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Abstract: The bacterial luciferase gene cassette (lux) is unique among bioluminescent 
bioreporter systems due to its ability to synthesize and/or scavenge all of the substrate 
compounds required for its production of light. As a result, the lux system has the unique 
ability to autonomously produce a luminescent signal, either continuously or in response to 
the presence of a specific trigger, across a wide array of organismal hosts. While originally 
employed extensively as a bacterial bioreporter system for the detection of specific 
chemical signals in environmental samples, the use of lux as a bioreporter technology has 
continuously expanded over the last 30 years to include expression in eukaryotic cells such 
as Saccharomyces cerevisiae and even human cell lines as well. Under these conditions, 
the lux system has been developed for use as a biomedical detection tool for toxicity 
screening and visualization of tumors in small animal models. As the technologies for lux 
signal detection continue to improve, it is poised to become one of the first fully 
implantable detection systems for intra-organismal optical detection through direct 
marriage to an implantable photon-detecting digital chip. This review presents the basic 
biochemical background that allows the lux system to continuously autobioluminesce and 
highlights the important milestones in the use of lux-based bioreporters as they have 
evolved from chemical detection platforms in prokaryotic bacteria to rodent-based 
tumorigenesis study targets. In addition, the future of lux imaging using integrated circuit 
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microluminometry to image directly within a living host in real-time will be introduced and 
its role in the development of dose/response therapeutic systems will be highlighted. 

Keywords: mammalian cells; bacterial luciferase (lux); bioreporter; biosensor; cell culture; 
small animal models 

 

1. Introduction 

Bacterial bioluminescence, commonly known as the lux reaction, is the most widely distributed 
luminescent mechanism on the planet [1] and, although this process of bacterial light production  
has been observed for centuries, it was not until the mid 1900s that it began to be evaluated 
scientifically [2,3]. Beginning in the 1980s, after several decades of research, the understanding of this 
system became advanced enough that it was possible to exogenously express the full gene cassette, 
comprised of five genes (luxCDABE), in alternative host organisms such as Escherichia coli [4]. As 
researcher’s understanding of the biochemistry behind the lux reaction continued to be refined, and 
genetic manipulation techniques improved, it soon became possible to exploit this cassette as a reporter 
system across a wide variety of bacterial species for an extremely diverse set of monitoring objectives.  

Following the success of these myriad lux-based bacterial bioreporters, attempts were made to 
incorporate the system into eukaryotic organisms in order to expand the lux system’s usefulness as a 
reporter. While initially expression of the bacterial genes was unsuccessful, through rearrangement of 
the lux cassette gene expression pattern and improvement of expression efficiency via codon-optimization 
and the addition of specialized linker regions, these hurdles were overcome and the lux reaction was 
demonstrated to occur in the lower eukaryote Saccharomyces cerevisiae [5]. Building upon this early 
success of eukaryotic expression, the luxAB genes were then further engineered to express in a human 
cell line, leading to the emergence of the lux system as a truly multifunctional reporter system similar 
to the more commonly employed firefly luciferase system [6].  

Recently the lux system has undergone another substantial improvement, as it has been 
demonstrated that the full cassette can be optimized in a similar manner to the luxAB genes in order to 
promote fully autonomous bioluminescent production in a human cell line without the need to 
exogenously supplement a chemical substrate [7]. This review will highlight the development of the 
lux cassette from a curiosity observed in marine bacteria, through its extensive use as a bacterial 
bioreporter system and modification for expression in eukaryotic organisms, up to its recent 
demonstration as the only fully autonomous, substrate-free bioluminescent reporter system available in 
the eukaryotic host background. The unique, autonomous nature of the lux cassette will also be 
reviewed in light of the development of advanced photon detection hardware, detailing the future 
directions of lux development and its potential for biomedical as well as basic research applications. 

