the parasite may raise the likelihood of latent Leishmania infection. While Leishmania has 
been reported to asymptomatically colonize several unusual areas of the body - including skeletal muscle, female 
urogenital tract, and mammary glands,53–56 atypical symptomatic leishmaniasis has also been reported in the eye,57 

central nervous system,58–60 cartilage,61,62 testes,56,63 and placenta.64–67 Most notably, VL has been well characterized for 
its ability to infect hematopoietic stem cells (HSCs) of the bone marrow.68,69 Evidence of Leishmania colonization at 
these sites is significant as it supports the possibility of these sites as potential refuges for latent infection. Therefore, 
current and future field-deployable treatments against leishmaniases should aim to clear asymptomatic reservoirs of 
Leishmania throughout the entire body to guarantee sterile immunity and prevent reinfection and disease transmission.

Re-Purposing Therapies for Use Against Cellular Hosts of Leishmania
While many therapies have been investigated for treatment of leishmaniases, future treatments could be improved by 
targeting specific cell types which host Leishmania infection. Therefore, it is necessary to understand the characteristics 
of these cellular permissive hosts and explore the phenotype and microenvironment of such susceptible cells to identify 
mechanisms to directly target them. Here, the possibility of repurposing drugs for cellular targeting against leishmaniasis 
is discussed.

https://doi.org/10.2147/RRTM.S392606                                                                                                                                                                                                                                

DovePress                                                                                                                                 

Research and Reports in Tropical Medicine 2023:14 66

Pacheco-Fernandez et al                                                                                                                                           Dovepress

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


As discussed previously, first-line treatments against leishmaniasis are chemotherapeutic agents originally developed 
to treat different pathologies and later found to possess anti-parasitic properties. This approach is particularly beneficial 
in the field of the neglected tropical diseases, where drug repurposing can improve the treatment’s availability, despite the 
lack of financial incentive for new drug discovery.70 Examples of such repurposed drugs include both amphotericin B and 
azole drugs, discovered as antifungals with the ability to generate instability in cell membranes containing 
ergosterols.71,72 Decades later, both drugs were observed to have leishmanicidal effects due to the ergosterol content 
in Leishmania membranes.73–75 Similarly, miltefosine, a drug advanced to clinical trials targeting breast cancer and other 
malignancies,76 was found to have leishmanicidal potential which led to the approval of a topical miltefosine 
formulation.77 While the use of miltefosine against breast cancer did not prosper due to its secondary effects, it was 
approved in 2013 for the treatment of both VL and CL.77,78 Further, drug repurposing has been used by Bustamante et al 
to perform pharmacokinetic simulations between approved drugs and parasite proteins with homology to the known 
targets of such drugs.79 The group succeeded in finding 33 drugs that could potentially be used against leishmaniasis, 
with two drugs, rifabutin and pherphenazine, even displaying anti-leishmanial activity in vitro.79 Further in silico analysis 
may continue yielding older drugs for use against leishmaniasis. With greater understanding of the mechanisms aiding 
Leishmania survival and persistence, currently studied therapies can be matched to specific mechanisms and repurposed 
for use in leishmaniasis cases. However, due to high costs of advanced treatments, some alternatives proposed here are 
far from clinical and especially field-based use against leishmaniasis. Nevertheless, it is relevant to incorporate these 
experimental approaches in the pursuit of treating leishmaniases, with a particular interest going forward on targeting 
safe niches for Leishmania that facilitate persistence of the disease.

Hematopoietic Stem Cells (HSCs)
Immune Mechanisms in the BM and HSCs
The interplay between HSCs and the parasite is a constant fight in VL. On the one hand, HSCs can phagocytose L. infantum 
and produce pro-inflammatory cytokines such as TNF-α in response to infection.80 On the other hand, hematopoiesis- 
sustaining HSCs can serve as safe niches for L. donovani, protecting the parasite from chemotherapy.81 The relationship 
between hematopoiesis and VL has been long accepted, with a number of hematological issues arising in human VL 
patients caused by L. donovani infection.81 Experimental results show that L. donovani modulates host hematopoietic 
activity to allow its own survival and replication.82,83 In healthy mice, most long term HSCs (LT-HSCs) are quiescent, but 
after L. donovani infection there is an accumulation of CD4+ T-cells which, in response to TNF-α present in the BM 
environment, induces their production of IFN-γ.82 As recently described, a BM immune environment with a higher 
proportion of IFN-γ- and IL-17-producing effector T-cells correlates with low parasitic load, while greater FoxP3+ IL-10- 
producing cells and TGF-β levels are related to higher parasitic loads.84 Such immune balance is delicate as, despite IFN- γ 
being necessary for parasitic control in VL,85 it also induces LT-HSCs to enter the cell cycle, losing quiescence and causing 
the accumulation of hematological progenitor cells which undergo exhaustion after chronic stimulation.82 On the other 
hand, this excessive regulatory response can also undermine the health of the patient. As observed in VL patients, the 
accumulation of IL-10 producing T-regs in the BM inhibits T-cell activity,86 and has been related to PKDL development and 
resistance to sodium antimony gluconate (SAG) treatment.87,88 Furthermore, chemotherapy itself generates changes in the 
immune environment. CD8+CD25+Foxp3+ T cells frequency augments in all tissues, including the BM, of L. infantum- 
infected dogs relative to healthy ones, yet following chemotherapeutic treatments, cell populations returned to baseline 
levels.89 Although in the absence of treatment, presence of IL-10, TGF- β-producing CD4+ Tregs have been shown to 
exacerbate L. donovani susceptibility.89,90 Therefore, while immunotherapy against VL has been explored before,91 future 
therapies targeting the elimination of the parasites hiding in the HSCs will require fine modulation of the immune response 
in the BM specifically to promote parasitic control without risking hematopoietic balance.

