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Abstract

Influenza is an infectious disease that primarily attacks the respiratory system. Innate immu-
nity provides both a very early defense to influenza virus invasion and an effective control of
viral growth. Previous modelling studies of virus—innate immune response interactions have
focused on infection with a single virus and, while improving our understanding of viral and
immune dynamics, have been unable to effectively evaluate the relative feasibility of differ-
ent hypothesised mechanisms of antiviral immunity. In recent experiments, we have applied
consecutive exposures to different virus strains in a ferret model, and demonstrated that
viruses differed in their ability to induce a state of temporary immunity or viral interference
capable of modifying the infection kinetics of the subsequent exposure. These results imply
that virus-induced early immune responses may be responsible for the observed viral hier-
archy. Here we introduce and analyse a family of within-host models of re-infection viral
kinetics which allow for different viruses to stimulate the innate immune response to differ-
ent degrees. The proposed models differ in their hypothesised mechanisms of action of the
non-specific innate immune response. We compare these alternative models in terms of
their abilities to reproduce the re-exposure data. Our results show that 1) a model with viral
control mediated solely by a virus-resistant state, as commonly considered in the literature,
is not able to reproduce the observed viral hierarchy; 2) the synchronised and desynchro-
nised behaviour of consecutive virus infections is highly dependent upon the interval
between primary virus and challenge virus exposures and is consistent with virus-depen-
dent stimulation of the innate immune response. Our study provides the first mechanistic
explanation for the recently observed influenza viral hierarchies and demonstrates the
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Author Summary

Infection with the influenza virus is responsible for serious morbidity and mortality. In
otherwise-healthy individuals, infection is usually acute, lasting between 5 to 10 days. Over
this time, the virus initially replicates rapidly, before peaking and then being cleared from
the body. Despite extensive study, we do not yet fully understand the processes which lead
to viral control and viral clearance from the host. Experimental and modelling studies of
single infections have previously indicated that both the innate and adaptive immune
responses play an important role in combating infection. Here we study a novel dataset on
how the host responds to sequential exposure to two different strains of influenza. We
introduce a family of mathematical models of the within-host dynamics of influenza infec-
tion which allow for re-infection. Our models allow us, for the first time, to differentiate
between alternative hypothesised mechanisms by which the innate immune response acts
to control viral replication. This study improves our understanding of the innate immune
response to influenza and demonstrates that re-exposure studies provide a new paradigm
for further experimental research. Our findings may contribute to the development of
next-generation treatment and vaccination strategies which rely upon an understanding of
the host’s immunological response to influenza infection.

Introduction

Influenza is an infectious respiratory disease affecting and threatening millions of people
worldwide [1]. The invasion of the influenza virus into a host’s upper respiratory tract (URT)
starts from a sufficient number of virions (single viral particles) entering the URT and infecting
healthy epithelial cells (henceforth referred to as target cells) [2]. The infected cells then pro-
duce progeny virions, leading to further infection of target cells and inter-host transmission.

Immune responses are activated during influenza virus infection, and contribute to the con-
trol of infection and viral clearance from the host [3]. The innate immune response, initiated in
the early stage of infection, involves production of a variety of antiviral cytokines, which pro-
vide immediate non-specific protection to the target cells against infection [4, 5]. Of particular
importance is the cytokine interferon (IFN, type 1), whose protective functions include induc-
ing a virus-resistant state in target cells, reducing viral replication, and activating natural killer
(NK) cells to induce apoptosis in infected cells [6-9]. The adaptive immune response, once
stimulated by presentation of viral epitopes to lymphocytes, plays an important role in viral
control. B lymphocytes (or B cells) produce antibodies that neutralise free virus, and cytotoxic
T lymphocytes (or T cells) produce cytotoxic granules that kill infected epithelial cells and
other leukocytes [3]. Following viral clearance, a portion of those B cells and T cells become
long-lived memory cells which can be activated rapidly to form a defense upon re-exposure to
the same or an antigenically related virus.

Due to its non-specific nature, the innate response induced by an initial exposure (hence-
forth “primary infection”) would be expected to modify the host environment and provide
some protection to subsequent exposure (henceforth “challenge”). We have experimentally
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Fig 1. Re-exposure experimental data for primary exposure with A(H1N1)pdm09 (black dots) and challenge with influenza B virus (red triangles),
for IEl between 1 and 14 days. Viral RNA copy number (per 100 p/) was measured to indicate the level of viral load in ferret nasal washes. By varying the IEI
from 1 to 14 days as indicated in each subfigure we see that A(H1N1)pdm09 virus could block (i.e. the influenza B viral load was never above the defined
threshold of 10° VRNA copies indicated by the horizontal dashed lines) or delay the infection induced by influenza B virus for < 7 days. The threshold of 108 is
the limit of detection for the TCIDso assay which measures infectious virus [10]. For a clearer view, data are presented here such that the time of challenge
(exposure to the second virus) is fixed at day 14 (indicated by the dashed lines) whereas the primary exposure occurs an appropriate number of days earlier
(indicated by arrows and the exposure interval numbers). Missing data points in the curves indicate undetectable levels of viral load and no sample was
collected on the day of challenge. Each graph represents the data from a single ferret, so that two ferrets within each interval are shown here. Data used from

[10].
doi:10.1371/journal.pcbi.1004334.9001

studied this phenomenon in detail by examining the behaviour of consecutive influenza infec-
tions as a function of the delay between exposures [10]. By varying influenza virus types and
subtypes (three viruses, A(HIN1)pdm09, A(H3N2) and influenza B, were investigated) and
the delay between the exposures (henceforth the “inter-exposure interval” (IEI)), we found that
a state of temporary immunity induced by A(HIN1)pdmO09 was able to block or delay infection
with influenza B virus (Fig 1). Conversely, influenza B virus showed little or no inhibitory effect
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on subsequent infection with A(HIN1)pdmO09 (Fig 2). See [10] for all available data and a full
exposition of the experimental observations.

Although such experimental studies have improved our understanding of temporary immu-
nity and viral interference, the underlying mechanisms of how a virus is controlled and cleared
by the immune system are still not fully understood. In particular, the re-exposure experimen-
tal data revealed a number of novel properties and phenomena:

o Viruses differed in their ability to induce a state of temporary immunity or viral interference
capable of modifying the infection kinetics of the subsequent exposure. For example, follow-
ing primary infection with A(HIN1)pdm09 virus, subsequent challenge with influenza B
virus was strongly inhibited (Fig 1), whereas the latter showed a very limited ability to inhibit
the former (Fig 2; only weak delays for an IEI of 1-3 days are observed). These data suggest
the existence of a “viral hierarchy” [10]. What are the mechanisms accounting for the inter-
actions between the two different viruses and the induced hierarchy for different primary-
challenge virus combinations?

