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Hyperthyroidism is characterized by an increase in the synthesis and secretion of thyroid
hormones in the thyroid gland, and the most common cause of overproduction of thyroid
hormones is Graves’ disease (GD). Long-term disease models of hyperthyroidism have
been established. In general, methods to induce GD include transfection of fibroblasts,
injecting plasmids or adenovirus containing thyroid stimulating hormone receptor (TSHR)
or TSHR subunit, and exogenous artificial thyroid hormone supplementation. Fortunately,
in mouse studies, novel treatments for GD and Graves’ orbitopathy (GO) were discovered.
It has been reported that prophylactic administration of TSHR A subunit protein in
genetically susceptible individuals could induce immune tolerance and provide
protection for the future development of GD. Biologically active monoclonal antibody
against intracellular adhesion molecule-1 (ICAM-1 mAb) and siRNA targeting TSHR can
also be used to treat GD. Moreover, new potential therapeutic targets have been identified
in GO mouse models, and these targets could present novel therapeutic approaches.
Besides, human placental mesenchymal stem cells (hPMSCs) into the orbit, fucoxanthin
and icariin may be new alternative therapies that could be used in addition to the existing
drugs, although further research is needed.
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INTRODUCTION

Hyperthyroidism is a characteristic clinical condition caused by excessive thyroid hormone
concentrations in tissues (1). The common causes of hyperthyroidism includes Graves’ disease
(GD), toxic nodular goiter, painless thyroiditis or thyroid dysfunction induced by drugs (2). The
common clinical manifestations of hyperthyroidism are palpitations, tremor, heat intolerance,
sweating, polydipsia and weight loss caused by hypermetabolism (1). Patients with long-term
untreated hyperthyroidism may even develop atrial fibrillation or heart failure (3). Thus, exploring
the pathogenesis of hyperthyroidism and seeking effective treatment are of great importance.

Various mouse models have been used to investigate hyperthyroidism (4). Researchers have
carried out immunization approaches, such as injecting the adenovirus or plasmid accompanied by
thyroid stimulating hormone receptor (TSHR), or chemical methods, such as levothyroxine
supplementation (5–7). Moreover, from studies using the above modelling methods, we found
that the establishment of immune tolerance can provide protection against the further development
of GD (8, 9). Additionally, targeted therapy is also a promising new treatment for GD (10).
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In this review, we summarize the research progress of mouse
models of hyperthyroidism and the potential novel treatments
for GD and GO that have been identified using these models.
This summary helps to better understand the pathogenesis of
hyperthyroidism, reduce the incidence of hyperthyroidism and
provide a potential therapeutic strategy for hyperthyroidism.
MURINE MODEL OF HYPERTHYROIDISM
INDUCED BY TSHR

GD is the most common type of hyperthyroidism. The mouse
models of GD are mainly achieved by inducing the expression of
TSHR in vivo (Table 1).

GD models can be induced by injecting cells that stably
express TSHR into mice. Shimojo et al. injected female AKR/N
mice with fibroblasts transfected with cDNAs for human TSHR
and MHC class II molecules. After six injections, most mice
developed TSHR antibodies characterized as GD (11), and this
was replicated in other studies (12, 20).

After many attempts, other methods of inducing GD were
also discovered. Many studies have induced GD by
immunization of plasmids or recombinant adenovirus vectors
that express TSHR instantaneously in vivo. Costagliola et al. used
a plasmid that encodes TSHR for genetic immunization, which
induced Graves’-like hyperthyroidism (13). However, only 20%
of the female NMRI mice immunized with TSHR cDNA
developed hyperthyroidism and thyroid stimulating hormone
receptor-stimulating antibody (TSAb), and none of the male
NMRI mice developed hyperthyroidism in their experiment (13).
There were even studies showing that hyperthyroidism was not
even observed in BALB/c mice immunized by intramuscular
injection of an expression vector constructed from human TSHR
cDNA (14).