Several reports of the presence of L. donovani in the BM of VL patients show that the BM is a frequent parasite 
niche.92–96 In VL infection models, both L. infantum and L. donovani show preferential infection of LT-HSCs over short 
term HSCs (ST-HSCs).97 Further, in the Frizzled6 (Fzd6) deficient VL mouse model in which HSC expansion is 
dampened, a reduction in parasitic burden during the chronic phase of the L. donovani infection has been seen.98 

Research and Reports in Tropical Medicine 2023:14                                                                          https://doi.org/10.2147/RRTM.S392606                                                                                                                                                                                                                       

DovePress                                                                                                                          
67

Dovepress                                                                                                                                           Pacheco-Fernandez et al

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Additionally, Leishmania parasites may leverage LT-HSCs as niches of protection against chemotherapies. An experi
ment showed that after treatment with paromomycin, L. infantum disappeared from almost all tissues of the body except 
HSCs, where it hid in very low numbers. Three weeks after treatment cessation, the hiding parasites were then able to 
reinitiate HSC infection.97 Moreover, LT-HSCs were shown to be safer niches for both L. infantum and L. donovani than 
BM-derived macrophages after ex vivo treatment with paromomycin, miltefosine and SSG.97 Therefore, these results 
demonstrate how LT-HSCs niches are responsible for infection persistence in VL. Interestingly, the authors characterized 
a specific transcriptional profile in the LT-HSCs and found a reduction of Nos2 expression meaning that, although healthy 
LT-HSCs balance expression of nitric oxide (NO) and reactive oxygen species (ROS), infected LT-HSCs downregulate 
this mechanism to permit a safer space for the parasite.97 Although more research must be completed with regard to the 
specific biology and interaction of Leishmania with LT-HSCs, knowing the phenotype of this specific niche may facilitate 
the development of future therapies.

Leishmania infection also increases the generation of progenitor cells of the myeloid lineage which further serve as 
cellular hosts for the parasites.99 In a murine model of chronic VL, L. donovani infection caused the expansion of HSC 
and myeloid progenitor cells. The progeny of such cells were Ly6Chi/int monocytes with a regulatory phenotype, 
characterized by IL-10+ and arginase1+, which allow the persistence and proliferation of the parasite.83 Accordingly, 
in murine CL, it was observed that infection with the persistent strain L. major Seidman led to the recruitment of myeloid 
cells with a regulatory profile with lower levels of Type I and Type II interferons into the lesion site and the spleen. 
Moreover, the enhanced cell influx was sustained by the increase of HSCs with a myeloid-biased profile in the BM, 
compared to the infection with a self-healing inducing parasite.98 Therefore, the mechanism of susceptibility and 
persistence of VL in the BM include inflammatory immune response disruption, generation of immune-privileged 
cellular hosts, and generation of monocytic cellular hosts. Future leishmaniasis therapies that aim to cease reactivation 
of infection should therefore target the LT-HSCs.

Perspectives in Therapies Against Leishmania Infection in HSCs
The potential chemotherapeutic intervention in the BM immune ecosystem may help to eliminate parasites, although 
there is a remaining risk of disrupting immune balance and causing BM-HSC exhaustion with detrimental patient 
outcomes. Previously described findings could suggest that inducing ROS and NO by HSCs may favor Leishmania 
elimination.97 Nevertheless, studies of other diseases including leukemia and diabetes show that ROS dysregulation in 
the BM plays a role in both disease pathogenesis and the dysfunction of BM cells and hematopoiesis.100–103 Therefore, 
directly increasing the levels of NO and other oxygen species could be detrimental for the leishmaniasis patient, rather 
than therapeutic. Nevertheless, REDOX-reactive materials have been used to generate nanocarriers that deliver ther
apeutic drugs to cells depending on their ROS production, particularly against cancer.104,105 In settings with VL cases, 
nanocarrier therapies could be used to deliver drugs directly to infected HSCs, also reducing the rates of drug resistance 
and preventing parasites from reinitiating the infection.

Drug delivery systems are becoming desirable in the treatment of multiple diseases of the bone and BM including 
multiple myeloma, hematopoietic dysfunction, rheumatoid arthritis, bone metastases, and osteoporosis.106,107 

Conventional drug therapy requires the administration of high doses of drugs in which only a small portion reaches 
the BM, yet these doses are associated with adverse side effects.108 Therefore, the design of drug delivery systems has 
been widely explored and reviewed.106,108,109 Liposomes and chimeric nanoparticles have been shown to be taken up by 
the BM.108 Therefore, in Leishmania infection, such technologies could be applied to reduce dosages and increase organ 
specificity.14,110 In that sense, liposome carriers, whose pharmacokinetics can be controlled through carrier surface 
modifications, have been designed to target the BM, examples have been listed in Table 2. Furthermore, the liposomal 
formulation of amphotericin B (Ambisome®) has significantly reduced the toxic effects of the conventional non- 
liposomal formulation (amphotericin B deoxycholate).111 Hence, the use of liposomal nanocarrier formulations is 
a plausible next step in the Leishmania drug development.
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Table 2 Future Directions of Drugs for Leishmaniasis. Summary of Future Therapies That Could Be Repurposed for Their Use Against Leishmaniasis, the Disease for Which It Was 
Designed, Their State of Development and Testing Against Such Disease and Against Leishmaniasis, Mechanism of Action and Their Potential to Be Beneficial to Different Types of 
Leishmaniasis