By looking at the details of viral kinetic time series, four types of patterns were identified (see
Fig 3), which suggest some dynamical interactions between the two viruses. For example, an
initial period of synchronised viral growth was often observed for short exposure intervals
(< 3 days, see Figs 1-3). In addition to this, an initially synchronised decrease of the primary
and challenge viruses was also frequently observed (Fig 3). What are the underlying mecha-
nisms accounting for these phenomena?

Virus dynamics modelling has been employed to great success to gain insight into the host-
pathogen interaction. For HIV in particular, mathematical models have proven invaluable in
uncovering the mechanisms of immunity, anti-retroviral drug action and developing strategies
to avoid or combat drug-resistance [11-15]. For influenza, due largely to a paucity of data and
the difficulty in working with a short-lived transient infection, models have traditionally had
less of an impact on our understanding of the immune response to influenza and the mecha-
nism of viral control. In recent years however, both qualitative and quantitative modelling
studies [16-33] have begun to probe these interactions more deeply, as recently reviewed by
Beauchemin et al. [34] and Dobrovolny et al. [35]. While some studies have focused on the role
of antiviral drugs in viral control (e.g. [30]) and others on the immune response, the majority
have considered only a single viral infection. Exceptions include the development of models of
multi-strain infection that have been used to study the within-host emergence of drug-resistant
[20] and pandemic influenza [33] viruses and the relative fitness of drug-resistant variants [31,
32]. Here, with our focus on the immune response, it is immediately obvious that the classic
Target cell-Infected cell-Virus (TIV) model, with control solely mediated by target-cell deple-
tion and with no allowance for cell re-growth, is unable to explain re-infection with a different
challenge virus. This provides the motivation to study experiments in which re-infection occurs
as a means to explore the role of the immune response in influenza viral dynamics. Our data
affords us the opportunity to examine the relative importance and feasibility of different
hypothesised mechanisms of the innate immune response, complementing the work of others
who have studied how immunity may influence viral kinetics using data from single viral infec-
tions [17, 18, 23, 24, 28].

In this paper we introduce and analyse a family of within-host models of re-infection viral
kinetics which allow for different viruses to stimulate the innate immune response to different
degrees. The proposed models differ in their hypothesised mechanisms of the non-specific
innate immune response. We evaluate the models’ capability in terms of their ability to repro-
duce the patterns observed in the re-exposure data, including co-infection with and
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Fig 2. Re-exposure experimental data for primary exposure with influenza B virus followed by challenge with A(H1N1)pdmO09. In contrast to Fig 1,
changing the IEI does not block the infection of A(H1N1)pdmQ9 virus for any infection period. It does, however, result in a reduced growth rate and delayed
time to peak virus titre for A(H1N1)pdmO09 at short IEls. Missing data points in the curves indicate undetectable levels of viral load and no sample was taken
on the day of challenge. Each graph represents the data from a single ferret, so that two ferrets within each interval are shown here. All symbols are the same

as those in Fig 1. Data used from [10].

doi:10.1371/journal.pcbi.1004334.9002

suppression, delay or blocking of the challenge virus (Figs 1-3). Our analyses demonstrate that
the occurrence of those phenomena is highly dependent upon the inter-exposure interval and
consistent with virus-dependent stimulation of the innate immune response. Our paper pro-
vides the first mechanistic explanation for the recently observed influenza viral hierarchies.

Materials and Methods

In this section, we first introduce a single virus model with different mechanisms utilised by
innate immunity to control viral infection, and then extend the model to allow for consecutive
exposures to two virus strains (henceforth the re-exposure model). Due to the well-established
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Fig 3. Re-exposure experimental data showing the four dominant patterns observed in the viral kinetics for primary—challenge virus pairs. The
data shown here are distinct from those shown in Figs 1 and 2, where the same phenomena may also be observed, and a subset of the full data presented in
[10]. Top panels show the case of co-infection, whereby both the primary (H1N1) and challenge (H3N2) viruses experience a synchronised increase in the
very early stage of infection, followed by a synchronised decrease. Panels in the second row show examples of delayed infection, in which an initial
synchronised decrease gives way to growth and successful infection with the challenge virus. The undetectable points between days 15 and 19 for the
challenge virus in the right figure (second row) show a rapid decrease to undetectable viral level followed by a rapid upstroke back to a detectable level.
Desynchronised viral kinetics in the early stage of infection are also observed for short |IEls, with examples shown in the third row of panels. The last well-
observed pattern is that of a complete block, whereby the challenge virus is unable to replicate to a productive infection level (bottom panel). All symbols are
the same as those in Fig 1. Data used from [10].

doi:10.1371/journal.pcbi.1004334.9003
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importance of IFN in mediating the innate immune response, this study focuses on modelling
IFN-induced antiviral functions. However, the conceptual formulation of IFN-mediated innate
immune dynamics is broadly applicable and suitable for describing similar non-specific
immune processes, therefore not limiting the generality of the model results.

Three mechanisms for the IFN-induced control of viral infection

Three possible antiviral mechanisms of IFN are allowed for in our model: 1) induction of a
virus-resistant state for target cells; 2) a reduction in the viral production rate from infected
cells; and 3) activation of NK cells to induce apoptosis in infected cells (Fig 4). With the addi-
tional inclusion of a strain-specific antibody response, the following equations describe the

~ ~
7
s Dead _ —| IFN (F)
/ 7 l

/ K - I
'@

/
/
d (B)
N
7

/ -

Infected
cells (I)

Target
cells (T)
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Fig 4. Schematic diagram showing the three major functions of IFN. The three major functions of IFN labelled by (D, @ and Q) correspond to Models
1-3 defined in the main text. Dashed curves with arrows indicate up-regulation while those with bars indicate down-regulation. Binding of virus to target cells
leads to infected cells which then produce new virions. Infected cells produce IFN which hinders viral infection via three different hypothesised mechanisms:
Model (D converting target cells to virus-resistant state; Model ) decreasing the viral production rate; and Model 3 inducing killing of infected cells by
activation of NK cells. Virus activates B cells which produce antibodies to inactivate free virus.

doi:10.1371/journal.pcbi.1004334.9004

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004334 August 18,2015 7/28



@' PLOS | soMpuTaTioNAL
NZJ : BIOLOGY Immune Response and Viral Hierarchy

single virus-strain system:

dd—‘;:lf_—ISF—cV—uVA—BVT, (1)
%28(T+R)(1—4T+1t+1)—ﬁ'VT+pR—¢FT7 (2)
% = B'VT — 8I — «IF, (3)