Moreover, Nagayama et al. established a new mouse model of
GD by injecting recombinant adenovirus that expresses
thyrotropin receptor (15). Over 50% of the female BALB/c
mice developed hyperthyroidism, but only 5% of the DBA/2J
mice developed hyperthyroidism (15). This suggests the role of
genetic factors in the susceptibility to Graves’ hyperthyroidism in
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mice. A growing number of experiments have confirmed this
hypothesis, with many studies demonstrating that BALB/c mice
are susceptible to GD in the TSHR-adenovirus model (21). In
order to further improve the success rate of inducing
hyperthyroidism, many researchers have used an adenovirus
containing TSHR-289, a subunit encoded human TSHR, to
induce GD (16, 22). Studies have proven that the proportion of
hyperthyroidism induced by adenovirus carrying TSHR-289 was
significantly higher than that of full-length wild-type adenovirus
containing TSHR (23). Besides, Tang et al. immunized BALB/c
female mice with an adenovirus expressing TSHR-289 once, and
the rate of hyperthyroidism reached 100% at 6 week (17). This
model reduced the number of immunizations, thus reducing the
modelling time.

Several modifications have been made to improve this
modelling method. For example, electroporation was used to
enhance the expression of human TSHR in vivo and induce
hyperthyroidism in mice (24). The deletion of CD4(+) CD25(+)
T cells by immune manipulation enhanced disease severity in
mice (25). Besides, Kimberly et al. generated mice deficient in
STAT6 (26) and STAT4 (27) based on an activator of
transcription proteins by gene targeting. The incidence and
severity of hyperthyroidism were higher in STAT4-deficient
mice than in wild-type and STAT6-deficient mice after
immunization with adenovirus containing amino acid residues
1–289 of TSHR (28). In addition, prolonged immunization with
repeated injections of adenovirus containing TSHR A subunit
appears to induce a more stable Graves phenotype in mice (29).
CHEMICALLY INDUCED
HYPERTHYROIDISM

Non-autoimmune forms of hyperthyroidism are mainly caused
by artificial thyroxine supplementation. Exogenous thyroxine
supplementation included dissolving levothyroxine in drinking
water and intraperitoneal injections (18, 30). Kathrin et al.
illustrated that C57BL/6NTac mice receiving intraperitoneal
injection of 1 µg/g body weight levothyroxine over 6 weeks
exhibited hyperthyroidism (19). Notably, intraperitoneal
TABLE 1 | Summary of mouse models of hyperthyroidism.

Protocol Species Hyperthyroidism Reference

Injection of cells transfected with TSHR
Fibroblasts transfected with TSHR, 6 times Female AKR/N Low incidence (11)
Fibroblasts transfected with TSHR, 8 times Female AKR/N 35% (12)
Plasmid encoding TSHR
Intramuscular injections, 3 times Female NMRI 20% (13)
Intramuscular injections, 3 times Female BALB/c None (14)
Adenovirus containing TSHR or TSHR-289
Intramuscular injection of TSHR Female BALB/c More than 50% (15)
Intramuscular injection of TSHR DBA/2J 5% (15)
Intramuscular injection of TSHR-289, 3 times Female BALB/c High incidence (16)
Intramuscular injection of TSHR-289, once BALB/c High incidence (17)
Exogenous levothyroxine supplementation
Intraperitoneal injection of levothyroxine, 28 days C56BL/6 High incidence (18)
Oral levothyroxine, 6/7 weeks C57BL/6NTac High incidence (19)
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injections of levothyroxine should not be given more than 48
hours apart. Otherwise, transient hypothyroidism may occur,
which may be due to the inhibition of the pituitary-thyroid axis
caused by levothyroxine injection in mice (19). Nevertheless, the
hyper thyro id i sm caused by exogenous thyrox ine
supplementation is temporary, not continuous, and cannot be
separated from continuous thyroid hormone supplementation.
MODELS OF GRAVES’ ORBITOPATHY

GO is the most common and severe manifestation of GD and is
characterized by orbital inflammation and tissue remodelling
(31). Remodelling of the orbital tissue can lead to eye redness,
swollen eyes, double vision, and visual impairment (32, 33). One
study found that immunizing mice with human TSHR A subunit
particles plasmid by close field electroporation resulted in
histological signs of orbital lesions, simulating Graves’
ophthalmopathy (34).