Drug Tested in Other Diseases State of Testing in 
Other Diseases

Drug Type Biological Impact 
in Leishmaniasis

Beneficial to State of 
Testing for 
Leishmaniases

Refs

Rifabutin HIV+ Tuberculosis FDA Approved RNA Polymerase inhibitor for 

Gram + bacteria, Leishmanicidal

Leishmanicidal effect CL/MCL 

(L. braziliensis, 
L. panamensis)

in silico, in vitro [79]

Perphenazine Schizophrenia, severe nauseua, vomiting FDA Approved Blocks Dopamine 2 Receptors, 

Leishmanicidal

Leishmanicidal effect CL/MCL 

(L. braziliensis, 
L. panamensis)

in silico, in vitro [79]

31 other 
candidate 

drugs

Multiple FDA Approved Potentially Leishmanicidal Potentially 
Leishmanicidal

CL/MCL 
(L. braziliensis)

in silico [79]

Liposome, 

Chimeric 

nanoparticles 
for drug 

delivery

– Tested in mice, 

rabbits, and rhesus 

monkeys

Drug vehicle to target ligand cells Organ-specific drug 

delivery

VL – [108]

RS-504393 – – CCR2 antagonist Inhibit iMOs 

migration

VL in vivo in mouse [112]

Ibrutinib Mantle cell lymphoma (MCL), chronic 

lymphocytic leukemia (CLL), 

Waldenstrom’s macroglobulinemia 
(WM), marginal zone lymphoma, and 

chronic graft-versus-host disease in allo- 

HCT.

FDA Approved ITK/IBK inhibitor Inhibit iMOs 

migration

VL in vivo in mouse [113]

CCR2 siRNA 

liposome

Cancer Tested in mice CCR2 silencer Inhibit iMOs 

migration

VL – [114]

Anti-CCR2 

neutralizing 
antibodies

Cancer Tested in mice CCR2 antagonist Inhibit iMOs 

migration

VL – [114]

(Continued)
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Table 2 (Continued). 

Drug Tested in Other Diseases State of Testing in 
Other Diseases

Drug Type Biological Impact 
in Leishmaniasis

Beneficial to State of 
Testing for 
Leishmaniases

Refs

PF-04136309 Metastatic pancreatic ductal 
adenocarcinoma, knee osteoarthritis

Phase 2 Clinical Trial CCR2 antagonist Inhibit iMOs 
migration

VL – [114]

Enalapril Hypertension FDA Approved, other 
applications being 

explored

ACE inhibitor Reduce Ang-II 
hormone, reduce 

HSC proliferation, 

less iMOs 
infiltration, 

immunomodulation

CL/MCL 
(L. braziliensis)

in vitro [115–117]

(Cpd9) (R)- 

2-amino- 

6-borono- 
2-(2-(piperidin- 

1-yl) ethyl) 

hexanoic acid

Non-small cell lung cancer Tested in mice Arginase-1 inhibitor Inhibit Arginase-1 (a 

competitor of 

iNOS), 
immunomodulation

CL, VL – [118]

EP2 (AH6809) 

and EP4 
(AH23848)

Fibrosarcoma, melanoma Tested in mice PGE2 Antagonist Blocks NF-κB 

repression, 
improves IFN-γ 
response

CL, VL – [119]

NSC 74859 Cancer Tested in mice STAT3 inhibitor Stop 

immunosuppression 

from MDSC, 
promote T cell 

proliferation

CL, VL – [120]

JSI-124 

(cucurbitacin I)

V-src transformed fibrosarcoma, CT26 

colon adenocarcinoma

Tested in mice JAK2/STAT3 inhibitor Stop 

immunosuppression 
from MDSCs, 

promote mature DC 

differentiation

CL, VL – [121]
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Nanocarriers 

specific to M2 

macrophages

Cancer Tested in mice Drug vehicle to MR+ cells Immunomodulation 

of M2 macrophages 

which overexpress 
MR

CL, VL – [122,123]

Mannosylated 
siRNA carriers

Colorectal Cancer Tested in mice siRNA to MR+ cells Immunomodulation 
of M2 macrophages 

which overexpress 

MR

CL, VL [124]

Nano- 

deformable 
liposomes with 

SSG gel

– – Leishmanicidal Leishmanicidal effect CL (L. tropica) in vivo in mouse [125]

Meglumine 

antimoniate in 

silver 
nanoparticle 

(AgNP-PVP- 

MA)

– – Leishmanicidal Leishmanicidal effect CL 

(L. amazonensis)
in vitro [126]

Potential 

Ferroptosis 
inducers, 

siRNAs

Multiple Gene-level studies in 

mice

GPX4 downregulation, ascorbate 

upregulation, Iron transporter 
upregulation (DMT-1, FPN-1), 

prominin2 suppression, NFS-1, 

inhibition, inhibition of system Xc 
—,

Leads to ferroptosis CL, VL – [127–136]

1,2-dioxolane 
compound

Cancer In vitro Ferrous molecule oxidizer Leads to ferroptosis CL, VL – [137]

Withaferin A Neuroblastoma Tested in mice Inhibit Ubq ligase, NRF2 activator, 
GPX4 inhibitor

Leads to ferroptosis CL, VL – [202]
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Monocytes
The proliferation of HSCs in response to infection generates more host cells for the parasite in the form of monocytes. 
Monocytes are circulating myeloid cells derived from HSCs and represent an intermediate state before becoming 
macrophages or certain types of DCs.139 Although both macrophages and DCs have been widely reported to be infected 
by Leishmania, macrophages are considered to be the main cells housing Leishmania replication.140–142 Nevertheless, 
much remains to be explored for their common ancestor. In this section, the characteristics of monocyte and macrophage 
hosts, as well as possible therapies targeting such niches are explored.