% = ¢FT — pR — (R, (4)

%: gl — dF, (5)

% = m, V(1 — B) — m,B, (6)

Z—’? =m,B—rA — [/VA. (7)

The change in viral load (dV/dt) includes four components, the production term (pI/(1
+sF)) in which virions are produced by infected cells (I) at a rate p subject to an IFN-dependent
scaling factor of (1/(1+sF)) [17, 23, 28], the viral natural decay/clearance (cV) with a decay rate
of ¢, the neutralisation term (¢ VA) by antibody (A), and a consumption term (8VT) due to
binding to and infection of target cells (T). s indicates the sensitivity of the production rate to
IEN. The term g(T + R)(1 — (T + R + I)/C;) models target cell (re-)growth by both target cells
and resistant cells (those protected by the IFN) but limited by a maximum cell number C; (e.g.
due to the spatial capacity, [18]). Target cells (T) are consumed by virus (V) due to binding (8
VT), the same process as VT, where 8 # f§ allows for different measurement units of assays
used to detect virus. IFN (F) induces the protective transition from T to R at rate ¢FT and resis-
tant cells (R) lose protection, reverting to susceptible target cells at a rate p [28].

Infected cells (I) increase due to the infection of target cells by virus (8 VT) and die at a
(base) rate 6. The term xIF models the killing of infected cells by IFN-activated NK cells [28].
IEN (F) is modelled using simple dynamics that only include production (qI) and natural
decay (dF) [36]. Antibodies (A) are produced by activated B cells. We model the proportion of
activated B cells by state B. The activation of B cells is induced by an increase in V. Parameter
values and their justification are given in Table 1.

For a clearer comparison between the different hypothesised mechanisms by which the
innate response contributes to viral control, we consider three models of single virus, each of
which includes only one of the mechanisms shown in Fig 4:

o Model 1: including an IFN-induced virus-resistant state of the target cells (by letting s = 0
and k= 0),

o+ Model 2: including an IFN-induced diminished viral production rate (by letting ¢ =p=&=0
and x = 0),

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004334 August 18,2015 8/28
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Table 1. Parameter values for the three models. The units of V, F and A are denoted as u,, urand ua
respectively. T, I, and R have the same unit of ur; the number of cells. Time (t) has a unit of days (d). Some
units are symbolised, as our study is highly qualitative and thus substantially independent of the choice of
units. Such units would need to be transformed for different experimental protocols. “varied” indicates that the
parameter was assigned different values for different simulations, with the value/s specified whenever neces-
sary. Other parameters are taken or estimated from the literature (references are provided beside those
parameter values), and others chosen such that 1) the viral load during infection experiences at least a three
orders of magnitude increase and peaks at around the second day post infection[10, 17, 22, 28]; 2) IFN is
maximally activated at around 2—4 days post infection [28]; and 3) antibodies are observable (i.e. rise above a
lower detection threshold limit) later than six days post infection [24, 35].

Par.

W ®™®T T OO

Description

viral production rate
viral clearance rate
rate of viral neutralisation by binding of antibodies
rate of antibody consumption by binding to virions
rate of viral consumption by binding to target cells

rate of conversion from target cells to infected cells by
viral infection

basal growth rate of healthy cells
total number of epithelial cells in the ferret URT
death/removal rate of infected cells

rate of IFN-induced conversion from target cells to virus-
resistant cells

rate of recovery from virus-resistant cells to target cells
death rate of virus-resistant cells

sensitivity of viral production rate to IFN

killing rate of infected cells by NK cells

IFN production rate

IFN degradation rate

rate of virus-induced B cell activation

rate of B cell deactivation

antibody production rate

antibody degradation rate

doi:10.1371/journal.pcbi.1004334.t1001

Model

1

0.14

0.05
0.1

Model
2
0.35
20 [28]
0.2
0.04
5x 1077
2x107°

0.8
7 x 107 [29]
3

0
0
varied
0
varied
2 [28, 36]
1x10™
0.01
12000
0.2 [16, 24]

Model

3

0

0
0
0
varied

Units

uyuytd
J
u;ld—l
uy,'d™
ustd!
u,'d™

upuztd!

u‘;ldfl
a!
Up d_1

o Model 3: including killing of infected cells by IFN-activated NK cells (by letting s = 0 and ¢ =
p = f = 0).

Most importantly, for these three models, the terms of antiviral action appear in different equa-
tions. The virus-resistant terms appear directly in the equation for dT/dt and thus modulates
the viral load (V) in an indirect way (Model 1). Similarly, killing of infected cells by NK cells
(kIF) exerts an indirect control on viral production by changing the infected cell kinetics
(Model 3). In contrast, Model 2 assumes direct control of viral production by IFN (due to the
term pI/(1+sF)). Thus, we capture the diversity of plausible viral control mechanisms, in partic-
ular both indirect and direct pathways.

Models for re-exposure viral kinetics

In order to capture the kinetics of primary-challenge infection experiments, we introduce a re-

exposure model in which we assume that the two different viruses share the same source of

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004334 August 18,2015
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target cells and IFN, but induce distinct and non-crossreactive antibody responses:

”;_f:g(nzz)(u”"%tll“?) — BV, T — B,V,T + pR — GFT, (8)
% = ¢FT — pR — (R, 9)

% = q,I, + g,I, — dF, (10)
%Z%—clVl—ulVﬁl—ﬁle (11)
% =B V,T — 6,1, — i, IF, (12)
%:mnvl(l — B,) — my,B,, (13)

% =myB, — 1A — VA, (14)

% - 1:’_215221: — 6V, — VA, — BV, T, (15)
% = B V,T — 8,1, — i,LF, (16)
%: m,,V,(1 — B,) — my,B,, (17)

% = my,B, — 1y A, — [, V,A,. (18)

An additional subscript (1 or 2, following the existing ones if there is already a subscript like
my, m, and m;) has been introduced for all the relevant variables and parameters to indicate
the primary and challenge viruses. Due to a paucity of experimental data, all parameters for the
two viruses are assumed to be equal unless otherwise specified.

As for the single-virus model, we also extend the re-exposure model to three models, each
of which includes only one of the innate immune response mechanisms:

o Model R1: including an IFN-induced virus-resistant state of the target cells (by letting s; = s,
=0and k; =k, =0),

o Model R2: including an IFN-induced diminished viral production rate (by lettingp =p=£& =
0and x; = x, =0),

» Model R3: including killing of infected cells by IFN-activated NK cells (by letting ¢ = p =& =
Oands; =s,=0).