Mice immunized with adenovirus carrying the human TSHR
A subunit are a very widely used experimental model for GD (35)
because of their high incidence and reproducibility. However,
whether the method can successfully induce GO is still
controversial. Some studies suggest that orbital lesions do not
occur after adenovirus TSHR immunization (36). However, the
conclusion was based on an analysis of the short-term
adenovirus induction protocols. Studies have shown that
prolonging the induction time of adenovirus expressing the
TSHR (ad-TSHR) A subunit can increase the percentage of
successful induction of GO (37). Zhang et al. injected an
adenovirus expressing the human TSHR A subunit into the
muscle of female BALB/c mice 9 times and successfully induced
GO model after long-term ad-TSHR A subunit immunization
(37). The frequency of GO in the ad-TSHR A subunit group was
70%, and adipogenesis, lymphocyte infiltration and tissue
fibrosis were observed in the long-term animal model (37).

To explore new methods of treating orbital inflammation,
newmethods of simulating orbital inflammation were attempted.
A mouse model of orbital inflammation induced by oxazolone
injection outlines some clinical features of thyroid eye disease
and other possible features of nonspecific orbital inflammation
(38). The model can consistently and repeatedly display clinical,
X-ray, and histopathological phenotypes with minimal trauma to
ocular or adnexal structures.

Furthermore, Park et al. clarified that when zymosan A was
intraperitoneally injected into SKG mice, the eyes of these mice
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presented with exophthalmos and blepharitis (39). Compared
with the control group, orbital adipogenesis and cell infiltration
were enhanced, and the concentrations of serum inflammatory
factors were increased (39). Furthermore, the browning of orbital
adipose tissue may be a potential pathological mechanism
accounting for the increase of periorbital adipose tissue.
Besides, Park et al. demonstrated that the expression of
uncoupling protein 1 increased., which consolidated the
browning of adipose tissue, thus leading to increased orbital fat
production (39). It was a novel mouse model of the GO-like
inflammatory fat phenotype that might be induced by T cell-
mediated autoimmune response. This mouse model provides us
with the opportunity to investigate the potential molecular
mechanisms by which GO enhances adipogenesis and
ultimately provides potential therapeutic targets to replace
conventional therapy of GO.
NOVEL EXPERIMENTAL THERAPIES OF
GRAVES’ DISEASE IN MOUSE MODEL

The initial treatment for GD is usually antithyroid drugs, such as
methimazole and propylthiouracil, followed by radioiodine
therapy or surgical excision of the thyroid (40). However, these
treatments have a relatively high recurrence rate and significant
side effects (1). Treating cases of refractory GD and concomitant
eye disease/disease is particularly challenging. GO is a major and
serious extrathyroidal manifestation of GD. Even mild Graves’
ophthalmopathy can greatly affect the quality of life (31). Severe
and active GO is often treated with immunosuppressants, such as
glucocorticoids. However, these treatments have many side
effects and make patients more susceptible to infection (31).
Thus, in recent years, many studies have explored new treatment
options for GD and GO to improve patients’ quality of life. In the
mouse models of GD, we have identified a number of
interventions for the treatment of disease and summarized
them in this review (Table 2).

Diosgenin (Dio) is a naturally occurring steroid saponin.
Studies have shown that Dio can dose-dependently inhibit the
proliferation of thyroid cells by suppressing the expression of
IGF-1, NF-kB, cyclin D1 and PCNA, thus reducing goiters in GD
mouse models (41). Further work leaded to new specific targeted
therapies for GD. Studies in the mouse models of GD and GO
illustrated that the leucine-rich cyclic peptide 836 simulating the
repeat domain of TSHR improved or cured all study parameters
after six consecutive months of injections (42). Because the cyclic
TABLE 2 | Overview on novel experimental therapies of Graves’ disease and Graves’ orbitopathy.

