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ABSTRACT Aggregation of data, including deep
sequencing of mRNA and miRNA data in jejunum
mucosa, abundance of immune cells, metabolites, or hor-
mones in blood, composition of microbiota in digesta and
duodenal mucosa, and production traits collected along
the lifespan, provides a comprehensive picture of lifelong
adaptation processes. Here, respective data from two lay-
ing hen strains (Lohmann Brown-Classic (LB) and Loh-
mann LSL-Classic (LSL) collected at 10, 16, 24, 30, and
60 wk of age were analyzed. Data integration revealed
strain- and stage-specific biosignatures, including elements
indicative of molecular pathways discriminating the
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strains. Although the strains performed the same, they dif-
fered in the activity of immunological and metabolic func-
tions and pathways and showed specific gut-microbiota-
interactions in different production periods. The study
shows that both strains employ different strategies to
acquire and maintain their capabilities under high perfor-
mance conditions, especially during the transition phase.
Furthermore, the study demonstrates the capacity of such
integrative analyses to elucidate molecular pathways that
reflect functional biodiversity. The bioinformatic reduc-
tion of the multidimensional data provides good guidance
for further manual review of the data.
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INTRODUCTION

Metabolic and mineral requirements change through-
out life in parallel with maturation, growth, and egg pro-
duction, especially from chick to sexual maturity in
pullets (»18 wk) to the onset of laying (»24 wk), as egg
production increases (»30 wk) until gradually decreas-
ing laying performance (»60 wk). During these develop-
mental phases, a dynamic balance occurs between the
changing endogenous requirements and the exogenous
factors, to which changes in the microbiota of the host
intestinal tract also contribute. Knowledge of the molec-
ular drivers that are causal for the physiological and
metabolic adaptations provides clear insights into the
ontogeny throughout the life cycle of laying hens.
Systems biology helps to decipher the complex biology
for changes during the life span of laying hens, and even-
tually reveal interactions between key features.
Phosphorus (P) and calcium (Ca) are essential

nutrients in particular for laying hens to fulfill their laying
performance. The small intestine is the main site of nutri-
ent uptake including P and Ca. Mineral P is a limited
resource globally but highly bioavailable to monogastrics,
whereas P contained in plant seeds in form of inositol phos-
phates (InsPx) cannot be efficiently utilized by monogas-
trics due to the lack or scarcity of an endogenous phytases.
In poultry, the extent of phytate (InsP6) degradation was
found to be incomplete and highly variable (Rodehuts-
cord, 2017). Different gut microbes are capable to exert
phytase and phosphatase activities affecting the availabil-
ity of plant-derived P, but in turn the gastrointestinal
microbial community is influenced by dietary supplemen-
tation with Ca, P, or phytase (Borda-Molina et al., 2016).
The host’s gut microbiota ecosystem is a gateway to the

host organism and is constantly exposed to feed compo-
nents and foreign antigens. Changes in various aspects of
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host physiology related to metabolism, immune defense,
energy allocation, and health status are influenced by the
gut microbiota (Barko et al., 2018). Conversely, the micro-
biota is dynamic and changes according to the age, nutri-
tion, and health status of the host (Ottman et al., 2012;
Heinritz et al., 2016).

In our previous studies, animals of 2 laying hen strains
(Lohmann Brown-Classic [LB], Lohmann LSL-Classic
[LSL]) were studied over 5 developmental stages. These
studies focused on individual data sets at various biolog-
ical levels, such as physiological, endocrine, metabolic,
immune, and transcriptomic (Sommerfeld et al., 2020a;
Gonzalez-Uarquin et al., 2021; Omotoso et al., 2021;
Ponsuksili et al., 2021; Schmucker et al., 2021). All data
sets were obtained with the same animals. Although the
LB and LSL strains have been selected for egg produc-
tion (http://www.ltz.de/en/layers/), achieving approxi-
mately identical performances, they have also been
extensively monitored to ensure high standards of bone
mineralization, egg quality, and animal welfare
(Kaufmann et al., 2011; Habig et al., 2012). However, it
is evident that the LB and LSL layer strains achieve
these performances against a background of significantly
different metabolic strategies and resource allocation
(Iqbal et al., 2022) related to P, including InsP6 concen-
tration, phosphatase, phytase, and myo-inositol oxygen-
ase (MIOX) activities in different parts of the
gastrointestinal tract (Sommerfeld et al., 2020b). LSL
hens showed lower body weight but similar average egg
weight compared to LB hens throughout the trial
(Sommerfeld et al., 2020b). Strain effects also existed in
hormones involved in P and Ca homeostasis, including
triiodothyronine, estradiol, calcidiol, and calcitriol
(Omotoso et al., 2021). LSL hens seem to have a rather
adaptive immunological phenotype, while LB hens have
a pronounced innate immunological phenotype
(Hofmann et al., 2021). These findings were confirmed
at the molecular level of miRNAs and their target tran-
scripts, which show that in LB, miRNA target tran-
scripts were enriched for metabolic pathways, whereas
in LSL, miRNA targets were more abundant for immune
and inflammatory processes (Ponsuksili et al., 2021).
The microbial community differed significantly between
strains and gut sections. The marked changes in
nutrients, especially Ca, from pre-laying to laying
between 16 and 24 wk of age, resulted in the most strik-
ing difference not only in metabolic, endocrine, immuno-
logical and transcriptomic traits, but also in the gut’s
microbial community (Sommerfeld et al., 2020b; Gonza-
lez-Uarquin et al., 2021; Omotoso et al., 2021;
Ponsuksili et al., 2021; Schmucker et al., 2021).