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004334 August 18,2015 10/28
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Methods for numerical simulations and statistical analyses

The ordinary differential equation (ODE) models were solved using MATLAB’s odel15s ODE
solver (The MathWorks, Natick, MA). We set an absolute tolerance of 10™'? on all variables for
accuracy. For the single-exposure models (e.g. Eqs 1—7), initial conditions were V=1, T = C;
with all other variables set to zero at t = 0. For the re-exposure models (e.g. Eqs 8—18), initial
conditions were V; = 1, T = C, with all other variables set to zero at t = 0. V, = 1 was then intro-
duced at the time of challenge. The resolution of the simulated time series shown in the figures
was set to be one hundred points per day. When analysing the re-exposure model results, we
introduced an indicator, the moving-correlation (MC) coefficient, defined to be the correlation
coefficient of a subset of the time series within a moving window, to indicate the periods where
the rates of change of the two viral loads were either synchronised or desynchronised. The
moving-window was set to be 0.2 days (corresponding to 20 points based on the time series res-
olution), which we found was sufficient to correctly capture both the relationships and the
turning points (smaller values do not further improve the determination of phase-transition
points). Determination of these critical phase-transition times was also confirmed by observa-
tion based on the time course of solutions. The first peak of the secondary viral infection sepa-
rating Phase 1 and 2 (defined in the Results) was determined by finding the points where dV,/
dt = 0. MATLAB code is provided in the Supporting Information.

Results

We first explore the dynamics of single virus infection. We study how Models 1-3 differ in
their explanations of immune-mediated viral control, through both numerical simulation and
consideration of the structural properties of the models. Based on these analyses, we then move
on to study the re-exposure data using Models R1-R3. With our emphasis on exploring how
different viruses’ abilities to stimulate the innate-immune response may induce viral hierar-
chies, we keep the underlying kinetic properties of the primary and challenge viruses equal.

IFN-mediated induction of a resistive state for target cells still results in
viral control via target-cell depletion

The level of IFN should significantly influence the kinetics of viral infection based on the
(three) model formulations. The control of the level of IEN is achieved by using different IFN
production rates (g). Here we examine how the behaviour of the three models changes for dif-
ferent rates of IFN production and how the models compare to one another.

For Model 1, a higher rate of IEN production (and thus a higher attained IFN level) is able
to maintain a considerable level of healthy cells in the virus-resistant state, which in turn facili-
tates a relatively rapid replenishment of target cells immediately following the control of viral
infection. However Model 1 fails to prevent the occurrence of a temporary depletion of target
cells (see S1 Fig in the Supporting Information). Indeed, target-cell depletion remains the
underlying mechanism for control. This is not a surprising result, as in Model 1 increasing IFN
leads to a decrease of the term —¢FT in Eq 2, which facilitates the consumption of target cells.

A detailed study of the change in viral load for both low and higher levels of IFN production
(q) is shown in Fig 5A and 5B, where the change of viral load (dV/dt in Eq 1) is decomposed
into its four components (appearing on the right-hand side of Eq 1), whose relative contribu-
tions to the change in viral load vary by the stage of infection. Both figures show that the single
virus infection may be deconstructed into three distinct stages. In the first (“early”) stage of
infection (0-2 days) virions are primarily consumed by binding to the target cells (due to an
almost full target cell pool) and natural decay, whereas the contribution from antibody is
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antibody), and BVT (binding to target cells), which are calculated based on the model solutions and represent the contribution of each term to the change of
viral load (dV/dt). Model 1: panels (A) and (B); Model 2: panels (C) and (D); Model 3: panels (E) and (F). For each of the cases shown, we use black trangles
to roughly indicate three consecutive phases, which are characterised by the dominant factors involved in controlling the change of viral load.

doi:10.1371/journal.pcbi.1004334.9005

negligible. The second stage (3-5 days) features a significant drop in the term for binding to
target cells, which confirms that high IFN levels do not prevent a temporary depletion of the
target cells for Model 1. In the last stage, starting around day 5, antibodies begin to dominate
the removal of virions.

In contrast to Model 1 in which target-cell depletion is the primary mechanism of viral con-
trol, both Model 2 and Model 3 are able to maintain a relatively high level of target cells when a
sufficiently high IFN production rate is assumed (S2B and S3B Figs). The conservation of a
high level of target cells is also clearly reflected by Fig 5D and 5F wherein the curve represent-
ing binding to target cells (3VT) does not show the quick drop evident in Model 1’s dynamics
during the second stage post infection. This implies that the decrease in viral load in the second
stage for Models 2 and 3 with a larger IFN production rate is driven by mechanisms other than
effective limitation in the number of target cells.

When the IEN production rate is small (g = 107), as shown in Fig 5A, 5C and 5E, all three
models converge (as expected) to generate qualitatively the same dynamical behaviours as
from the simplest TIV model lacking an explicit, time-dependent innate immune response (see
S4 Fig).

To study how target-cell depletion varies with the IFN production rate (g) in greater detail,
we now explore model behaviour as g increases from 10~° to 5 x 107>, With increasing g, both
Model 2 and Model 3 gradually prevent a temporary depletion of target cells (measured by the
minimum of target cell number within the first 7 days post-infection) whereas Model 1 fails to
do so (Fig 6; S5-S7 Figs show examples of full time courses for relevant model compartments).
Even when allowing the transition rates for the production (¢) and decay (p) of IFN to be sam-
pled from the space {(¢, p) € [0, 10] x [0, 100]}, we find the minimum target cell number for
Model 1 is restricted to lie within the grey region in Fig 6. Note that for some intermediate val-
ues of g the models may lose their ability to completely clear virus (see S6 and S7 Figs), likely
due to a lack of immune components or incorporation of only one innate immune mechanism
for each case (see Discussion for further comments). These results confirm that Model 1 pri-
marily utilises target cell depletion for viral control and demonstrate that Models 2 and 3 may
also have different dynamical properties depending on the IFN production rate.

Challenge virus kinetics are strongly influenced by the inter-exposure
interval

Having established the mechanisms Models 1-3 use to control viral infection, we now move
onto an examination of the behaviours of the re-exposure models, in which two viruses (the
primary and challenge viruses) are introduced consecutively with an inter-exposure interval
(IEI). We first study Model R1 in detail, focusing on how the model recaptures the clear depen-
dence upon the IEI shown in the experimental data (Figs 1 and 2). We then present the results
of the other two re-exposure models based on that analysis, and through a comparison evaluate
the differences between the three models.