Wild-Type lux Background 

One does not have to look very far to see the glow of naturally bioluminescent organisms. On land 
bioluminescence is most commonly observed in the glow of fungi growing on decaying wood or from 
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insects displaying their luminescent signal after dusk, while in marine environments bioluminescence 
is most commonly observed in single celled bacteria that are found either living freely or in symbiosis 
with larger hosts. It is these bioluminescent bacteria that are the most abundant and widely distributed 
of the light emitting organisms on Earth and they can be found in both aquatic (freshwater and marine) 
and terrestrial environments. Despite the widespread prevalence of bacterial bioluminescence, 
however, the majority of these organisms are classified into just three genera: Vibrio, Photobacterium, 
and Photorhabdus (Xenorhabdus) [1]. Although they are viable as free-living bacteria, these organisms 
are most commonly observed in symbiosis with a larger host. There is still no consensus as to the 
evolutionary benefit of bioluminescent production, however, in general it is theorized that the 
production of light can aid in the consumption of free living bacteria by higher trophic organisms, 
transferring them to a more controlled, nutrient rich habitat inside the host, or that, likewise, symbiotic 
bacteria can aid their hosts through the production of light that attracts prey, aids in camouflage, or 
attracts mates, in return for the shelter and nutrients provided by living within the body of the host 
organism [8]. Regardless of the reasons, the genetic system employed for the generation of 
bioluminescence is well conserved across all known bioluminescent bacteria. The luciferase protein is 
a heterodimer formed by the luxA and luxB gene products. The luxC, luxD, and luxE gene products 
encode for a reductase, transferase, and synthase respectively, that work together in a single complex 
to generate an aldehyde substrate for the bioluminescent reaction. In some species, there is an 
additional gene, frp, that functions as a flavin reductase to aid in the regeneration of the required 
FMNH2 substrate. Together with molecular oxygen, these components are all that are required to 
produce a bioluminescent signal [9] (Figure 1). 

Figure 1. The luxCDABEfrp genes work synergistically with endogenous myristic acid, 
FMN, and O2 to generate a bioluminescent signal. The frp gene is not found in all 
organisms expressing the remaining lux genes. Originally published in and used with 
permission from [1]. 

 

In addition, some marine species have additional genes that govern the expression of the remainder 
of the operon. The luxI and luxR genes function as an autoinducer and transcriptional activator  
(Figure 2), allowing the bioluminescent bacteria to participate in quorum sensing, therefore producing 
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2.2. Development of lux as a Method for Visualizing Gene Expression 

The first use of lux as a biomonitoring technology came soon after its transgenic expression in  
E. coli, when Enbreghet et al. [14] fused the lux cassette to an inducible promoter that could be used to 
monitor gene expression in vivo. Using this experimental design it became possible to monitor 
autonomous bioluminescence as an indicator for the transcriptional activity of a promoter of interest. 
Using this method, the first major targets of study were the E. coli lac and ara promoters and it was 
discovered that upon IPTG or arabinose induction, light production in hosts expressing lux fusions 
increased between 600 to 1,000-fold. Following these reports the lux system was used to monitor 
regulation of the lateral flagella genes in Vibrio parahaemolyticus [14,15], providing its first 
demonstration in a previously uncharacterized system. These applications represented a significant 
shift in the way gene expression was investigated because, unlike traditional biochemical assays using 
enzymatic reporters, the bioluminescent signal from the lux genes could be easily detected and 
measured with high sensitivity without cell perturbation. This allowed the same sample to be 
continuously monitored, thus revealing the dynamics of gene expression through changes in 
bioluminescence over time. This new method was therefore capable of generating data that could not 
previously be generated.  

2.3. lux-Based Bioluminescence as a Tool for Cellular Population Monitoring 

While the Lux proteins do not require exogenous substrate addition, their function does require 
continued access to the molecular oxygen, FMNH2, and aldehyde co-substrates. For this reason, their 
bioluminescence can only be detected in actively growing cells. This knowledge, combined with the 
discovery that lux bioluminescent output is proportionally correlated to the number of cells present, has 
therefore been used as a simple, sensitive, and non-destructive means for in situ bacterial monitoring. 
This was first demonstrated by Shaw et al. [16] in 1986 when constitutively expressed V. fischeri 
luxCDABE genes were introduced into the phytopathogen Xanthomonas campestris, and their 
subsequent invasion of a cauliflower leaf was visualized. Similarly, de Weger and colleagues [17] 
were successfully able to detect luxCDABE-labeled Pseudomonas fluorescens in the rhizosphere of 
soybean roots using the same technique. Additionally, through the use of a lux-based system rather 
than an enzymatic reporter, it was possible for these researchers to achieve detection limits three orders 
of magnitude lower than what was previously possible, leading to improved signal detection. These 
early examples highlighted the application of lux-based bioluminescence as a rapid, simple and 
sensitive tool for in situ detection of living bacteria and established the foundation for future research 
using lux to monitor genetically engineered microorganisms. In perhaps the most notable use of the lux 
genes for tracking a cellular population, a P. fluorescens strain was transformed with the lux genes and 
used for the first bioremediation-related environmental field release of a genetically engineered 
microorganism in 1996.  