Therapies Species therapeutic effect Reference

Intraperitoneal injection of diosgenin, 24d Female BALB/c GD, relieve goiter formation (41)
Intravenous Administration of cyclic peptide 836, 6 months Female BALB/c GD and GO, improve investigated parameters (42)
ICAM-1 mAb and siRNA BALB/c GD, improved several indexes (10)
Icariin, intragastrical for 4 weeks Female BALB/c GO, inhibit adipogenesis (43)
Injection hPMSCs into left orbit Female BALB/c GO, inhibit adipogenesis (44)
Fucoxanthin BALB/c GO, anti-inflammatory and anti-oxidative (45)
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peptide imitated part of the TSHR, it was presented to the
immune system by antigen-presenting cells. Thus, it
suppressed the immune response. This might account for the
effect of cyclic peptides in the mouse models of GD. In addition,
biologically active siRNA targeting TSHR and monoclonal
antibodies against intracellular adhesion molecule-1 (ICAM-1
mAb) were proven to significantly improve symptoms and the
corresponding hormone and antibody levels in GD mouse
models (10). Moreover, ICAM-1 mAb was superior to siRNA
targeting TSHR (10). These two therapies have shown potential
efficacy as novel therapies for GD and thus might be therapeutic
op t i on s th a t cou l d b e u s ed in add i t i on t o th e
existing interventions.

As for GO, there have also been many reports on the
treatment of GO in recent years. Icariin, a flavonoid separated
from plants in the genus Epimedium, was found to inhibit the
differentiation of preadipocytes in vitro and in mouse models of
GO. It also possibly regulated the AMPK/mTOR pathway to
reduce the expansion of orbital muscle adipocytes and the
accumulation of lipid droplets (43). These results revealed the
possible protective mechanism of icariin and suggested that
icariin may be a novel therapeutic candidate for the prevention
and treatment of GO. Furthermore, researchers found that the
injection of human placental mesenchymal stem cells (hPMSCs)
into the orbit of mice model of GO could suppress lipid
accumulation and the corresponding activators, thereby
inhibiting orbital fibrosis and adipogenesis (44). In addition,
hPMSCs can improve orbital adipogenesis in the model (44). The
study demonstrated that hPMSCs might restore pathogenic
activation of orbital fibroblasts in experimental models of GO
and confirmed the feasibility of hPMSCs as a novel treatment for
GO patients. Additionally, it has been reported that fucoxanthin,
a carotenoid, can inhibit 1L-17 mRNA expression to produce
anti-inflammatory and antioxidant effects in GO mouse model
(45). However, the therapeutic effects of fucoxanthin remain to
be further studied.
ANTIGEN-SPECIFIC THERAPY TO
INDUCE TOLERANCE

In recent years, studies have utilized mice immunized with ad-
TSHR to study antigen-induced tolerance against GD. Misharin
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et al. suggested that a single injection of the glycosylated TSHR A
subunit prior to TSHR immunization protected mice from GD.
The effect was antigen-specific and lasted for a short period of
time (8). Similarly, Wu et al. expounded in their study that
neonatal mice pre-treated with adenovirus expressing the TSHR
A subunit at high doses could developed significant resistance to
GD (46). However, although the TSHR A subunit protein is an
underlying immunomodulator, it cannot be applied to reverse
hyperthyroidism in mice. Additionally, it is unlikely to be utilized
to prevent further progression in patients that have already been
diagnosed with GD. Based on these studies, the immune
tolerance model provides hope for the prevention of GD. In
susceptible populations, it is expected that the TSHR A subunit
protein vaccine may induce resistance to GD, and these
populations could develop long-term protection against the
progression of GD.
CONCLUSIONS

In conclusion, a long-term disease model of GD that stably
presents with the characteristics of the human disease has been
established. However, all animal models, especially those
experimentally induced, have limitations. Studying the same
disease in multiple models can provide greater insights than
studies in a single model.

Current treatments for autoimmune diseases include
inducing immune tolerance through TSHR-specific antigens
and several experimental therapies. This topic requires further
research but holds great promise as a possible alternative to
traditional treatments.
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