Fig 7 shows that the solutions of Model R1, in particular the viral kinetics of the second
virus (red curves), change dramatically as the IEI increases from 1 day (A) to 14 days (F).
These changes are summarised and can be explained as follows:
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Fig 6. Dependence of target cell depletion on IFN production rate g for Models 1-3. For each single
virus-strain model, we vary the value of g and record the minimum level of target cells (value of T) within 7
days post-infection. Models 2 and 3 show a sigmoidal increase as q increases from 10 to 107#, as opposed
to Model 1 which always gives a nearly depleted target cell pool. For Model 1, if we allow g, ¢ and p to vary
(e.g. using a mesh grid of (g, ¢, ©) = [0,107%0%74] x [0,1073%41] x [0,1073%2] in this simulation), we find all of
the cases give minimum levels of target cells within the grey area. Note that s = 1 for Model 2 and k = 3 for
Model 3.

doi:10.1371/journal.pcbi.1004334.9006

« For a 1 day interval (Fig 7A), the two viruses undergo an initially synchronised increase fol-
lowed by a synchronised decrease (i.e. co-infection). The synchronised increase occurs in the
very early stage of infection when target cell numbers remain sufficiently high, corresponding
to the first stage of single-virus infection as examined in the previous section. Following tar-
get cell depletion, both viruses decrease and are eventually cleared by strain-specific antibody.
The dynamics are akin to those for a single virus infection.

o For a 2 day interval (Fig 7B), a short period of synchronised increase is followed by a syn-
chronised decrease (indicated by the MC coefficient of 1). However, this is then followed by a
desynchronised period (MC coefficient of -1) wherein the primary virus is cleared while the
challenge virus grows once more. During the initial period of synchronised growth the chal-
lenge virus’ load is two orders of magnitude smaller than that of the primary virus and the
challenge virus in Fig 7A. This may be understood by the strong depletion of target cells by
this time. Such a low viral load does not effectively activate antibody production for that
virus so that following the brief drop (synchronised with the first virus due to temporary
depletion of target cells) the challenge virus increases again with the replenishment of the tar-
get cell population.

o For a 3 day interval (Fig 7C) there is no period of synchronised growth. Rather, a synchro-
nised decrease appears immediately following challenge with the second virus due to the
temporary depletion of target cells, which is the key feature of the second stage for the single-
virus infection (recall Fig 5). Challenge with the second virus during this second stage of the
primary virus infection (around 3-5 days) leads to qualitatively the same behaviours (shown
later). Similar to Fig 7B, after the initial drop, the second virus experiences a full cycle of
infection.
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Fig 7. Solutions of Model R1 for different IEI. Primary and challenge viral kinetics, target (and resistant) cell kinetics and the moving-correlation (MC)
coefficient for Model R1 as a function of the exposure interval varied from 1 day (A) to 14 days (F). Initial conditions are V; = 1, T = C; with all other variables
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details).

doi:10.1371/journal.pcbi.1004334.9007

o For an IEI over 6 days (Fig 7E and 7F) the primary virus has essentially been cleared at the
time of challenge (stage three of the primary virus infection). During this stage target cell
numbers are increasing, enabling immediate infection by the second virus.

Fig 8 summarises all the observed behaviours of Model R1 and indicates the different phases
including productive co-infection (Phase 1, grey), an early synchronised decrease (Phase 2,
red), a desynchronised phase (Phase 3, green) and final removal of the challenge virus (Phase
4, blue). Importantly, all four phases can be easily mapped to experimental data (Figs 1-3), and
always appear in the described order. We will see later that the other two re-exposure models,
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Fig 8. Phase decomposition of the re-exposure behaviours. The representative cases selected from Fig
7 correspond to (from top to bottom) the IEI of 1 day, 2 days, 3 days and 7 days respectively. Dashed curves
indicate the viral load of the primary virus infection and solid curves indicate the viral load of the second
challenge. Four phases are observed in order. Phase 1 (grey) is the co-infection phase. Phase 2 (red) is a
phase where a synchronised drop is observed (the similar case also spotted in the data, see Fig 1). Phase 3
(green) is a desynchronised phase where the first virus experiences a decrease due to antibody
neutralisation whereas the second virus increases due to the replenishment of the target cell pool. Phase 4
(blue) is the final period where both viruses are neutralised by their specific antibodies. A scale bar of 5 days
indicates the length of time.

doi:10.1371/journal.pcbi.1004334.9008

although exhibiting qualitative differences from Model R1, do not alter the order established
here.

As we have analysed, the infection dynamics are closely related to the stage of the primary
virus infection at the time of challenge with the second virus, explaining the strong influence of
the exposure interval in both the experimental observations and model outputs. All of our
observations can be summarised in a single figure (Fig 9A). Reading horizontally, we see that
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Fig 9. Re-exposure behaviour of Model R1 for different IFN production rates. A smaller IFN production for the primary virus for Model R1 does not lead
to any qualitative difference, in terms of the dependence of model behaviours for the challenge virus on the IEI, from the case of very large IFN production
rate of the first virus. The pattern is also independent of the choice of g». The meaning of each colour is explained in Fig 8. They all exhibit four types of
behaviours (seen vertically, separated by dashed lines) and within each type the phase decomposition and their order are preserved.

doi:10.1371/journal.pcbi.1004334.9009

the four phases (separated by colours) appear in order through time. Viewed vertically, the fig-
ure shows that the choice of the IEI strongly affects the qualitative behaviours of the re-expo-
sure model (distinguished by dashed lines). Importantly, all regions of this plane may be
classified as one of the four phases, suggesting a complete picture has been obtained through
this classification procedure. Because of the concise nature of this method of showing re-expo-
sure results, this type of figure will be used to show further results for the alternative re-expo-
sure models (Models R2 and R3).
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The hierarchy of viral infection is reproduced by the re-exposure models
and provides new insight into model selection

Continuing with the study of Model R1, we now examine whether it can generate qualitatively
different re-exposure behaviours (i.e. generate patterns different from that in Fig 9A) by only
changing the IFN production rates of the two viruses, q; and ¢,. As shown in the previous sec-
tion on single infection, different IFN production rates drive different model behaviours. A
very small IFN production (e.g. 107) resembles a model that lacks any IFN-induced protective
effect whereas a model with a relatively large IFN production rate (e.g. 5 x 10~°) shows a signif-
icant conversion of target cells to the virus-resistant state. Results are given in Fig 9 where four
different combinations of values for g; and g, are examined. S10 Fig presents further combina-
tions of values for q; and g, drawn from a wider range. All sub-figures (Fig 9; S10 Fig) show a
qualitatively similar pattern. In particular, regardless of the level of IFN production (and thus
regardless of whether the resistant state is introduced or not), all show the existence of Phase 2
(red) which characterises the inhibitory effect of the primary virus infection on the challenge
virus. Based on our previous analyses of a single viral infection, this is a result of target cell
depletion which cannot be avoided by solely introducing the virus-resistant state. Thus, Model
R1 (with all other parameters fixed and equal for the two viruses) fails to reproduce the hierar-
chy of viral infection shown in the data; e.g. primary infection with A(HIN1)pdm09 strongly
inhibited influenza B virus challenge dynamics (Fig 1), whereas the latter showed a very limited
ability to inhibit the former (Fig 2). The subtle quantitative differences visible in Fig 9 and S10
Fig are understood by considering that a larger q; (regardless of g,) induces a larger virus-resis-
tant cell population (R) and so more rapid replenishment of the target cell pool. Consequently,
an increased ¢; leads to a shorter duration of Phase 2 (IEI of day 3-5) as also shown in S1 Fig.