Although individual analysis of each dataset for the 2
strains of laying hens across the production period
revealed specific differences (Sommerfeld et al., 2020a;
Gonzalez-Uarquin et al., 2021; Omotoso et al., 2021;
Ponsuksili et al., 2021; Schmucker et al., 2021), a holistic
and integrated multi-omics perspective across the lifespan
of hens is lacking. The integration of multi-omics analyses
may reveal dynamic molecular and physiological changes
in host-gut microbiome interactions at different
production periods for the 2 strains of laying hens. Conse-
quently, building on previous studies and datasets, we
have compiled a comprehensive systems biology study
throughout the entire production period of LB and LSL
laying hens. By including deep sequencing of mRNA and
miRNA data in jejunum mucosa, the abundances of
immune cells, metabolites or hormones in blood, and the
microbiota composition in both digesta and duodenal
mucosa, we detected longitudinal changes consistent with
age- and strain-dependent changes in functional path-
ways. We also identified biosignatures that may be of rel-
evance for characterizing breed-specific molecular and
physiological changes. Finally, host-microbiome interac-
tions and changes in immune and metabolic systems were
performed in relation to physiological and performance
traits.
MATERIALS AND METHODS

Experimental Procedures, Samplings, and
Measurements

All the data for the research presented here originated
from several recently published works
(Sommerfeld et al., 2020a; Gonzalez-Uarquin et al.,
2021; Omotoso et al., 2021; Ponsuksili et al., 2021). In
order to supplement the understanding of these current
findings and to help this manuscript stand alone, a brief
detail of the experiment is described. All animal used in
the experiment was conducted in accordance with the
German Animal Welfare Legislation approved by the
Regierungspr€asidium T€ubingen (approval number
HOH50/17TE). The animal experiment was performed
in a 2 £ 5 factorial arrangement with laying hen strain
and stage of production as factors as detailed in
Sommerfeld et al.( 2020a). A total of 100 laying hens of
the strains Lohmann LSL-Classic (LSL) and Lohmann
Brown-Classic (LB) were used. The hens were fed with a
corn-soybean meal-based diet with recommended P and
Ca levels. The feed formulations covered starter, grower,
pre-laying (PL), and laying diets. The feed was formu-
lated to minimize plant-based phytases and contained
no exogenous phytases of microbial origin. Birds were
sampled at weeks 10, 16, 24, 30, and 60 of life to cover
relevant periods of the production cycle, that is, pullets,
pre-layer, onset of laying, peak of laying, and senescence.
Hens were stunned and subsequently slaughtered by
exsanguination at 0900 to 1400 h. Trunk blood or vein
blood was collected dependent on the targets of analysis
based immune, metabolites, P, Ca, myo-inositol or hor-
mones. Tissue samples for transcriptome profiling were
collected from jejunum mucosa, while digesta and
mucosa from duodenum were collected for microbiome
analysis.
Data Integration

Raw data preprocessing of mRNA and miRNA were
previously reported (Omotoso et al., 2021;
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Ponsuksili et al., 2021). In brief, after quality control and
preprocessing of raw sequencing reads was performed,
low-quality reads were removed. The resulting reads
were mapped to the chicken genome assembly (GRCg6a,
Ensembl release 95). Further, transcripts read counts
(mRNA and miRNA) were transformed using a vari-
ance-stabilizing transformation method implemented in
DESeq2 and used as input for further analysis
(Love et al., 2014). Immune data from the same birds
were collected (Schmucker et al., 2021), counts of
immune cells in the blood, spleen, and cecal tonsil were
log2 transformed. Metabolome data (Gonzalez-
Uarquin et al., 2021) were normalized by logarithmic
transformation, mean-centered, and divided by the
square root of the standard deviation of each variable
(Pareto scaling) using MetaboAnalyst 4.0 (Chong et al.,
2018). Microbiota data was represented as amplicon
sequence variant (ASV) that was deduced from 16S
rRNA sequencing from the duodenal mucosa and the
duodenal digesta of LB and LSL. Initially, ASVs were
assigned to taxa at the genus level and were filtered so
that only taxa with more than one observation in at
least half of the samples were considered. The normal-
ized ASV abundances of microbiota were further trans-
formed using a variance-stabilizing transformation
method implemented in DESeq2 and used as input for
further analysis (Love et al., 2014). Other phenotypic
traits such as body weight, feed intake, Ca, and P traits
from a previous study of the same animals were used as
raw data (Sommerfeld et al., 2020a).