Migration of Monocytes in Anti-Leishmania Therapies
Monocytes are more than just transition cells; they delineate the interactions between host responses and the parasite by 
shaping immunity against disease.143 In leishmaniasis, inflammatory monocytes (iMOs) have been shown to provide safe 
environments for parasite replication in both L. donovani and L. major infection models.144,145 Particularly, the influx of 
iMOs to the liver and spleen seems to be detrimental during experimental VL. In murine infection with L. donovani, 
migration of iMOs into the liver and spleen can be reduced with the use of the drugs RS-504393, or ibrutinib (Table 2). 
This resulted in a reduced parasitic burden in the liver and spleen.112,113 The activity of such agents also impacted 
immune regulation. The use of RS-504393 resulted in no granuloma formation and the decrease of IFN-γ IL-10 double- 
producer CD4+ T cells and total CD4+ T cells.112 In the case of ibrutinib administration, there were increases in 
granuloma formation, IFN-γ and IL-4 producing NK cells, as well as the levels of protective cytokines such as IFN-γ, 
TNF-α, IL-4, and IL-13.113

Interestingly, CL studies show that monocyte migration is beneficial for the host, as monocytes tend to migrate to the 
lesion site rather than to the visceral organs. In L. major murine infection, CCR2 and platelet activation are responsible 
for Ly6C+ monocytes reaching the lesion site where they can efficiently participate in parasite elimination.146 Moreover, 
CCR2 favors DC migration to the draining lymph nodes where the lack of such chemokine receptor leads to a Th2-biased 
immune phenotype, providing a permissive environment for L. major.147 However, such responses differ depending on 
the infection route and mouse strain.148 Therefore, targeting monocytic migration through CCR2 inhibition treatments 
may be beneficial against L. donovani infection, but not against L. major infection. Multiple approaches to inhibit 
monocytic migration by targeting CCR2 have been tested against different cancer types (Table 2), as the monocytes can 
be detrimental to the patients of different malignancies.114 These already existing anti-cancer experimental therapies have 
not been tested against VL, but could lead to favorable results as observed in the cancer studies and have potential in the 
realm of field-deployable leishmaniasis treatments.

Monocyte Immune Balance
Besides iMOs migration, the phenotype resulting from the interaction between iMOs and the parasite highlights the role 
of iMOs during infection. For example, among other immune-modulatory mechanisms,149–151 L. donovani is capable of 
inhibiting acidification and superoxide production in the parasitophorous vacuole of iMOs, which then provides 
a permissive environment for the parasite.144 In L. donovani murine infection, the balance of inducible nitric oxide 
synthase (iNOS) and arginase-1 expression by iMOs correlates with the increase or decrease of parasitic burden in 
visceral organs.152,153 In the spleen, the arginase-1/iNOS ratio increases at 30 days post-infection (d.p.i.) while the 
infection becomes progressive. At the same time, the arginase-1/iNOS ratio diminishes in the liver as the infection starts 
resolving112 These findings correspond to observations in human patients diagnosed with VL, in which monocytes 
obtained from peripheral blood display an anti-inflammatory phenotype characterized by low levels of IL-1β and IL-6, as 
well as a reduction in phagocytosis capacity and production of ROS.154

Monocyte responses are dependent on the Leishmania strain infecting them, and this in turn seems to influence or 
relate to disease manifestation. Ex vivo infection of human monocytes with an L. infantum, strain causative of severe VL, 
induced the downmodulation of the immune response characterized by reduced TLR2, TLR9, and HLA-DR expression, 
and a lower TNF-α/IL-10 ratio. On the other hand, infection with L. braziliensis, causative of mild CL, has not only 
shown increased expression of the same receptor and the TNF-α/IL-10 ratio, but also better controls infection by 
reducing parasite counts by 100-fold.155 In the case of murine L. major infection, monocytes displayed altered maturation 
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and became safe hosts for the parasite; yet, after a second inoculation, monocytes exhibited a stronger anti-parasitic 
response. While L. major inhibited monocyte maturation into a DC phenotype in secondary infections, monocytes were 
still able to eliminate parasites in an IFN-γ- and iNOS-dependent manner.145 Similarly, monocytes could eliminate the 
parasites more efficiently when they were not differentiated into macrophages. Murine infections with L. major generate 
monocytes with myeloid-derived suppressor cells (MDSCs) (Gr1hiCD11bhiF4/80int). When MDSCs were exposed to 
IFN-γ and IL-4, MDSCs increased their NO production, hence ramping up their killing capacity. Interestingly, when 
differentiation from MDSCs into macrophages was chemically induced, there was an increase in lesion sites and parasitic 
burden, showing that monocytes can eliminate the parasite, even when not fully matured, if they can produce NO.156 

Therefore, immunomodulatory therapies could improve the monocytic capacity of eliminating parasites in both VL and 
CL manifestations.