This release was approved by the Environmental Protection Agency to determine the efficiency of 
bioremediation process monitoring through inoculation of the bioluminescent strain directly into 
contaminated soil and to determine its ability to monitor the bioremediation of polycyclic aromatic 
hydrocarbons [18]. By placing the lux genes under the control of promoters in the naphthalene 
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degradation pathway, it was possible to monitor their bioluminescent output as a measure of 
naphthalene contamination in the soil [19]. Using a combination of bioluminescent and traditional 
culture based detection methods, the release area was monitored for two years after the release of 
bioluminescent P. fluorescens. Over this time, regular sampling was performed to track the amount of 
bacteria present in the soil, as well as the amount of bioluminescence produced, which were indicative 
of organism presence and naphthalene degradation, respectively (Figure 3). Based on culture detection 
methods, the bioluminescent P. fluorescens persisted in both contaminated and non-contaminated 
soils, decaying at similar rates and producing similar colony counts [18]. The long term nature and 
difficulty in remote monitoring of bacterial populations presented in this study illustrates how the 
unique properties of the lux operon can provide it with an advantage over its substrate requiring 
bioluminescent or UV stimulation requiring fluorescent counterparts. Because of its autonomous 
nature, the lux-tagged P. fluorescens could be continually surveyed for bioluminescent production, 
without the need for repeated stimulation to induce a reporter signal. 

Figure 3. Using bioluminescent bacteria, Ripp et al. were able to track both the presence of 
the genetically modified organisms as well as the their effectiveness in degrading 
naphthalene over time. Naphthalene concentrations are shown in ppm. Adapted and used 
with permission from [18]. 

 

2.4. The Use of lux for Exogenous Target Detection 

Following the work that demonstrated how the lux cassette could be used as a tool for visualizing 
gene expression, it soon became clear that these genes could be adapted for use as a traditional 
bioreporter target through activation under specific, predetermined conditions as well. By expressing 
the lux cassette under the control of a promoter with a known inducer, the resultant bioluminescent 
emission could be used as an indicator for the presence of the given stimulus, and fluctuation of the 
bioluminescent signal could be interpreted as changes in the bioavailable concentration of the inducer 
compound. Building upon these ideas, the first use of bioluminescence for monitoring metabolic 
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activity was demonstrated in Pseudomonas putida by Burlage et al. in 1990 [20]. Here, naphthalene 
degradation was monitored using a transcriptional fusion of the salicylate inducible nah promoter and 
the luxCDABE genes. Salicylate is an intermediate metabolite of naphthalene, which is eventually 
degraded to acetaldehyde and pyruvate in Pseudomonas. Therefore, naphthalene degradation could be 
correlated to the light emission upon induction with naphthalene-derived salicylate. The nondestructive 
nature of the lux system allowed for this analysis to occur in real time in a growing culture, providing 
continuous monitoring of naphthalene metabolism across various stages of growth. It was later 
determined by King et al. [19] that the bioluminescent signal was controlled in a dose/response  
fashion (Figure 4), therefore demonstrating its usefulness in determining contaminant levels in mixed 
environmental samples. This opened the door for a multitude of environmental bioreporters featuring 
lux, such as that developed by Applegate and colleagues that was used to monitor for water soluble 
benzene, toluene, ethylbenzene, and xylene (BTEX) compounds indicative of petroleum spills. This 
reporter, constructed by linking expression of the lux cassette to the toluene dioxygenase promoter, 
was capable of detecting as little as 30 µg of toluene/L in as quickly as 2 h and maintained its detection 
ability for over 100 generations without antibiotic selection [21]. 

Figure 4. By treating with naphthalene over 8 h intervals (black boxes), King et al. were 
able to demonstrate a corresponding dose/response bioluminescent production ( ) curve. 
Adapted and used with permission from [19]. 