In order to generate predictive models to identify bio-
signatures along the lifespan, between age and strain,
and focusing particularly on strain-specific features in
the transition period based on the 6 datasets of biologi-
cal categories, we used the supervised framework for
multi-block sPLS discriminant analysis (sPLS-DA).
This Data Integration framework for Analysis and Bio-
marker discovery (DIABLO, available in the R package
‘mixOmics’ (version 6.17.1)) (Rohart et al., 2017;
Singh et al., 2019b) uses Latent components, linear com-
binations of associated latent variables.

DIABLO can be used to integrate complex data sets
of heterogeneous origin generated by different platforms
and measured on different scales. To evaluate the num-
ber of parameters, global performance, balanced error
rate (BER), select the optimal metric distance, and
determine the number of components for our block.
splsda analysis, we used the evaluation function perf()
from DIABLO. As input arguments we used the block.
splsda object, Mfold validation (folds = 10), repeated
the cross-validation (50 repetitions). We fine-tuned our
model using tune.block.splsda() function, and deter-
mined the optimal number of variables kept for our final
block.splsda analysis and downstream analysis. The out-
put from the evaluation step perf() was used to perform
the M-fold cross-validation within the tune.block.splsda
() step. We used the centroid distance, as our tune.
block.splsda() results suggested it produced the best
accuracy estimates. The overall balanced error rate
(BER) was used to determine the optimal number of
components. In our case, 2 or 3 components were used
depending on the comparison group, which can reduce
the balanced error rate (BER) < 0.2.
We then applied the mixomics block.splsda() function

using our data as input, and the features to select from
each component. The discriminant analysis results were
visualized by circosplot() functions. While using cisrcus-
plot() function, we applied a coefficient score (r = 0.8)
over components.
Gene ontology and KEGG pathway enrichment anal-

yses were performed for a full set of gut mRNAs corre-
lated with biosignature immune cells and microbiota at
cutoff criteria of P ≤ 0.01 and r ≥ § 0.6 for LB and LSL
separately. These correlated mRNAs were subjected to
gene ontology enrichment analysis using DAVID (ver-
sion.6.8), while pathway enrichment analysis using
ClueGO generated the KEGG pathway enrichment net-
works (Bindea et al., 2009; Bindea et al., 2013).
RESULTS

The integration of different biological datasets revealed
changes orchestrated in different tissues, including
metabolites and immune cells in blood, mRNA and
miRNA transcripts in jejunum mucosa, and microbiota
both in duodenum digesta (DD) and mucosa (DM).
This integration also highlighted their interaction within
the host (Figure 1A). We used 6 datasets including 58
immune traits, 209 microbial taxa, 291 miRNAs, 13689
mRNAs, 11 zootechnical or physiological traits, and 183
metabolites, enzymes, or hormones across five production
periods of LB and LSL strains. Our results identify bio-
signatures in 3 categories: along the lifespan, between age
and strain, and finally with a particular focus on strain-
specific features in the transitional period at the onset of
egg laying (Figure 1A). Therefore, mRNA transcripts
that were shown to correlate with strain-specific biosigna-
tures of immune cells and microbes in the transition
period were analyzed using DAVID (version 6.8) for
Gene Ontology (biological processes) and KEGG path-
way enrichment (Figure 1B).
Longitudinal Profile Changes Over the Life
Span

For integration, classification, feature selection, and
visualization of longitudinal data that change across the
lifespan, we used a multiblock discriminant analysis for
Omics studies using DIABLO (Data Integration Analysis
and Biomarker discovery using Latent variable
approaches). DIABLO uses multi-omics integrative meth-
ods to identify common information across complex data-
sets with a small number of samples (Rohart et al., 2017;
Singh et al., 2019a). It also enables the selection of subsets
of the most discriminant features between the time points
without considering strains, over 2 derived components
with a balanced error rate (BER) <0.2. Each block of data
including mRNA, miRNA, microbiota, phenotype,
immune and metabolome showed the separation between



Figure 1. Flowchart of the main steps for biosignature analysis in different groups using mixOmics. (A) The features from different organs, age
groups, and strains were used as input. Biosignatures were identified along the hen lifespan, between age and hen strain, and strain-specific in the
transition phase to egg laying. (B) Whole gut transcripts correlated with identified specific biosignatures of immune cells and microbes differing
between strains in transition period were analyzed using DAVID (version 6.8) for Gene Ontology (biological processes) and KEGG pathway enrich-
ment analysis.
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pre- (10 and 16 wk) and post-laying onset (24 and 30 wk).
In addition, at 60 wk of age, mRNA and metabolome
blocks showed a clearly separation from other time points
(Figure 2). In summary 15 mRNAs, 14 miRNAs, 9 micro-
bial taxa, 24 immune traits, 20 metabolites, and 9 pheno-
types over 2 component sets were revealed as optimal
omics to separate the laying hens age of 10, 16, 24, 30, and
60 wk (Supplementary Table 1). The heat map of the bio-
marker panel showed 3 major clusters covering the pre-lay-
ing period (10 and 16 wk), the onset/peak of laying (24
and 30 wk) and the end of the laying period (60 wk)
(Figure 3).