The Interplay of Monocytes and HSCs: Therapeutic Potential
NO not only has a potent anti-parasitic effect, but also shapes the microenvironment of the infection site by preventing 
monocyte recruitment from the bloodstream and therefore inhibiting Leishmania from reaching potential host cells.157,158 

As discussed previously, HSCs favor Leishmania infection by generating more monocytes that serve as host cells. Hence, 
HSCs and monocytes play an interconnecting role in sustaining Leishmania survival and proliferation. The interplay 
between these two cell types is similar to cancer scenarios in which HSCs support the generation and consequent 
accumulation of monocytes in the tumor, and when exposed to the microenvironment, gain a regulatory phenotype.114 In 
a murine model of lung cancer, the drug enalapril reduced the levels of the hormone responsible for amplifying HSCs and 
HSC-derived myeloid progenitors and increasing monocytes and macrophages in the lung.115 Enalapril (Table 2) is an 
FDA-approved drug commonly used for the treatment of hypertension.116 These results have been extrapolated to the 
treatment of leishmaniasis. The in vitro administration of enalapril to murine macrophages infected with L. braziliensis 
increased NO, IFN-γ, IL-12 and TNF-α production by macrophages while reducing the levels of IL-10.117 The 
hypothetical scenario where enalapril favors both reducing the permissive environment and limiting the expansion of 
the permissive niches would be beneficial in the treatment of leishmaniasis and the prevention of relapse. More 
importantly, the use of a drug available in more than 100 countries worldwide such as enalapril159 would be an ideal 
and affordable treatment to be deployed in the field in Leishmania-endemic areas. It is important to keep in mind that the 
profile and activation of iMOs differ among Leishmania species and mouse strain,160 so further therapeutic target studies 
must be specifically designed against different clinical manifestations of leishmaniasis. Still, immunomodulatory 
therapies directly targeting iMOs could facilitate the immune phenotype necessary to eliminate intracellular parasites.

Reprogramming Monocytes: Lessons from Cancer
In leishmaniasis, the parasite can reshape the immune activation of monocytes toward a regulatory profile, similar to that 
of M2 macrophages.161 In cancer, the tumor microenvironment reprograms monocytes toward regulatory phenotypes, 
preventing T-cell cytotoxicity and the recruitment of T-regs that allow tumor growth, metastasis, and immune evasion. 
However, exposing monocytes in vitro to IFN-γ or IFN-α activates tumoricidal activity by phagocytosis, cytokine- 
mediated killing, and antibody-dependent cytotoxicity.114 In summary, both cancer and Leishmania infections share the 
need for monocytes with an effector profile to favor the host and control disease. In a mouse model of non-small cell lung 
cancer, suppression of arginase-1 activity, an enzymatic competitor of iNOS, restored IFN-γ and IL-2 production by 
splenocytes and the cytotoxic phenotype of CD8+ T cells.118 This immune profile is beneficial to fight Leishmania 
infections,162 so it is possible to hypothesize that arginase-1 suppression could be a therapeutic target. An additional 
mechanism to reprogram monocyte phenotypes is by targeting prostaglandin E2 (PGE2).119 Downstream, PGE2 controls 
p50 NF-KB accumulation and translocation, and diverts signaling in response to IFN-γ. The administration of a PGE2 
agonist to MDSCs with monocytic profiles reshaped this cascade and restored IFN-γ-mediated NO production of 
monocytes in tumor bearing mice.119 Similarly, the pharmacological inhibition of STAT3 activation reduced the 
immunosuppressive characteristics of suppressor monocytes.120,121,156 We speculate that the use of immune modulator 
compounds, such as the examples presented above (Table 2), could skew monocytic profiles in leishmaniasis towards 
a less permissive phenotype.
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Macrophages
Macrophages compound a heterogeneous population of cells derived from monocyte differentiation and have been 
widely accepted as the main permissive hosts for Leishmania.140,141,163 As for monocytes, the phenotype of macrophages 
is determinant on their role as effector anti-leishmanial cells or as permissive hosts.164–166 Therefore, the use of 
immunotherapies is a promising approach to tilt immune balance towards the macrophage effector phenotype, some of 
which are shared with the monocyte-targeting therapies, a topic which has been recently reviewed in more depth.167 

Next, examples are provided of how macrophages could be targeted with and without immunomodulation.
Macrophages can be targeted by loading drugs into specific delivery systems (Table 2), such as the previously 

mentioned nano-carriers that have shown promising results in the development of therapies against leishmaniasis.122 In 
the persistent CL model, it was demonstrated that L. major Siedman preferably infects M2 dermal macrophages with 
high expression of the mannose receptor (MR). Such strategies of immune evasion can keep the parasite protected inside 
the M2-macrophage from an environment rich in IFN-γ and TNF-α.141 In cancer research specifically, MR is commonly 
overexpressed; therefore, many nano-sized carriers have been developed to target MR+ cells.123 MR nano-carriers were 
designed to be covered by multiple MR-ligands on their surface to allow binding to MR+ cells. Once captured by their 
final target, nano-carriers can work both as drug and antigen delivery systems to antigen presenting cells.123 The clinical 
applications of MR-directed carriers could be expanded to Leishmania treatment to deliver drugs already in use to 
improve solubility and specificity, therefore reducing adverse effects of chemotherapies.123,168 Mannosylated carriers can 
also guide plasmids and siRNA for delivering gene therapy, which could be used to manipulate immune response within 
the lesion site.124 Daret al have recently developed a nano-deformable liposomes (NDLs) system to deliver SSG in a gel- 
form administration. The advantages of NDLs include 10-fold better retention of SSG in the deeper layers of the skin in 
an ex vivo model, compared to regular SSG. NDLs also showed effective anti-leishmanial activity in an in vitro model of 
L. infantum-infected macrophages.125

Meglumine antimoniate (Glucantime®) has also been successfully loaded to a silver nanoparticle (AgNP-PVP-MA) and its 
effect was tested in an in vitro model of macrophages infected with L. amazonensis. The administration of AgNP-PVP-MA led 
to a higher production of NO, TNF-α and IL-6 than that of infected macrophages treated with amphotericin B.126 More 
importantly, these silver nanoparticles reduced the viability of promastigotes, achieving the two objectives of directly targeting 
the parasite while modulating the immune response to benefit the patient. Therefore, the development of nano-delivery 
systems could improve efficacy and safety of current anti-leishmanial drugs.