 

Another common target for lux-based environmental sensing has been phenol. Notably,  
Abd-El-Haleem et al. [22] constructed one of the first lux-based phenol biosensors by inserting a 
mopR-like promoter fused to the V. fischeri lux cassette genes into Acinetobacter sp DF4. This reporter 
was capable of demonstrating a lower detection limit of 2.5 ppm in 4 h when exposed to phenol, and 
was only responsive to three of the ten phenol derivatives tested, suggesting that it was relatively 
specific as well. This is, however, not by any means the only lux-based phenol reporter to be 
developed. Davidov et al. [23] made extensive use of recA promoters fused to lux cassettes, with each 
of the reporters containing a slight variation in its promoter sequence, that were expressed either in  
E. coli or Salmonella typhimurium and using lux genes from either V. fischeri or P. luminescens. The 
most sensitive of these reporters was that expressing the V. fischeri lux genes in E. coli, which was 
capable of detecting 0.008 mg phenol/L in 2 h. This same construct, when expressed in S. typhimurium 
was also capable of detecting phenol in 2 h but required a minimum concentration of 16 mg phenol/L, 
demonstrating the differences in host phenol bioavailability.  
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2.5. Further Uses of lux as a Bacterial Bioreporter 

As the popularity of the lux system has grown over the years, an increasing number of bacterial 
reporters have been leveraged for the detection of a wide variety of contaminants. While this review 
focuses only on the seminal examples of lux’s growth as a reporter system, a larger list of target 
compounds and detection limits of various bioreporters can be found in recent reviews [24,25] and 
Table 1. 

Table 1. A representative listing of luxCDABE-based bioreporters. 

Analyte Time for induction Concentration Reference
2,3 Dichlorophenol 2 h 50 mg/L [23] 
2,4,6 Trichlorophenol 2 h 10 mg/L [23] 
2,4-D 20–60 min 0.44 mg/L [26,27] 
3-Xylene Hours 3 μM [28] 
4-Chlorobenzoate 1 h 380 μM–6.5 mM [29] 
4-Nitrophenol 2 h 0.25 mg/L [23] 
Alginate production 1 h 50–150 mM NaCl [30] 
Ammonia 30 min 20 μM [31] 
Androgenic chemicals 3–4 h 10−9–10−10 M [32] 
Antibiotic effectiveness 

against Staphylococcus aureus 
infections in mice 

4 h 100 CFU [33] 

Antimony (antimonate and 
antimonite) 

3–4 h 0.1 mg/L [34] 

Arsenic 3–4 h 80 µg/L As(V); 8 µg/L As(III) [35] 
BTEX (benzene, toluene, 

ethylbenzene, xylene) 
1–4 h 0.03–50 mg/L [21] 

Cadmium 4 h 19 mg/kg [36] 
Chlorodibromomethane 2 h 20 mg/L [23] 
Chloroform 2 h 300 mg/L [23] 
Chromate 1 h 10 μM [37] 
Cobalt 9 µM 2.0 mM [38] 
Copper 1 h 0.05 mg/L [39] 
Dichloromethane 1–2 h ~0.01 mg/L [40] 
DNA damage (cumene 

hydroperoxide) 
50 min 6.25 mg/mL [41] 

DNA damage (mitomycin) 
1 h 
Not specified 

0.032 μg/mL 
0.31 μg/mL 

[42] 
[43] 

DNA damage and other cell 
stressors/activators 

A library of luxCDABE-based fusions with 689 E. coli  
gene promoters 

[44] 

Estrogenic chemicals 1 h 10−11 M [45] 
Gamma-irradiation 1.5 h 1.5–200 Gy [46] 

Heat shock 20 min 
Various, depending on chemical 
inducer used 

[47,48] 

Heavy metals 
A multi-bioreporter panel for detecting and identifying 
multiple heavy metal contaminants in a single sample 

[49] 
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Table 1. Cont. 

Analyte Time for induction Concentration Reference
Hemolysin production Not specified 5 mM cAMP [50] 
Hydrogen peroxide 20 min 0.1 mg/L [51] 
in vivo monitoring of 

Salmonella typhimurium 
infections in living mice 

4 h 100 CFU [52] 

Iron Hours 10 nM–1 μM [53] 
Isopropyl benzene 1–4 h 1–100 μM [54] 
Lead 1 h 0.33 mg/L [39,55] 
Mercury 2 h 0.5 ng/L [56] 
N-acyl homoserine lactones  
(3-oxo-C6-HSL) 

200 min 3 nM [57] 