Moving on to consider Models R2 and R3, two different patterns emerge when varying the
IFN production rate, as demonstrated by comparing the top row to the bottom row in Figs 10
and 11 for Models R2 and R3 respectively (also see S8 and S9 Figs for examples of time courses
of the solutions). These patterns successfully reproduce the hierarchy of viral infection
observed from the experimental data (Figs 1 and 2), as we now illustrate. Consider the case that
A(HIN1)pdmO09 strongly stimulates the immune response (high g) and influenza B provides
weaker stimulation (low q). Then if we take the primary virus to be A(HIN1)pdm09 (g, =
5% 107°) and the challenge virus to be influenza B (g, = 10~7) we observe that A(HIN1)pdm09
delays infection with influenza B for short IEIs (Fig 10B and S8 Fig). Conversely, if influenza B
is administered first (q; = 1077), then challenge with A(HIN1)pdmO09 (g, =5 x 107°) results in
co-infection for short IEIs (Fig 10C). Results for more combinations of values for ¢; and ¢q,
drawn from a wider range are provided in S11 Fig (for Model R2) and S12 Fig (for Model R3).
In all scenarios for Models R2 and R3, high g, prevents depletion of the target cell pool during
the primary virus infection (see Fig 6). While exerting a weak delay on the challenge virus for
an IET of 1-3 days (seen in both data and simulation results), the continued availability of tar-
get cells allows for productive replication, preventing the system from displaying Phase 2
dynamics. Similar to Model R1, we observe that the patterns are primarily dominated by the
IFN production rate of the first virus but nearly independent of that of the second virus (S10-
S12 Figs).

In summary, our three models—with their alternative hypothesised mechanisms for the
action of the innate response leading to viral control—are each capable of capturing the
dynamics of a single virus infection and the main features of primary-challenge experiments.
However, Model R1, with its reliance upon the virus-resistant state fails to reproduce the hier-
archy of viral infection (i.e. it always produces Phase 2 dynamics). For the other two mecha-
nisms—a decreasing viral production rate (Model R2) or an induced killing of infected cells by
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doi:10.1371/journal.pcbi.1004334.9010

NK cells (Model R3)—we have shown that both are able to reproduce all the behaviours includ-
ing the hierarchy of viral infection observed in the experimental data. We have made these
observations based on the assumption that the viruses” underlying kinetic properties are the
same and that their differing ability to induce IFN production is the mediator of observed dif-
ference. In the Supporting Information (S13 and S14 Figs), we extend our study by exploring
some alternative models in which other virus-immunity parameters are allowed to vary (in
addition to the IFN production rate), and demonstrate that Models R2 and R3 can still repro-
duce the observed hierarchies, while Model R1 remains reliant upon target-cell depletion and
so is less capable of capturing the observations.
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Stochasticity may explain the complete blocking of the challenge virus at
short inter-exposure intervals

We have shown that the re-exposure model can successfully reproduce the phenomena of co-
infection and delay (Fig 3). However, we also observe complete blocking of the challenge virus
following primary infection in some circumstances (Fig 1, IEIs of 3 and 7 days, and Fig 3).
Although the reason for complete inhibition remains unclear, that it only occurs in some of the
experimental replicates [10] suggests that stochastic effects in terms of viral dynamics may be
important. We hypothesise that failure of the challenge virus may occur when the number of
virions (Vy,,,,.,) drops to a sufficiently low value such that stochastic effects become dominant
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Fig 12. Stochastic simulations show an initial decrease in viral load down to a relatively low level could lead to stochastic extinction, which cannot
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because V, = 1 is equivalent to Vo, = 40 virions) in the second viral inoculation, the virus could survive (A) or go extinct (B). Vo, denotes the number of
virions for the second inoculation and /, is the number of cells infected by the second type of virus. The stochastic model used here is derived from the model
used to simulate Fig 6C with an IEl of 3 days (see the Supporting Information for details). The horizontal axes indicate the days after the infection with the
second virus (i.e. 0 here corresponds to day 14 in Fig 7C). Panel (C) shows dependence of failure rate of the second viral infection on the initial number of re-
challenged virions. A success event is defined to be an event where the viral number can exceed 10000 within 10 days following the re-challenge. The
control case indicates the single-virus infection with an initial number of 40 virions (i.e. a stochastic simulation of Model 1). The IEl is still fixed to be 3 days.

doi:10.1371/journal.pcbi.1004334.9012

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004334 August 18,2015 21/28



©PLOS

COMPUTATIONAL

BIOLOGY

Immune Response and Viral Hierarchy

[37]. For example, the case of an initially synchronised decrease (see Fig 3 and Fig 7C) makes
our hypothesis possible. Here we examine this by using a stochastic model derived from the
deterministic model used to generate Fig 6C (see the Supporting Information for details on the
stochastic model, its implementation and parameterisation). Fig 12 shows that, although the
solution of the deterministic model shows a rebound in viral load, the stochastic model results
in two possible classes of solution: delayed infection with the second virus (“success”) or
blocked infection with the second virus (“failure”).

To quantify this stochastic phenomenon, we investigate the dependence of the success/fail-
ure rate on the initial number of virions (see Fig 12C). Results show that the failure rate
increases as the initial number of virions decreases in the presence of an innate immune
response. Although the control case shows a 0% chance (0 out of 1000 simulations) of failure
for the primary virus infection with an initial number of 40 virions, the same number of virions
in the challenge inoculum is insufficient to generate any re-infection events. However, as the
initial number of virions (for both the primary and challenge viruses) increases from 40 to
5000, the chance of generating successful re-infection events increases to 100%, with a half
chance of success when approximately 700 virions are present in the inoculum (as used to gen-
erate Fig 12A and 12B). This implies that failure could be due to an insufficient number of suc-
cessfully infecting virions in the challenge virus inoculum, even if this number is sufficient to
reliably induce infection with the primary virus.