Discriminant features with different abundances
before (wk 10, 16) and after onset of laying (wk 24, 30,
60) were found associated with strong metabolic
changes. Features being higher abundant at the early
stages cover the transcripts VSIG10, PEBP1 and the
miRNAs miR181-5p, miR122-5p, miR-1782, miR-184-
3p, and let-7d. At later time points (24−60 wk), several
key features emerged such as miR-29b-3p, mRNAs
including STARD, MSMMO1, and HMGCR, microbes
assigned to Lactococcus, Veillonella, Fusobacterium,
metabolites represented by phosphatidylcholines, most
of the phenotypes and immune cells (thrombocyte, B
cell, CD8 T cell in spleen and cecal tonsil). Some clusters
showed higher abundance in the range of 10 to 30 wk,
with most features belonging to immune cells in blood
and spleen. Some clusters showed patterns essentially
marked by higher abundance at 24 wk and 30 wk, that
is, due to major changes around the start of laying, con-
trasting with their levels at wk 60. This pattern belongs
to transcripts of mRNA (PLA2G6, NDEL1, ENS-
GALG00000002389, PPARD, ST14, SLC13A2, IRF1,
AP2B1, PAPSS2, and SBNO2) and miRNA (gga-miR-
184-3p, gga-miR-130b-3p, gga-miR-21-5p, mmu-miR-
6240, mmu-miR-3968, gga-miR-425-5p, gga-miR-2954,
and gga-miR-1306-5p). Microbes assigned to Enhydro-
bacter and Mycoplasma also appeared prominent at 24
wk while Brachyspira and Alloprevotella were dominant
at 60 wk.
Identification of Biosignatures Related to
Age and Strain

Our aim was also to identify biosignatures of key
molecular features whose correlated expression is typical
for each experimental group and thus reveal an overall
distinction and insight into the recruitment of metabolic
pathways and endogenous resources. Therefore, we inte-
grated 6 datasets using DIABLO that revealed highly
correlated multi-omics signatures to discriminate groups
by their genetic background (LB and LSL) and produc-
tion period (wk 10, 16, 24, 30, 60) over three components
with the balanced error rate (BER) <0.2.
All features identified as specific biosignatures of each

group are summarized in a circus plot in Figure 4. As
detailed in the circos plot these biosignatures selected by



Figure 2. Sample plots for each multi-omics panel depicting a considerable separation between production periods using supervised methods in
the R Package mixOmics as the basis for identify key molecular drivers from the panels.

MULTI-OMICS DATA OF TWO LAYING HEN STRAINS 5
DIABLO consist of 40 mRNAs, 14 miRNAs, 15 micro-
bial taxa, 30 metabolites, 45 immune traits, and 15 other
phenotype traits (Supplementary Table 2). Seven out of
40 mRNAs belong to metabolic pathways (gga01100):
AKR1E2, HMGCR, IVD, MSMO1, MTHFS, PAPSS2,
and ST6GALNAC1. The set of 14 selected miRNAs
comprises interesting transcripts such as gga-miR-181b-
5p and gga-miR-122-5p (Supplementary Table 2). The
abundance of Lactococcus and Veillonella in duodenal
mucosa and digesta was determined as biomarkers for
different production periods and strains. Plasma metab-
olites, including phosphatidylcholine, lysophosphatidyl-
choline, and inositol derivatives in the gut, are also part
of the biomarker panels. Many immune cell counts
whether they are from spleen (S), cecal tonsils (CT) or
blood (B) are part of the bio-signatures. Finally, other
phenotype traits including body weight, feed intake and
Ca intake as well as P and Ca utilization or excretion
considerably contributed to the distinction of groups. In
terms of biosignatures, we found transcripts of HMGCR,
MSMO1, STARD4, and FOCAD strongly positively
correlated with phosphatidylcholine, blood Ca, Ca
intake, Lactococcus, and body weight (r > 0.9; Figure 4).
A highly negative correlation was observed between
VSIG10 and miRNA-181b-5p transcripts with phospha-
tidylcholine, blood calcium, Ca intake, Lactococcus and
body weight (r < �0.9).
Biosignatures Specific to Laying Hens Strain
With Focus on the Transition Period

When comparing LB and LSL strains, we focused on
16 and 24 wk as transition period. At 16 wk, a total of 48
features were identified to discriminate between LB and
LSL (Supplementary Table 3, Figure 5). For biomarker-