Naphthalene 8–24 min 12–120 μM [58] 
Nickel 4–6 h 0.1 µM [38,59] 
Nitrate ~1 h 1 mg/L [60] 
Organic peroxides 20 min Not specified [51] 
Oxidative stress Not specified 0.015 ppm (paraquat) [61] 
PCBs 1–3 h 0.8 μM [62] 
p-chlorobenzoic acid 40 min 0.06 g/L [29] 
p-cymene <30 min 60 ppb [63] 
Pentachlorophenol 2 h 0.008 mg/L [23] 
Phenol 2 h 16 mg/L [23] 
Salicylate 15 min 36 μM [58] 
Shiga toxin expression in E. coli Gene expression profiling in enterohemorrhagic E. coli [64] 
Tetracycline 40 min 5 ng/mL [65] 

Toxicity monitoring 
Use of multi-bioreporter arrays to survey and identify multiple 
chemicals within single samples 

[66,67] 

Trichloroethylene 1–1.5 h 5–80 μM [68] 
Trinitrotoluene Not specified Not specified [69] 
Ultrasound 1 h 500 W/cm2 [70] 
Ultraviolet light (bacterial) 1 h 2.5–20 J/m2 [71] 
Ultraviolet light (yeast) 1 h 7 mJ/cm2 [72] 
Zinc 4 h 0.5–4 μM [73] 

3. Eukaryotic Expression of the lux Cassette 

Despite its success as a bacterial bioreporter, widespread use of the lux system faced a major hurdle 
in that it was initially believed to be capable of expression only in prokaryotes. Although several 
attempts were made to express the lux genes in eukaryotic hosts, none of these made significant 
headway [74–76]. It would not be until 2003 that the first major achievement was documented with the 
demonstration of autonomous bioluminescence from the yeast Saccharomyces cerevisiae [5]. 
Following this breakthrough, the lux genes continued to be modified and improved for eukaryotic 
expression, later being developed into a reliable yeast-based bioassay tool and, eventually, becoming 
capable of expression in a human cell line [7], opening the door for continued development in the future. 
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3.1. lux Expression in Yeast 

It was the demonstration of lux function in S. cerevisiae by Gupta et al. [5] in 2003 that marked the 
first time a eukaryotic organism successfully produced levels of bioluminescence comparable to 
prokaryotic lux-based bioreporters (Figure 5). To achieve this, Gupta and colleagues chose to express 
the lux genes from the terrestrial bacterium P. luminescens rather than those from the traditional 
marine organisms V. harveyi or V. fischeri. This was done because the resulting luciferase proteins 
from P. luminescens exhibit a higher thermal stability than those of their marine counterparts. To 
mimic the organization and expression of the lux genes found in prokaryotic organisms, the luxA and 
luxB genes were expressed from a single promoter and linked by an internal ribosomal entry site 
(IRES). Under this expression strategy it was determined that bioluminescence was 20 times greater 
than that reported for fused luciferases upon exposure to an n-decanal substrate. Building upon these 
findings, the remainder of the lux genes were incorporated using the same strategy, with a pair of genes 
linked by an IRES element and driven by a unique promoter. When expressed concurrently this design 
was capable of producing an easily detectable bioluminescent signal. 

Figure 5. Comparison of (A) S. cerevisiae and (B) E. coli expressing the luxCDABEfrp 
genes. Used with permission from [5]. 

 

Using the lessons learned from creation of the bioluminescent yeast strain, work was then begun to 
develop the eukaryotic lux system into a functional bioreporter for the detection of estrogenic 
compounds—a task that was not possible using prokaryotic hosts. Sanseverino et al. [45] built upon 
the lux plasmids developed by Gupta, creating a second set that constitutively expressed the luxC, 
luxD, luxE, and frp genes while regulating expression of the remaining luxA and luxB genes through 
insertion of human estrogen response elements (Figure 6). Upon exposure to estrogenic compounds, 
yeast expressing these regulated lux genes would produce a bioluminescent signal in as quickly as 1 h. 
This improved significantly over the colorimetric yeast estrogen screen, which could take as long  
as five days to produce results under identical conditions. Within two years of this successful 
demonstration of lux-based bioluminescent yeast as estrogen reporters, the same group had expanded 
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It is possible that this two plasmid expression system could itself contribute to the production of 
bioluminescence in human cells since Yagur-Kroll and Belkin [80] have recently reported that splitting 
the five lux genes into two smaller units (luxAB and luxCDE) resulted in improved bioreporter 
performance in E. coli. This increased bioluminescent production is hypothesized to be due to the 
associated enhanced transcriptional and/or translational efficiency achieved through the expression of 
smaller open reading frames, which theoretically could serve the same function in eukaryotic cells  
as well.  