Discussion

In this paper, we have investigated the role of innate immunity and its possible mechanisms of
action based on both experimental data and mathematical models. Experimental data show
that infection with one virus prior to challenge with a second strain can delay/block the second
viral infection (Figs 1 and 2 and [10]). We interpret these findings as evidence for a hierarchy
in different viruses to induce an innate immune response, and in the role of innate immunity
in controlling viral infection [10]. To better understand the possible mechanisms accounting
for the hierarchy and some interesting (a)synchronised infections observed experimentally (Fig
3), we constructed and analysed several mathematical models with different IFN-induced
immune response mechanisms. Our results show that 1) without other (virus specific) mecha-
nisms at play, a model solely with a virus-resistant state is not able to reproduce the hierarchy
of viral infection; and 2) the occurrence of synchronised and desynchronised phenomena is
highly dependent upon both the hierarchy of viral infectious ability and the time interval
between the consecutive viral inoculations.

In more detail, we have shown that the model solely with a virus-resistant state (Model 1)
primarily utilises target cell depletion to control viral growth, independent of the IFN produc-
tion rate (Fig 6, black curve). The temporary depletion of target cells will strongly limit the
growth of any other virus, resulting in the failure to observe a viral hierarchy (Fig 9). In con-
trast, for the other two mechanisms (Models 2 and 3), sufficient production of IFN efficiently
prevents target cells from depletion (Fig 6, green and red curves), providing a foundation for
another virus to rapidly replicate (Figs 10 and 11).

Alternative mechanisms for the action of the innate immune response have been adopted
by many models in the literature [16-19, 21-24, 26, 28, 38]. Although each has achieved suc-
cess in unveiling important kinetic parameters of viruses and immunity, their focus on infec-
tion with a single virus has not allowed for the investigation of the relative importance of the
different immune mechanisms and the hierarchical interaction between virus strains. Based on
re-exposure experiments [10], here we have re-examined the immune mechanisms proposed
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by previous studies and showed that different proposed mechanisms have differing capabilities
and limitations in reproducing the re-exposure data.

Our mathematical analysis, in conjunction with re-exposure experiments, not only demon-
strates the importance of studying experiments involving multi-strain viral infections but also
opens a new paradigm in which to study the immune response to influenza and its role in viral
control. We can now expand the ways in which to systematically evaluate the feasibility and rel-
ative importance of different hypothesised mechanisms of innate immunity, a knowledge gap
highlighted in recent reviews [34, 35]. In this context, our work complements and extends the
current literature on the use of co-infection and re-exposure studies, in combination with
mathematical modelling, to investigate a range of biological phenomena such as assessment of
fitness (e.g. for drug-resistant strains of influenza [32], virulent strains of malaria [39], and
escape mutant virus for SIV [40]).

In the main text we have focused on the role of IFN production in generating the viral hier-
archy, assuming other parameters are strain independent. Our results suggested that the level
of target cells was critical in determining the formation of re-infection patterns as shown in
Figs 10 and 11. However, this is not always true when we increase the dimension of model vari-
ability. For example, if we assume that the primary and challenge viruses have different sensi-
tivities in their replication rate to IFN (s), we may see again the exhibition of Phase 2 dynamics
for Model R2 (S13 Fig in the Supporting Information). Similar results are also applicable to
Model R3 and are shown in S14 Fig, where using different killing rates of infected cells by IFN-
activated NK cells () yields different re-infection patterns without depleting target cells. We
also note that the behaviours of Models 2 and 3 for the simulations of single-virus infection
shown in Fig 5 are not continuously dependent upon the IFN production rate. As q increases
from g =10""to g =5 x 107°, both models lose their ability to control infection, resulting in a
sustained and high viral load for some intermediate values of g (see S6 and S7 Figs). On the one
hand, this may be due to omission of some key mechanisms (e.g. CD8 T cells dynamics and
other specific cytokine functions). On the other hand, since the question of whether the depen-
dence should be continuous or otherwise has not yet been evaluated experimentally, no reliable
criterion can be used to judge this mathematical observation. Of course, since each of the mod-
els incorporates only one of the innate immune response mechanisms, as per the focus and
requirements of our theoretical study, a detailed examination of overall model stability, in
which several of the hypothesised mechanisms may be active, was not performed. As such we
do not over-elaborate on this issue but leave it to be determined by future work.

Due to a paucity of experimental data, we have assumed throughout this paper that the pri-
mary and challenge viruses had the same parameter values except for those parameters directly
related to the activity of the innate immune response (i.e. the IFN production rate (g); the sen-
sitivity of the viral production rate to IEFN (s); and the killing rate of infected cells by NK cells
(x)). While this simplifying assumption has allowed us to explore the possible drivers of behav-
iour, and demonstrate the fundamental differences in dynamical properties of the alternative
hypotheses, it emphasises again the need for both further experimental data to be collected
(e.g. time courses of markers of the immune response) and even tighter coupling of theoretical
analyses to those based on more detailed data [10]. In ongoing work, we are applying hierarchi-
cal statistical techniques to fit our full models to the available re-exposure data. Through this
process, we aim to explore the relative importance of different elements of the innate immune
response and how they differ between strains, and furthermore, the contribution, if any, of dif-
ferences in viral kinetic parameters by strain. Additionally, the observation of delays to peak
for the challenge virus in some ferrets [10] may be in principle due to stochastic variation in
the effective size of the initial inoculum. While the statistical analyses conducted in [10] suggest
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that this effect is unlikely to be dominant, variation in the initial conditions of each inoculum
will be considered in the statistical study of the re-exposure data.

The models in this paper have been constructed, as have previous models [16, 18, 19, 21, 25,
28, 33], by incorporating both innate and adaptive immune responses into the classic Target
cell-Infected cell-Virus model structure. We have made only the minimum extensions neces-
sary to enable re-capture of the observed re-infection kinetic behaviour [10]. Although the
models are demonstrably successful in reproducing those data, they by no means capture all of
the host-immune interactions observed experimentally for influenza, and for those interactions
that they do capture, alternative structural forms may be more appropriate. For example, many
studies have shown that CD8 T cells play an important role in the removal of infected cells
[41-43]. While the cellular adaptive response is not explicitly captured in our models, we have
slightly increased the value of & from the estimated natural death rate of 0.5 — 2 day ™ [16, 18,
19] to 3 day ™" to (partially) correct for this effect. In addition, part of the NK cell killing effect
(xIF) could also be considered as a CD8 T cell mediated process. In terms of structure, we have
considered only one particular functional description of the innate immune response (e.g. a
first-order stimulatory response for IFN) and one form for each of the hypothesised actions of
the IFN-mediated response. Alternative structural forms for these, and other, immunological
processes may in principle result in different dynamics. In general, any missing components
(e.g. CD8 T cells) or mis-specification of the detailed form of how processes act (e.g. IFN-medi-
ated processes) may influence the reliability of our models and their interpretation, and thus
further work to collect sufficient data to increase the biological fidelity of models is warranted.