Figure 3. Heatmap of key molecular drivers from multi-omics assays in each production period group. The features cluster into pre-layer (10−16
wk) and layer (24−60 wk) periods. Features were labeled on the left with different colors: red for miRNA, purple for mRNA, green for immune cells,
black for microbes, blue for metabolites, and brown for phenotypes.
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specific laying hens strain focus on transition period,
only 2 latent components are needed to lower the bal-
anced error rate (BER) <0.2. Interestingly, all immune
cell counts were higher in LSL than LB at 16 wk. In
addition, the HCK transcript correlated strongly with
CD8-gd-T cells, miR-7460-3p, Terrisporobacter, and
serum serine. ENSGALG000048571 and brain-specific
serine protease (PRSS22) correlated negatively with
CD8- gd T cells, miR-7460-3p, serum serine, and Terri-
sporobacter. We further investigated the functional
annotation of gut mRNA transcripts associated with the
consistent patterns of discriminating biosignatures of
immune cells. We found that the expression levels of 89
to 3,341 transcripts were correlated with the counts of
different immune cells (Figure 6A) belonging to biologi-
cal processes (Figure 6B) and KEGG pathways such as
apoptosis signaling, autophagy, immune response, or
cytokine-cytokine receptor interaction (Figure 6C).
Moreover, four microbial taxa were identified, including
Catabacter, Christensenella, and Collinsella, which were
more abundant in the LB strain, while Terrisporobacter
was more abundant in the LSL strain (Figure 7A). In
addition, the relationship between host gut transcripts
and the identified microbiota was investigated. Tran-
scripts that correlated with Terrisporobacter were
enriched in biological processes of response to stimuli or
regulation of transport (Figure 7C). The LB enriched
transcripts that correlated with the microbiota are
related to metabolic pathways, in particular, oxidative
phosphorylation, inositol phosphate metabolism, ribo-
some, and insulin signaling pathways of the KEGG
pathways (Figures 7B and 7D).
At 24 wk of age, 87 features revealed differential

resource allocation between LB and LSL shortly after the
onset of laying (Supplementary Table 4, Figure 8). Posi-
tive correlations occur between HCK, total T-cell count,



Figure 4. Circos plot displaying the significant biosignatures from multiple blocks over the three components. The selected biomarkers were rep-
resented on the side of the circos plot with the block of immune (green), metabolome (blue), mRNA (purple), miRNA (pink), microbiota (gray) and
phenotype (orange). Coloured lines in the outer circle indicate expression level in each group. The yellow and black colours within the circle link fea-
tures and indicate a negative or positive correlation, respectively.
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the abundance of Blautia, miR-181a-5p and miR-7460-
3p, whereas the novel gene ENSGALG00000006083
(Lamin-L(III)-like) was negatively correlated with total
T-cell count and Blautia. Six out of 10 immune cell types
were more abundant in LSL than LB (Figure 9A). The
number of intestinal transcripts correlated with the num-
ber of immune cells ranged from 131 to 3,251, and these
were enriched in at least 15 biological process in LB
(Figure 9B) and LSL (Figure 9C) as well as in signaling
pathways, including immune system processes
(Figure 9D). Out of the 7 microbiota features that were
identified, 5 were more abundant in LSL: Blautia, Bacter-
oides, Ruminococcaceae (unclassified), Paracoccus, and
Prevotella. In LB, the Anaerobiospirillum and Entero-
bacter microbiota were more abundant (Figure 10A).
Most correlated transcripts were found with Bacteroides
or with Blautia. Biological processes and pathways of
transcripts correlated with microbes in LB and LSL were
shown in Figures 10B−10D. Transcripts negatively corre-
lated with Bacteroides or Blautia were enriched in the
metabolic pathways of oxidative phosphorylation, citrate
cycle (TCA cycle), propanoate metabolism, and pyruvate
metabolism. For unclassified Ruminococcaceae, nega-
tively correlated transcripts were enriched most in protea-
some, RNA polymerase, and ribosome. While positively
correlated transcripts from Bacteroides, Blautia, and



Figure 5. Circos plot indicating the significant biosignatures from multiple datasets based on the Pearson correlation coefficient |r = 0.8| over
the two components. The selected biomarkers were represented in the inner circle. Similarly to Figure 4, the purple, green, pink, blue, gray, orange
dashed lines outside the circos indicate each data type. The black link suggests a positive correlation, while the yellow link depicts a negative correla-
tion. The red and green lines represent the features’ expression in LB and LSL at (wk-16), respectively.

8 PONSUKSILI ET AL.
unclassified Ruminococcaceae showed no enrichment
in pathway analysis. Interestingly, intestinal transcripts
correlating with Anaerobiospirillum were enriched
in D-myo-inositol (1,4,5)-trisphosphate degradation
(P = 6.9£10�6).
DISCUSSION

In this study, we describe the results of an integrated
longitudinal multi-omics analysis of the gut microbiome,
metabolome, host intestinal transcripts (mRNA and
miRNA), immune cells, and other phenotypic traits of 2
laying hen strains along 5 production periods.

Abundances of molecular features of longitudinal
changes and separate the pre-laying and egg-laying
period for both strains. Transcripts from the phosphati-
dylethanolamine binding protein 1 (PEBP1) and V-set
and immunoglobulin domain containing 10 (VSIG10)
were strongly expressed in the intestine at the pre-laying
period. The intestine is a tissue with high cell turnover
and a lifelong regenerative function of stem cells.
PEBP1 has been connected with the regenerative poten-
tial of intestinal stem cells, it is highly expressed in intes-
tinal enterocytes, and downregulated with age and
under oxidative stress (Pyo et al., 2018). VSIG10 is
involved in cell to cell adhesion, may relate to stem cell
function, and has an unexamined role in colonic pathobi-
ologies (Iftikhar et al., 2022). Similarly, miRNA-122-5p
and miR-181b-5p were more abundant in the pre-laying
period in both strains. These two miRNAs were previ-
ously found to be associated with inositol phosphate
metabolism (Ponsuksili et al., 2021), cell proliferation
(Yang et al., 2018), phosphatidylcholine, blood Ca, as
well as lipid metabolism, including bile acid metabolism
in hepatocytes and enterocytes (Ito and Adachi-Aka-
hane, 2013).
Microbial taxa including Fusobacterium, Lactococ-

cus, and Veillonella were more abundant in laying
period with specific demands for egg production.