Using this expression strategy, it was demonstrated that these changes were both necessary and 
sufficient for autonomous production of a bioluminescent signal when expressed in a human kidney 
cell line (Figure 8) [7]. It should be noted that bioluminescent production from the human-optimized 
lux cassette was demonstrated to be several orders of magnitude lower than that of the more common 
firefly luciferase reporter and therefore greater numbers of bioluminescent cells were required to 
produce a significantly detectable signal in both cell culture (15,000 lux-expressing cells vs. 50 firefly 
luciferase-expressing cells) and small animal imaging experiments (25,000 lux-expressing cells  
vs. 2,500 firefly luciferase cells). However, due to the autonomous nature of the lux system, 
bioluminescent production was maintained over a longer period and produced less variability than did 
the firefly luciferase system [78]. 

Figure 8. The optimization process employed by Close et al. was both necessary and 
sufficient to induce bioluminescent production from a human cell line upon expression. 
Adapted and used with permission from [7]. 

 

In one interesting experiment that took advantage of the autonomous nature of lux bioluminescence, 
constitutively bioluminescent human cells expressing the lux genes were used to evaluate the 
cytotoxicity of the aldehyde n-decanal [77]—the same aldehyde that was used by Patterson et al. [6] to 
stimulate bioluminescent production in cell extracts containing optimized luxA and luxB genes. By 
monitoring the changes in bioluminescent production following aldehyde treatment, it was possible to 
evaluate not only which concentrations were cytotoxic to the cells, but also at what time following 
exposure the effects began to take place, how long the cells were able to continue functioning under a 
diminished capacity following introduction of the aldehyde, and at what point cells succumbed to 
treatment and died. It was demonstrated that treatment with 0.00001%, 0.0001%, and 0.001% volumes 
of aldehyde did not show any changes in bioluminescence [77], despite the fact that this compound has 
been shown previously to function as a substrate for the lux reaction [6]. However, while treatment 
with a 0.1% volume of aldehyde quickly diminished bioluminescent production, treatment with 0.01% 
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from noise, the digital processing of the signal, and local communication of the result within a single, 
self contained package (Figure 10). 

Figure 10. Despite its small size, the BBIC chip contains all of the necessary circuitry for 
the detection and reporting of bioluminescent cells. By imaging directly on the chip prior 
to photons passing through host tissue, signal collection will be greatly simplified. Used 
with permission from [84]. 

 

When bioluminescent bacterial cells are interfaced to the BBIC, as few as 5,000 can be detected and 
distinguished from background [81] and it is sensitive enough to differentiate bioluminescent output 
levels stemming from changes in the concentration of the exposed stimulating analyte [81,82]. These 
devices could be paired with lux-expressing eukaryotic cells and then implanted into small animal 
models for direct internal imaging of reporter signals without the need to anesthetize or remove the 
animal from its natural habitat, offering unparalleled opportunities for studying changes in physiology 
and compound bioavailability under a wide range of conditions. Similarly, these cells could be 
complexed with microcircuitry capable of initiating hormone or therapeutic compound dosage. In this 
fashion, the lux-expressing cells could be programed to continuously monitor the body for specific 
target compounds, acting as real-time biosentinels that detect changes in physiology and whose 
resultant changes in bioluminescent output could trigger the release of counteractive compounds. This 
would allow the development of fully autonomous, implantable dose/response therapeutic devices. 

5. Conclusions 

While the use of bacterial bioluminescence as a reporter system has been employed for quite a long 
time, it is still a continually developing reporter system. There are many examples from the recent 
literature that demonstrate new and creative lux-based bacterial biosensors that are employed for 
myriad sensing applications, and there are also recent examples showing how modification of these 
genes has expanded their usage to new applications that were previously thought impossible. The 
unique ability of the lux system to produce a bioluminescent signal without exogenous substrate input 
has ensured that it will continue to find use in basic and applied scientific research for years to come. 
Whether or not it continues to be improved for function in eukaryotic cells may well decide the true 
extent of lux usage in the future, however, for the time being it remains both an interesting and 
practical example of the benefits available from an optical reporter system. 
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