Overall, the identification of cellular hiding niches, such as HSCs and the main cellular host, monocytes/macro
phages, allowed the characterization of mechanisms and phenotypes related to susceptibility. Therefore, we propose that 
future therapies target such pathways (Figure 2) for therapies that completely eradicate the parasite from the host.

Ferroptosis – a Novel Target for Future Therapies Affecting Multiple Cell 
Types
While discussing the function of cell death in infectious disease settings, we are often reminded of our decades-old 
understanding that hosts effectively eliminate pathogenic niches through mechanisms such as apoptosis, necroptosis, 
pyroptosis, and autophagy. Alternatively, intracellular pathogens attempt to delay or avoid cell death by eliminating host 
immune cells, thus destabilizing the immune response. Broadly speaking, researchers are making significant efforts to 
control cell death procedures that may aid in the eradication of diseases, and certainly many pharmacological/natural 
compounds have been identified to achieve this. Similarly, over the past few years, an important mechanism, ferroptosis, 
has been characterized as being equally engaged in cell death regulation for multiple cell types.

Ferroptosis is a newly discovered programmed cell death, and it plays a vital regulatory role in the occurrence and 
development of many diseases. The ferroptosis process (Figure 3) is defined by the accumulation of lethal lipid species 
derived from lipid peroxidation. The process involves three major metabolisms: lipids, thiols, and iron-dependent lipid 
peroxidation. It can be precluded through the enzymatic reaction of glutathione peroxidase 4 (GPX4), that catalyzes the 
reduction of lipid peroxidation and ferroptosis suppressor protein 1 (FSP-1) which then catalyzes the regeneration of 
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ubiquinone (Co-enzyme Q10).169,170 Through this unique pathway, ferroptosis undergoes a completely different course 
of action from apoptosis, necroptosis, autophagy, and all other forms of cell death.

Unrestricted lipid peroxidation causes ferroptosis. Lipid peroxidation can be defined as a series of events where various 
oxidants (free radicals) strike on lipid containing carbon-carbon double bond(s). In this oxidation process, free radicals such as 
hydroxyl (-OH) are created by excess of ferrous iron (Fe2+) through the Fenton reaction. Subsequently, hydroxyls then attack 
polyunsaturated fatty acids (PUFAs).171 Hydroxyls are important for lipid peroxidation and in excess cause oxidative cell 
damage that can affect cellular DNA and lipid membrane damage or can alter the functional protein under stress conditions. 
Ferrous iron catalyzes lipid hydroperoxide into ROS molecules.171,172 Eventually, lipid peroxidation impairs cell membrane 
integrity and fluidity, causing cell damage or death. GPX4 is a key enzyme in ferroptosis regulation as it reacts with unstable 
intercellular lipid peroxides to form stable nontoxic lipid alcohols with the help of glutathione (GSH).173,174 Abridged GSH 
inhibits GPX4 and restrains the host’s ability to repair peroxidized lipids, triggering ferroptosis. Gao et al explained that 
cystine and cysteine are important for the synthesis of intercellular GSH, and their absence encourages ROS production.175 

SLC7A11 (Solute Carrier Family 7 Member 11) is another critical component of system Xc’s cystine/glutamate transporter 
system. SLC7A11 controls cystine absorption and glutamine metabolism.176 Besides GPX4 and GSH, ferroptosis suppressor 
protein (FSP-1) is a NADPH-dependent coenzyme Q10 (ubiquinone-10) oxidoreductase on the cell membrane that inhibits 
lipid peroxidation. FSP-1, also known as apoptosis-inducing factor mitochondrial 2 (AIFM2), captures lipophilic radicals to 
stop lipid peroxide dissemination.170

Ferroptosis in Parasitic and Other Infectious Diseases
Moderating the above-mentioned pathways leads to ferroptosis-related cell death in a range of infectious diseases, including 
parasitic infections. Matsushita et al, showed that L. major infection in mice with GPX4-deficient T cells resulted in 

Figure 2 Interplay of Leishmania and its cellular hosts: HSCs and monocytes. Hematopoietic stem cells (HSCs) respond to Leishmania infection. During this process, the 
microenvironment of the bone marrow (BM) changes, an inflammatory Th1 response usually prevents parasite expansion although infection can lead to local T-cell 
exhaustion, whereas an abundance of a regulatory environment, leaded by regulatory T cells (T regs) result in an elevated parasitic burden (PB) and is related to drug 
resistance. The nitric oxide (NO) and reactive oxygen species (ROS) production is also reduced and allows the generation of a permissive environment for the parasite. 
Although HSCs expand and differentiate to fight the infection, the resulting monocytes become the main host for the parasite, therefore resulting detrimental for the host. 
These newly differentiated monocytes express IL-10 and arginase (Arg)-1, and a reduction in iNOS and TNF-α, the characteristic phenotype that allows parasite survival. 
Finally, monocytes play a role by migrating to either the visceral organs in visceral leishmaniasis (VL) or to the skin lesion in cutaneous leishmaniasis (CL) with different roles 
for each manifestation. All this process can be targeted by the use of different therapies (bold), such as immunotherapies to reinstall the immune balance and favor an 
inflammatory response which allows parasite killing, also nanocarriers could be used to develop drugs directly to the infected cells. Other drugs limiting the expansion of 
HSCs could stop the generation of more cellular hosts as the monocytes, whereas migration of monocytes can also be driven into a favorable result for the patient.
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a decreased CD4+ T cell count, which play a major role in the persistence of Leishmania in vivo.127 Both CD8+ and CD4+ 
T cells deficient of GPX4 were unable to expand and protect the immune cell population from L. major infection. Also, in an 
ex vivo experiment, T cells lacking GPX4 rapidly accumulated membrane lipid peroxidase, which led to ferroptotic cell death 
instead of necroptosis.127 Leishmania can also express ascorbate peroxidase (APX), a gene associated with the trypanothione 
pathway that converts host hydrogen peroxide into water molecules and alters GXP expression, as well.177,178 It has been 
observed that L. braziliensis and L. infantum strains which highly express APX are more likely to develop an antimony- 
resistant phenotype.177,179 Similarly, elevated APX was found to regulate amphotericin-B resistance in clinical isolates of 
L. donovani.180,181 APX is also an essential factor to control metacyclogenesis in L. major promastigotes and causes 
antimonial resistance.182,183 Ascorbate-induced cell death and ferroptosis processes share common features including ROS 
generation, iron dependency, caspase independency and lipid peroxidation.128 Lower concentrations of ascorbate could 
prevent ferroptosis, but ascorbate overexpression causes cellular cytotoxicity and ferroptosis.128 Interestingly, anemia and 
abnormal erythrophagocytosis and hemophagocytosis have been implicated in L. donovani infections.184 Leishmania infec
tion also stimulates CD163 expression, boosts cytosolic heme oxygenase-1 (HMOX1) levels, and reduces ROS generation to 
promote parasite survival and replication.185 Corroborating this with macrophage function for their important role in iron 
storage and recycling of senescent red blood cells (RBCs), macrophages ingest senescent RBCs, harvest a larger amount of 