Figure 6. Gene Ontology and KEGG pathways enrichment analysis of mRNAs correlated with immune cell types within LB and LSL at wk 16.
(A) The bar chart indicates the number of mRNAs correlated with immune cell types at P ≤ 0.01 in LSL. The green bar shows the abundance of
immune cell types in LSL, while no immune cell type was identified in LB. (B) Gene Ontology enrichment analyses (biological process) for tran-
scripts correlated with immune cell types in LSL. The size of the dots represents the number of transcripts involved in each biological process, while
the color indicates the significance. (C) KEGG pathway enrichment analysis of mRNAs correlated with immune cells in LSL. The pie charts indicate
the strain-specific proportions of mRNAs correlated with immune cells to the KEGG pathways. The green ellipse depicts mRNAs correlated with
immune cells in LSL. KEGG pathways and biological processes with P ≤ 0.05 were considered significant.
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Fusobacterium was identified as potential butyrate pro-
ducer (Vital et al., 2014), while Lactococcus and Veillo-
nella were reported to contribute to phytate
degradation (Reyer et al., 2021) and digestion of
Figure 7. Gene Ontology and KEGG pathways enrichment analysis of
16. (A) The bar chart indicates the number of mRNAs correlated with micro
microbes in LSL and the red bars depict more abundant microbes in LB. (B
transcripts correlated with microbes in LB and LSL, respectively. The size of
process, while the color indicates the significance. (D) KEGG pathway enric
The pie charts indicate the strain-specific proportions of mRNAs correlated
correlated with microbes in LB, and the green ellipse depict mRNAs corre
with P ≤ 0.05 were considered significant.
cellulose (Sun et al., 2016). Many studies have
highlighted the importance of these microbiota-derived
short-chain fatty acids (SCFAs) such as butyrate,
which serves as primary energy sources in the gut and
mRNAs correlated with duodenal microbiota within LB and LSL at wk
bes at P ≤ 0.01 within LB and LSL. The green bar shows more abundant
and C) Gene Ontology (biological processes) enrichment analysis for the
the dots represents the number of transcripts involved in each biological
hment analysis of mRNAs correlated with microbes within LB and LSL.
with microbiota in the KEGG pathways. The red ellipse shows mRNAs
lated with microbes in LSL. KEGG pathways and biological processes



Figure 8. Circos plot indicating the significant biosignatures from multiple datasets. The plot shows Pearson correlation coefficients |r = 0.8|
over the two components. The selected biomarkers are represented in the inner circle. Similarly, the purple, orange, blue, green, pink, gray dashed
lines outside the circos indicate each data type. The black link suggests a positive correlation, while the yellow link depicts a negative correlation.
The red and green lines represent the feature expression in LB and LSL at (wk-24), respectively.
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also acts as an immunomodulatory agent (LIT)
(Qin et al., 2012; Karlsson et al., 2013). We found highly
positive correlation between Lactococcus, Veillonella,
and Fusobacterium and splenic immune cell counts that
were elevated in the laying period. The knowledge how
specific microbiota shift or modulate the immune system
is still limited.

Among the selected features from the group of tran-
scripts, those with higher abundance after onset of lay-
ing are steroidogenic acute regulatory protein-related
lipid transfer 4 (STARD4), methylsterol monooxyge-
nase 1 (MSMO1) and 3-hydroxy-3-methylglutaryl-CoA
reductase (HMGCR). STARD4 is an important choles-
terol transporter involved in sterol sensing and main-
taining lipid homeostasis (Iaea et al., 2020). HMGCR
belonging to mevalonate pathway enzymes also plays a
role in cholesterol synthesis and is the rate-limiting
enzyme for cholesterol synthesis, mostly occurring in
liver. Many digestive enzymes can be secreted from the
intestinal epithelial cells into the intestinal lumen to
metabolize lipids. Therefore, transcripts related to lipid
metabolism pathways were also observed in mammalian
and fish small intestines (Tokuhara et al., 2014;
Okamura et al., 2021). As shown here, HMGCR displays
high expression after onset of laying, whereas miR-122,
a microRNA also involved in lipid metabolism, was
highly expressed in pre-laying phase. Hepatic knock-
down of miR-122 significantly decreased serum triglycer-
ide and total cholesterol levels (Lagos-Quintana et al.,
2002). MiR-122 indirectly downregulated a set of genes
involved in cholesterol biosynthesis, including HMGCR
and HMGCS1 (Esau et al., 2006). Consistent with other
studies, this study showed that HMGCR and HMGCS1
were downregulated even in the intestinal mucosa,
whereas miR-122 was more pronounced in the prelaying
phase and conversely after the onset of laying. Similarly



