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Abstract

Background: Three-dimensional (3D) multicellular spheroids of mesenchymal stem cells (MSCs) are generally
regarded to have beneficial properties over MSCs in monolayer. Recent literatures have documented that MSCs can
self-assemble into 3D spheroids with a greater capacity for differentiation into various cell types when grown on
chitosan (CS), a biopolymer. The genomic modulation occurring in these MSC spheroids is thus of essential importance
for understanding their uniqueness and therapeutic potentials. In this study, 3D spheroids self-assembled from human
umbilical cord MSCs grown on CS membranes were analyzed by mRNA as well as microRNA microarrays, which helped
identify the critical signaling events that may alter the cellular functions during the spheroid forming process.

Results: Genes screened from mRNA and microRNA cross-correlation analyses were further confirmed with the
quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) analysis. Results revealed the regulation
of a significant number of calcium-associated genes, which suggested the crucial role of calcium signaling in
CS-derived MSC spheroids. In addition, many genes associated with the multilineage differentiation capacities
and those associated with the antiinflammatory and antitumor properties of MSCs were upregulated. The genetic
modulation was significantly more remarkable and endured longer for MSC spheroids derived on CS substrates
compared to those derived on a non-adherent (polyvinyl alcohol) substrate.

Conclusions: Based on the study, the culture substrates used to prepare 3D MSC spheroids may predefine
their properties through cell-substrate interaction.

Keywords: Mesenchymal stem cells (MSCs), Cellular spheroids, Chitosan, Calcium signaling, Gene profile,
Microarray

Background
Mesenchymal stem cells (MSCs) are extensively used as
the cell source for regenerative medicine because of their
capacities to differentiate into different lineages and ex-
pand while maintaining their undifferentiated state. MSCs
are commonly cultured as two-dimensional (2D) mono-
layer by traditional tissue culture techniques. However,
the 2D culture method has difficulty in overcoming the
replicative senescence and maintaining the self-renewal
properties, which results in cells of low differentiation cap-
acity [1]. A three-dimensional (3D) culture environment is

considered more favorable than 2D monolayer culture for
cell-cell contacts. Previous studies have developed several
methods to generate 3D MSC spheroids. Many of these
methods involve the use of cell suspension system or non-
adherent surface to induce spheroid formation [2-4]. In
general, these 3D MSC spheroids were reported to have
greater differentiation capacities.
Chitosan (CS) is the deacetylated derivative of chitin

which is abundant in shell of shrimp or crap, and in fungus,
and the content is only next to cellulose in nature. CS has a
main structure composed of β(1-4) linked D-glucosamine
residues with different amounts of N-acetyl-glucosamine
group. Owing to its biocompatibility and biodegradability,
CS has been widely studied as a scaffolding material for
tissue engineering. Recent findings have revealed that
MSCs attached on the membranes made of CS can form
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self-assembled 3D cellular spheroids [5-7]. During the
process, MSCs attach and spread on CS membranes before
they retract their pseudopodia to form multicellular spher-
oids. This self-assembly process is quite different from that
occurs in suspension or hanging drop systems, or on non-
adherent polymer surfaces. Several genes/proteins have
been referred to participate in the process of spheroid for-
mation on CS, including cadherin molecules [8,9], Rho/
Rho-associated kinase (ROCK) [5], and the Wnt molecule
[9]. Activations of these proteins were not as evident for
spheroids on non-adherent surfaces. In addition, it was
observed that the surface-bound calcium on CS sub-
strates may be transported into MSCs and play a role in
spheroid formation as well as gene regulation [9]. Al-
though a few changes in gene/protein expression were ob-
served, the exact mechanism for spheroid formation on
CS is still far from being elucidated. Therefore, a more
comprehensive understanding of the genomic profile for
CS-derived MSC spheroids is essential for further reveal-
ing the substrate-dependent nature of these unique MSC
spheroids.
The technique of microarray has been developed to

detect the changes within cells and is a powerful tool by
which many genes can be probed simultaneously. Dalby
et al. have reported the genomic expression profile of
human MSCs responding to the shape of their environ-
ment by the messenger RNA (mRNA) microarray [10].
The antiinflammatory properties of human MSC spher-
oids generated by hanging drop have also been compared
to those of the adherent MSC monolayer by surveying
with mRNA microarray [2]. Furthermore, recent advances
in microRNA (miRNA), a class of non-coding small RNA,
have identified a few important modulators in stem cell
proliferation and differentiation. They can bind to the cog-
nate mRNA to repress the expression of target genes. Sim-
ultaneous analyses of the mRNA and miRNA expression
profiles may help narrowing down the signaling events in-
volved in the behavior change of the cells [11].
In this study, we examined both mRNA and miRNA ex-

pression profiles of the CS substrate-induced 3D spher-
oids of human MSCs isolated from the umbilical cord,
using 2D MSCs on tissue culture polystyrene (TCPS) as
a control. Cross-correlation analysis of the results from
these two microarrays was further confirmed with the
quantitative reverse transcriptase-polymerase chain reac-
tion (qRT-PCR) analysis to identify the critical signaling
events for substrate-derived MSC spheroids during the
spheroid forming process.