Figure 3 Regulatory pathways involved in ferroptosis. In ferroptosis, PUFAs are oxidized by free radicals due to lipid peroxidation. Hydroxyl facilitates lipid peroxidation, 
which causes stress-induced cell damage. Ferrous iron catalyzes these lipid hydroperoxides (LOOHs) into ROS molecules, followed by impairing cell membrane integrity. By 
turning damaging lipid hydroperoxides into lipid alcohols with the help of glutathione (GSH), GPX4 controls ferroptosis. Cystine is crucial for controlling lipid peroxidation 
by keeping GSH levels stable. SLC7A11 is a key regulator of SystemXc and is responsible for facilitating cystine/glutamate transport. Lipoperoxidation is inhibited by FSP-1, 
which is a NADPH-dependent coenzyme Q10 oxidoreductase located in cell membranes. Lipophilic radicals are contained within them, stopping the dissemination of lipid 
peroxide. This figure was created using Servier Medical Art Commons Attribution 3.0 Unported Licence (https://smart.servier.com/). 
Abbreviations: GSH, glutathione; GPX4, Glutathione peroxidase 4; PUFA, polyunsaturated fatty acids with carbon-carbon double bonds; AscH-, ascorbate autoxidation; 
TFR1, transferrin receptor-like; GLS, glutamate by glutaminase; DMT1, divalent metal transporter 1; LOXs, lipoxygenases; SLC7A11, Solute Carrier Family 7 Member 11; 
LOOH, lipid hydroperoxides; FSP-1, ferroptosis suppressor protein; Ubiquinone-10, NADPH-dependent coenzyme Q10.
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iron, and facilitate iron breakdown into cytosolic heme which is then used by HMOX1 and binds to hemopexin to be 
internalized in macrophages through the CD91 receptors.186–189

The exploration of the role of ferroptosis during Leishmania infections has only recently begun, however observations 
of ferroptosis have been implied in other infections. Thus, these studies can help extrapolate possible therapeutic targets 
for leishmaniasis. For example, some studies suggested that Trypanosoma cruzi extract contained ascorbate-dependent 
peroxidase activity.190–192 GPX-like glutathione peroxidases (Px I–III) are found in trypanosomes, however, these 
peroxidases are type II tryparedoxin peroxidases that reduce tryparedoxin at significantly greater folds than GSH.193 

Similarly, a large amount of ROS is generated in host cells infected with malaria parasites through activation of PAMPs 
and DAMPs, leading to cell death due to lipid peroxidation and ferroptosis.194 Moreover, an instance of mutations in 
human TP53 caused defective p53 which led to accumulation of excessive iron in macrophages, and promoted M2 
polarization, but inhibited Plasmodium infection and supported Listeria bacteria.195 Like parasitic infection, 
GPX4-deficient T cells in mice infected with choriomeningitis virus also showed impaired T cell development due to 
abnormal lipid peroxidation, leading to T cell ferroptosis.127 Additionally, when injecting ovalbumin into mice and 
humans, Yao et al, observed follicular helper T cells underwent ferroptosis, with higher lipid ROS and more of the final 
products of polyunsaturated fatty acid peroxidation, MDA (malondialdehyde) and 4-HNE (4-hydroxynonenal), in 
comparison to non-follicular helper T cells.196 In the same vein, Mycobacterium tuberculosis (Mtb) can use host- 
stored iron for its own growth.197,198 However, Mtb-infected macrophages have shown unregulated lipid peroxidation 
and decreased GPX4, which in turn significantly increased cell death.199 Iron accumulation and lipid peroxidation also 
occurs in patients with cryptococcal meningitis.200,201 Particularly, Cryptococcus infections in AIDS patients have been 
shown to activate macrophages in CSF and promote pro-inflammatory cytokines and chemokines that lead to abundance 
of iron transporters, like divalent metal transporter 1 (DMT-1) and ferroportin 1 (FPN-1), that promote increased 
extracellular iron uptake, which could be associated with ferroptotic conditions.129–131