Figure 9. Gene Ontology and KEGG pathways enrichment analysis of mRNAs correlated with immune cell types for LB and LSL at wk 24. (A)
The bar chart plot shows the number of mRNAs correlated with immune cell types at a significance level of P ≤ 0.01 for LB and LSL. The green bars
show abundant immune cell types in LSL and the red bars indicate abundant immune cell types in LB. (B and C) Gene Ontology (biological pro-
cesses) enrichment analysis for the transcripts correlated with immune cell types in LB and LSL, respectively. The size of the dots represents the
number of transcripts involved in each biological process, while the color indicates its significance. (D) KEGG pathway enrichment analysis of
mRNAs correlated with microbes for LB and LSL. The pie charts indicate the strain-specific proportions of mRNAs correlated with microbiota in
the KEGG pathways. The red ellipse shows mRNAs correlated with immune cell types in LB, and the green ellipse depict mRNAs correlated with
immune cell types in LSL. KEGG pathways and biological processes with P ≤ 0.05 were considered significant.
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to STARD4 and HMGCR, MSMO1 is also involved in
cholesterol biosynthetic process. All this evidence sug-
gests that lipid metabolism in the intestine is important
Figure 10. Gene Ontology and KEGG pathways enrichment analysis of
24. (A) The bar chart indicates the number of mRNAs correlated with micr
more abundant microbes in LSL and the red bars depict more abundant mic
analysis for the transcripts correlated with immune cell types in LB and LSL
involved in each biological process, while the color indicates its significanc
microbes within LB and LSL. The pie charts indicate the strain-specific pro
The red ellipse shows mRNAs correlated with microbes in LB and the green e
and biological processes with P ≤ 0.05 were considered significant.
during the laying period. The shifts in abundances of
transcripts, microbiota, and metabolites from the pre-
laying period to the laying period may relate to the
mRNAs correlated with duodenal microbiota within LB and LSL at wk
obes at a significance of P ≤ 0.01 for LB and LSL. The green bars show
robes in LB. (B and C) Gene Ontology (biological processes) enrichment
, respectively. The size of the dots represents the number of transcripts

e. (D) KEGG pathway enrichment analysis of mRNAs correlated with
portions of mRNAs correlated with microbiota to the KEGG pathways.
llipse depict mRNAs correlated with microbes in LSL. KEGG pathways
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metabolic and nutritional requirements exerted by the
production of eggs in both strains.

Several of the selected features that differentiate
across the chicken life cycle showed peak expression lev-
els at 24 wk, including microbes assigned to Enhydro-
bacter and Mycoplasma, as well as several mRNA and
miRNA transcripts. Phospholipase A2 group VI
(PLA2G6) was one of the biosignatures for the onset of
egg laying. PLA2G6 expression was more pronounced
during the laying period and it was weakened after 30
wk. Deficiency of PLA2G6 caused a decline in important
homeostatic genes in the intestine, leading to the devel-
opment of gastrointestinal diseases and sensitizing to
gastrointestinal damage with age (Jiao et al., 2017).
IRF1, which involves the biosynthesis of interleukin-12
production, was found to be also part of this profile.
Microbial stimulation enables IRF8 to associate with
other transcription factors, including IRF1, to induce
immune response genes (Mancino et al., 2015). IRF1
was also reported as a potential gene regulatory factor of
Irf1 gene in bone metabolism (Salem et al., 2014).

While immune cells, especially from the blood, were
predominantly present in the period before laying, the
immune cells from the spleen and cecal tonsil were domi-
nant in the period of laying. Egg-laying activity seems to
alter the immune system toward a more pronounced
humoral and innate immune response (Schmucker et al.,
2021). In laying hens, particularly during laying activity,
infectious diseases were shown to account for up to 12%
of deaths (Herwig et al., 2021). The laying period, as a
stress period in laying hen, is accompanied by shifts in
immune cells, immune pathways, and interactions with
particular gut microbiota, for instance, Enhydrobacter
and Mycoplasma. These two genera exhibited highly
abundance at 24 wk. Although many species of Myco-
plasma can infect laying hens, onlyMycoplasma gallisep-
ticum and Mycoplasma synoviae are pathogenic for
chickens. In our study, Mycoplasma penetrans was iden-
tified. Integration of microbiota, immune and tran-
scripts data confirmed that innate immune response cell
along with interleukin-12 production transcript and
microbiota composition dominated in the laying phase.