Results
Characteristics of human umbilical cord MSCs
The expression profile of cell surface markers analyzed by
flow cytometry is shown in Additional file 1: Figure S1.
Human umbilical cord MSCs were positive for specific

antigen markers of MSCs such as CD13, CD29, CD44,
CD59, CD61, CD71, CD73, CD90, CD105, CD166, and
HLA-ABC, and negative for specific markers of endothe-
lial cells and haematopoietic cells including CD14, CD34,
CD45, CD133, and HLA-DR. Besides, cells showed posi-
tive expression of CD56 and low expression of CD106,
which was consistent with that described for human um-
bilical cord MSCs in literatures [12,13].

Surface properties of CS membranes
The different surface properties of CS membranes and
TCPS are summarized in Figure 1. The static water con-
tact angle of CS membranes was 79.48±2.26° (n = 3) and
that of TCPS was 68.02±1.13° (n = 3). The greater con-
tact angle of CS vs. TCPS revealed the slightly higher
hydrophobicity of CS, which may be attributed to the
rearrangement of hydrophobic N-acetyl groups of CS to
move to the surface and reduce the surface free energy
while exposed to atmosphere. The surface zeta potential
of CS was relatively neutral (3.16±1.74 mV, n = 3), dis-
tinct from the negatively charged TCPS (-74.34±1.22
mV, n = 3). Previous literature suggested an isoelectric
point at pH 7.4 for CS arising from the deprotonation of
positive amino group [14]. Another study indicated that
the amino groups of CS could chelate calcium ion to
form CS/calcium ion complexes (CS–NH2 · · · Ca

2+) [15].
The amount of surface-bound calcium on CS mem-
branes (Figure 2C) was significantly greater than that on
TCPS after either 24 h or 72 h. The consistent values
observed at 24 h and 72 h suggested a saturation of
surface-bound calcium.

Spheroid formation for MSCs growth on CS membranes
The morphology of MSCs grown on CS membranes and
TCPS is shown in Figure 2. As was expected, MSCs at-
tached to TCPS with fibroblast-like morphology. On the
other hand, MSCs on CS remained attached to the surface
before 16 h and formed spheroids afterwards. The average
diameter of the MSC spheroids on CS membranes was
64.9 ± 9.5 μm at 24 h (n = 30). The spheroid size was rela-
tively stable within 72 h (e.g. averaged 56.9 ± 14.3 μm at
72 h, n = 30). The cell viability for the MSC spheroids was
93.11% at 24 h.

Cross-correlation analysis between mRNA and miRNA
microarrays
Based on the screening of the mRNA microarray, 589
upregulated genes and 734 downregulated genes showed
significant difference (i.e. CS/TCPS ratio higher than two
times or lower than a half, and the p-value lower than
1×10-3) for MSCs on CS vs. TCPS. On the other hand,
screening based on the miRNA microarray showed that
there were 6411 targeted genes corresponding to the down-
regulated miRNA, and 3043 targeted genes corresponding
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to the upregulated miRNA. Cross-correlation analysis of
these two microarray data have helped narrowing down
the critical genes involved in the behavioral changes of
these cells. Screening based on the cross-correlation ana-
lysis with the software, Agilent.TwoColor.28004 (Agilent
Technologies) revealed that there were 210 upregulated
genes and 75 downregulated genes. The results of
microarray analyses are shown in Figure 3. In addition,
the screened genes as well as their expression ratio are
listed in Additional file 2.
The biological significance behind the list of screened

genes was further analyzed by the DAVID (the Database
for Annotation, Visualization and Integrated Discovery)
program to evaluate the gene enrichment in gene ontol-
ogy (GO terms) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway maps (Additional file 3). The
results of gene enrichment in KEGG pathway maps sug-
gested that several pathways were regulated for MSCs
on CS vs. TCPS including calcium signaling pathway
(hsa04020), focal adhesion (hsa04510), regulation of actin
cytoskeleton (hsa04810), adherens junction (hsa04520), gap
junction (hsa04540), ECM-receptor interaction (hsa04512),

p53 signaling pathway (hsa04115), cytokine-cytokine re-
ceptor interaction (hsa04060), tryptophan metabolism
(hsa00380), and TGF-β signaling pathway (hsa04350).
Among the 285 genes, we picked up the ones with

high expression ratio, the critical ones in certain signal-
ing pathways, or the ones which had been reported in
literature to be associated with cell adhesion, migration,
or fate decision. They were then further confirmed by
qRT-PCR.