In addition to conditions seen in infectious diseases, cancer cells also accumulate high levels of iron; therefore, 
ferroptosis has been more deeply studied in cancer models.132 Although parasitic diseases and cancer are quite different, 
the basic knowledge, pharmacological targets and approaches in cancer studies can be leveraged for the investigation of 
leishmaniasis. Imbalanced iron metabolism is correlated with numerous cancer types such as breast, ovarian, brain, renal, 
and lung cancer.138 For example, ferritin dissociation induces reduction of ferric (Fe3+) to ferrous (Fe2+) iron, thus 
upregulating lipid peroxidation and mitochondrial superoxide generation which selectively kills cancer cells.133 

Similarly, a 1,2-dioxolane compound can oxidize ferrous molecules, leading to lipid peroxidation that eliminates cancer 
cells through ferroptotic mechanisms.137 Suppressing or silencing the prominin2 gene in breast cancer cells has been 
shown to decrease intercellular iron export through formation of ferritin-associated multivesicular bodies.134 In lung 
cancer cells, inhibition of nitrogen fixation-1 (NFS-1), an iron-sulfur cluster biosynthetic enzyme, stimulates transferrin 
receptors and downmodulates ferritin that leads to ferroptosis.135 In high-risk neuroblastoma, obstruction of a ubiquitin 
ligase complex leads to the ability to reduce nuclear factor erythroid 2-related factor 2 (NRF2) inhibition, upsurging 
heme oxygenase-1 activity and suppressing GPX4 to kill cancer cells through a natural ferroptosis inducer compound 
withaferin A (WA).202 Furthermore, ferroptosis may contribute to tumor immunity beyond direct killing, particularly in 
association with dendritic cells that play an important role against tumor cells. Studies have shown that gene ALox15- 
derived lipid peroxidation regulates dendritic cells and modulates adaptive immune responses, while in contrast, 
oxidizing phosphatidylcholine inhibits dendritic cell maturation and decreases differentiation of Th17 cells.203 

Additionally, IFN-γ plays an indispensable role in antitumor activity. Surprisingly IFN-γ can suppress ferroptosis- 
suppressor genes that aid with GSH production in cancer.136 Thus, through both the ability of ferroptosis to induce 
direct killing of cancer cells and infected cells, and through the immunomodulation that can follow lipid peroxidation, 
these studies demonstrate the potential for new directions of research in developing leishmaniasis treatments where 
similar mechanisms may exist.

In adaptive immunity, GPX4 knockout mice showed the presence of antigen specific CD8+ and CD4+ cells, yet failed 
to expand T cell counts during chronic infection.127 Mechanically, IFN-γ released from CD8+ T cells triggers lipid 
peroxidation and ferroptosis through the inhibition of system Xc

—.136 Similarly, cysteine and PD-L1 strongly inhibit ID8 
cell derived tumors along with increasing lipid peroxidation in tumor cells and elevating proportions of IFN-γ+ and 
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TNF-α+ CD8+ and CD4+ T cells in the tumor microenvironment.136,204,205 Remarkably, expression of system Xc− was 
negatively associated with CD8+ T cells and IFN-γ in cancer treatments and their outcome. To summarize, ferroptosis 
consists of a series of events involving redox imbalance, iron release ferritin, and lipid peroxidation, all which lead to the 
occurrence of cell death in various diseases and stress conditions. Ferroptotic cell death has been demonstrated to occur 
in tumor cells and in multiple infectious diseases with beneficial impacts for the host and reduction of disease burden. 
These findings support the further investigation of the several compounds identified to regulate ferroptotic pathways. 
More work in stimulation of ferroptosis in infected cells could further improve field-deployable therapies against 
Leishmania and other infectious diseases.

Conclusion
Overall, the realm of field-deployable therapies has room for improvement and advancement, and faces discrepancies in 
which treatments are truly and universally field-deployable. With current treatments being variable with regard to their 
accessibility, feasibility to be administered in the field, achieval of sterile immunity and risk of relapse, and more, 
a number of new prospects should be considered for Leishmania treatment going forward. Leishmania parasites have 
been shown to infect multiple cell types including monocytes, macrophages, dendritic cells, and neutrophils in multiple 
areas of the body. Consideration of this fact will allow for the development of directed therapies to eliminate the parasites 
from its cellular hosts for generation of sterile immunity. This is particularly appealing for targeting monocytes/ 
macrophages, which are considered to be the main cellular host of the parasite in the body. Also, targeting HSCs is 
desirable, since recent discoveries reveal how they provide a safe-heaven for Leishmania to avoid the immune system 
and a lair to the parasite to allow reinfection. By taking advantage of drugs and therapies developed to be used against 
other diseases, leishmaniasis patients can be treated with more advanced and specific therapies. The advantages of 
repurposing drugs impact a multitude of factors. First, patients will benefit from therapies with higher efficacy and less 
adverse effects. Second, since leishmaniasis is a neglected tropical disease causing economic burden to low- and middle- 
income countries, repurposing therapies may become a more affordable pathway to alleviate disease burden and 
eventually achieve eradication of the disease. Third, some therapies have already been approved for their use against 
other diseases, therefore the time to reach and treat Leishmania patients could be reduced. Lastly, by targeting unique 
pathways utilized by the parasites, future treatments may be enhanced. One prominent pathway which is being explored 
relatively recently is the ferroptosis cell death pathway. Although drugs targeting this pathway have not yet been 
universally approved, there are promising results in the case of other intracellular infections and cancer settings that 
indicate stimulation of ferroptosis or inactivation of ferroptosis-inhibiting genes have shown beneficial effects in these 
disease settings and thus merit investigation for leishmaniasis. Overall, current and potential treatments for leishma
niases, both field-deployable and experimental, provide promising candidates for the mitigation of disease and promotion 
of host outcomes to Leishmania infection.
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