Further we identified omics-biosignatures consist of 40
mRNAs, 14 miRNAs, 15 microbial taxa, 30 metabolites,
45 immune traits, and 15 other phenotype traits derived
from three component sets per age group and per strain.
Transcripts of metabolic pathways were strong biosigna-
tures for discrimination of production period and strain
including AKR1E2, HMGCR, IVD, MSMO1, MTHFS,
PAPSS2, and ST6GALNAC1. Biosynthesis of interleu-
kin-12 production (IRF1) and IL-15 production (IRF1
and HCK) were also identified as biosignatures. Hemato-
poietic cell kinase (HCK), a member of the Src family of
non-receptor tyrosine kinases (NRTKs), is mainly
expressed in myeloid cells and highly expressed in mac-
rophages during macrophage activation. HCK is
involved in various inflammatory responses
(English et al., 1993). Interestingly, this transcript was
highly expressed in LSL at all stages compared to LB
strain. Consistent with our previous study, miRNAs are
part of the biosignature targeting transcripts related to
pathways of energy metabolism (mmu-miR-6240, gga-
miR-12258-3p, and gga-miR-2131-3p) and inositol phos-
phate metabolism (miR-181b-5p, miR-122-5p, and miR-
1454).
Focussing on differences between wk 16 and 24, asso-

ciated with most prominent physiological changes due
to the onset of laying, in both strains we found that the
features such as HCK, CD8� gd T cells, total T cells,
miR-7460-3p, miR-181a-5p, Terrisporobacter, Blautia,
and serine in serum were more abundant in LSL than
LB. The role of Blautia in inflammatory and metabolic
diseases and its probiotic properties have been previ-
ously reviewed (Liu et al., 2021). We also found gut
transcripts that negatively correlated with Blautia were
enriched in metabolic and energy metabolism pathways.
Therefore, the greater abundance of Blautia in LSL
might be related to the greater abundance of immune
cells, the higher defensiveness and the reduced metabolic
process of LSL. This association implies the strong host-
gut interaction in the LSL strain. The study previously
conducted on the same birds, looking only at immune
cells, also confirms that certain life stages were associ-
ated with changes in the number and function of
immune cells in LB and LSL hens (Schmucker et al.,
2021). In this context, the innate and humoral immune
response is more pronounced in LB hens, while the cellu-
lar arm of the immune system is more pronounced in
LSL hens (Hofmann et al., 2021; Schmucker et al.,
2021). Previous studies have shown that interactions
between gut microbiota and host stimulate the host
immune system (Thaiss et al., 2016).
Our previous study reported that miRNAs, including

miR-181b-5p, miR-99a-5p, miR-145-5p, miR-122-5p,
let-7b, miR-143-3p, miR-21, and miR-221-3p, modulate
the expression of host genes enriched in inositol phos-
phate metabolism and immune signaling pathways, with
the most pronounced changes at 16 to 24 wk of age
(Ponsuksili et al., 2021). Phytate (inositol hexakisphos-
phate) is a form of phosphate storage in plant seeds and
is thus present in laying hen diets. Microbial phytase
contributes to the intestinal degradation of inositol
phosphates, simultaneously releasing P and lower inosi-
tol phosphates (Stentz et al., 2014). Microbiota-derived
inositol phosphate, InsP3, was shown to regulate the his-
tone deacetylase 3 (HDAC3) activity promoting epige-
netic changes and epiothelial repair in the host intestine
(Wu et al., 2020). Interestingly, we found a number of
histone deacetylase, differently expressed between 16 wk
compared to 24 wk (FDA <5%) in both strains. HDAC3
was downregulated in LSL compared to LB strain at 24
wk (FDR <5%). Interestingly, the correlation of host
transcripts with the microbiota of the LB indicated
enrichment for inositol phosphate metabolism at both
wk 16 and 24. The LB strain, which is particularly prom-
inent in the metabolic pathways during the laying peri-
ods, underwent a development of symbiotic host-
microbiota relationships due to its beneficial commensal
microbiota. In contrast, the immune system played a
prominent role in the LSL strain, as evidenced by the
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abundant immune cells in many organs such as blood,
spleen, and cecal tonsils. This recent integration of omics
data confirms that LB and LSL strains employ different
inherent strategies to acquire and maintain their
immune and metabolic systems under high-performance
conditions (Iqbal et al., 2022).

The onset of the laying period is also characterized by
changes in a number of traits specific to each of the 2
strains. These findings confirm that in LB and LSL, dif-
ferences in body weight and feed intake and utilization,
are associated with further changes in molecular traits,
such as abundances of metabolites and transcripts
related to energy metabolic pathways, as well as the
immune system and microbiota that occur at this critical
period (Sommerfeld et al., 2020a, 2020b; Omotoso et al.,
2021; Ponsuksili et al., 2021).

The mechanistic, bioinformatic integration of data
from different biological levels provides biosignatures
specific to the strains and production time points consid-
ered, consisting of biomarkers that are key in terms of
best discrimination. A number of them are also indica-
tive in terms of molecular pathways taken differently in
the 2 strains. The study confirms the previously shown
differences between the strains in terms of the activity of
immunological and metabolic functions and pathways,
highlighting in particular that interaction between host
and gut microbiota play an important role in immune
response and metabolic homeostasis at different genetic
backgrounds and in different production periods. How-
ever, the reduction in data dimension and fragmentation
of data at different biological levels complicate the auto-
matic functional annotation of biosignature features and
do not absolve the need to manually inspect specific
pathways.
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