Supporting Information

S1 Text. Equations and MATLAB code for stochastic simulations.
(PDF)

$2 Text. MATLAB code for deterministic model simulation and generating figures shown
in the paper.
(PDF)

S1 Fig. Solutions of Model 1. Solution of Model 1 for two different IFN production rates,
q= 1077 and q=>5x 10°%, under the initial condition of V(0) = 1, T(0) = C, and zeros for all
other variables.

(PDF)

S2 Fig. Solutions of Model 2. Solutions of Model 2 for two different IFN production rates,

q= 107" and q=>5x 107, under the initial condition of V(0) = 1, T(0) = C; and zeros for all
other variables. We set s = 1 here, which will be treated as a benchmark value for later compari-
sons.

(PDF)

S3 Fig. Solutions of Model 3. Solutions of Model 3 for two different IFN production rates,
q= 107 and q=>5x 10%, under the initial condition of V(0) = 1, T(0) = C, and zeros for all
other variables. We use a benchmark value of « = 3, which lies around the middle of the range
estimated from the paper by Pawelek et al. (see reference 28 in the main text)

(PDF)

$4 Fig. Solution of a model without innate immunity. A solution of Eqs 1-7 in the main text
for zero IEN production, g = 0 mimicking no time-dependent innate immunity, under the ini-
tial condition of V(0) = 1, T(0) = C, and zeros for all other variables. (A) shows time courses of
important variables. (B) shows the time series of the four terms on the right-hand side of Eq 1,
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pI/(1+sF) (viral growth), ¢V (viral natural decay), yAV (killed by antibody), and VT (binding
to target cells), are calculated based on the solution and plotted in each panel. They represent
the contribution of each term to the change of viral load (dV/dt).

(PDF)

S5 Fig. Dependence of Model 1 behaviour on IFN production rate. Time series show that a
temporary depletion of the target cell pool occurs for four different IFN production rates (g).
(PDF)

S6 Fig. Dependence of Model 2 behaviour on IFN production rate. Time series show that a
temporary depletion of the target cell pool occurs for a small IFN production rate (g =10"")
but not for a large one (g = 5 x 10~°). However, for some intermediate values of g, the model
loses the ability to clear virus, resulting in a sustained elevation of viral load. Possible reasons
are explored in the Discussion. We use s = 1.

(PDF)

S7 Fig. Dependence of Model 3 behaviour on IFN production rate. Time series show that a
temporary depletion of the target cell pool occurs for a small IFN production rate (g = 107)
but not for a large one (g =5 x 107°). However, for some intermediate values of g, the model
loses the ability to clear virus, resulting in a sustained elevation of viral load. Possible reasons
are explored in Discussion. We use x = 3.

(PDF)

S8 Fig. Dependence of Model R2 behaviour on the IEI. Simulations are done by using Model
R2. Initial conditions are V; = 1, T'= C, and zeros for all other variables at t =0 day and V, =1
is then introduced at ¢ = 14 days indicated by dashed lines. We use s; =s,=1,q; =5 x 10 ° and
> = 1077 The moving-correlation (MC) coefficient is used to indicate synchronisation/desyn-
chronisation of the two viral loads.

(PDF)

S9 Fig. Dependence of Model R3 behaviour on the IEI Simulations are done by using Model
R3. Initial conditions are V; = 1, T'= C; and zeros for all other variables at t = 0 day and V, = 1
is then introduced at ¢ = 14 days indicated by dashed lines. We use ', = k, = 3,¢; =5 x 107°
and g, = 107, The moving-correlation (MC) coefficient is used to indicate synchronisation/
desynchronisation of the two viral loads.

(PDF)

$10 Fig. Re-exposure behaviour of Model R1 for four different IFN production rates. The
value of the IFN production for the primary virus for Model R1 does not lead to any qualitative
different patters of infection upon re-exposure. Both small and large values of g, result in tar-
get-cell depletion. The pattern is also independent of the choice of g,. The model does not sup-
port the observed viral hierachy. The meaning of each colour is explained in Fig 8 in the main
text. This figure is an extension of Fig 9 where only two intermediate g values are presented.
(PDF)

S11 Fig. Re-exposure behaviour of Model R2 for four different IFN production rates. Dif-
terent IFN production rates for the primary virus for Model R2 lead to qualitatively different
patterns of infection upon re-exposure. The pattern is driven by g, and independent of the
choice of g,. The meaning of each colour is explained in Fig 8 in the main text. This figure is an
extension of Fig 10 where only two intermediate g values are presented. We assume here that s;
=s5,=1.

(PDF)

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004334 August 18,2015 25/28


http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004334.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004334.s008
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004334.s009
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004334.s010
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004334.s011
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004334.s012
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004334.s013

©PLOS

COMPUTATIONAL

BIOLOGY

Immune Response and Viral Hierarchy

S12 Fig. Re-exposure behaviour of Model R3 for four different IFN production rates. Dif-
ferent IFN production rates for the primary virus for Model R3 lead to qualitatively different
patterns of infection upon re-exposure. The pattern is driven by g; and independent of the
choice of g,. The meaning of each colour is explained in Fig 8 in the main text. This figure is an
extension of Fig 11 where only two intermediate g values are presented. We assume here that
K1=Ky=3.

(PDEF)

$13 Fig. Dependence of re-infection pattern on IFN-sensitivity parameter s. Varying the
IFN-sensitivity parameter s in Model R2 leads to different patterns from that with the same
IFN-sensitivity shown in Fig 9 in the main text. Note that g needs also to change accordingly
for large s to maintain the change of viral load qualitatively similar to experimental observa-
tions. Thus, we choose g =5 x 107° when s = 1 and g, = 5 x 10~” when s = 10. Dashed lines sep-
arate different model behaviours in terms of the timing of the second virus challenge.

(PDF)

$14 Fig. Dependence of re-infection pattern on killing rate of virus by IFN-activated NK
cells k. Varying the killing rate of virus by IFN-activated NK cells « in Model R3 leads to differ-
ent patterns from that with the same IFN-sensitivity shown in Fig 10 in the main text. Note
again that g needs also to change accordingly for large x to maintain the change of viral load
qualitatively similar to experimental observations. Thus, we choose g = 5 x 107 when x = 3
and g, = 1 x 107® when x = 15. Dashed lines separate different model behaviours in terms of
the timing of the second virus challenge.

(PDF)
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