Regulation of calcium-associated genes for MSCs on CS
A number of calcium-associated genes were noted and
listed in Table 1 including those of calcium channels, re-
ceptors, and intracellular signaling proteins. ATP2B1
and ATP2B4 (plasma membrane calcium ATPase iso-
form 1 and 4) are highly regulated Ca2+ extrusion pumps
and provide fine-tuning of intracellular calcium level
[16]. SLC8A1 (often named as NCX1) is a Na+-Ca2+ ex-
changer which also modulates Ca2+ extrusion system from
the cells [17]. TRPA1 and TRPC4 belong to the transient
receptor potential (Trp) channel superfamily that regu-
lates the mechanism for Ca2+ entry [18]. The upregulation

Figure 1 Surface properties of cell culture substrates. (A) The static contact angle of CS and TCPS. (B) The surface zeta potential of CS and
TCPS. (C) The amount of surface-bound calcium on CS or TCPS after being soaked in the culture medium for 24 h without cells. * P < 0.05 among
the indicated groups (n = 3).
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of ATP2B1 and TRPA1 and downregulation of ATP2B4,
SLC8A1, and TRPC4 for MSCs on CS vs. TCPS suggested
that the process for intracellular calcium homeostasis was
turned on. Modulation of these genes may cause an eleva-
tion in the intracellular calcium level.
A few genes of calcium-associated receptors were upreg-

ulated for MSCs growth on CS vs. TCPS. HTR2A and
HTR7 (5-hydroxytryptamine receptor 2 A and 7) are the
receptors for serotonin which is a well-characterized neuro-
transmitter with regulative function in multiple physio-
logical aspects [19]. GPR68 (G protein-coupled receptor 68,
also named as OGR1) is a proton-sensing receptor that can
modulate the level of intracellular calcium [20]. PDGFRA
(Platelet-derived growth factor receptor alpha) and F2R
(thrombin-activated G protein-coupled receptor, and often
named as the protease-activated receptor-1, PAR1) are also

intracellular calcium modulators [21,22]. The activation of
these calcium-associated receptors may directly enhance
the level of intracellular calcium and lead further to cyto-
skeleton rearrangement.
Several intracellular signaling genes were also upregu-

lated. These genes included those of MAP3k8 (mitogen-
activated protein kinase kinase kinase 8, also denoted
tumor progression locus 2, Tpl2), ITPR1( inositol 1,4,5-
trisphosphate receptor, type 1), RASGRP3 (calcium and
diacylglycerol-regulated RAS guanyl releasing protein 3),
PLA2G4A (cytosolic calcium-dependent phospholipase
A2). MAP3K8 is required for the transduction of signals
initiated by PAR1 and other G-coupled receptors, which
promote actin reorganization and cell migration. MAP3K8
can also mediate signal-induced increases in cytoplasmic
Ca2+ through the activation of phospholipase C [23]. On

Figure 2 Phenotype of MSCs grown on CS or TCPS. (A) The morphologies of MSCs on CS or TCPS after 16 h, 24 h and 72 h. (B) The cell
viability of MSC spheroids on CS after 24 h analyzed by flow cytometry. The percentage of cells without being stained by PI was defined as the
cell viability.
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the other hand, ITPR1 is a Ca2+-release channel located
on intracellular membranes, especially the endoplasmic
reticulum (ER). The IP3 receptor has an affinity for IP3 in
the low nanomolar range. Moreover, cytosolic Ca2+ is con-
sidered as a co-agonist of the IP3 receptor, as it strongly
increases the IP3 receptor activity at concentrations up to
about 300 nM [24]. RASGRP3 is a calcium and DAG-
regulated RAS guanyl releasing protein which can activate
small GTPases such as RAS and RAP1 [25]. PLA2G4A is
a member of phospholipases A2 (PLA2s) superfamily,
which regulates the release of arachidonic acid (AA) [26].
Although calmodulin is also a family of Ca2+ binding pro-
teins and mediates many important cellular processes
[27], CALM2 (calmodulin 2) gene was downregulated.
The regulation of various calcium-associated genes sug-

gested the critical role of calcium signaling in the CS-

derived MSC spheroids, which has not yet been reported
in any other spheroid systems.

Regulation of cell adhesion and migration/cytoskeleton-
associated genes for MSCs on CS
Genes that were screened out for MSCs on CS and asso-
ciated with cell adhesion, migration, or cytoskeleton
reorganization are displayed in Table 2. MMP1 (matrix
metalloproteinase 1) is a kind of interstitial collage-
nase, and its activity was enhanced in highly migrat-
ing MSCs compared with poorly migrating MSCs [28].
MMP3 and MMP10 were also upregulated which have
similar substrate specificity. MMP3 is correlated with
neuronal migration and neurite outgrowth and is able
to activate MMP1 [29]. The migration ability of CS-
derived MSC spheroids has been mentioned [5,9]. The

Figure 3 The results of microarrays for MSCs grown on CS or TCPS. (A) The screening of the miRNA microarray for MSCs grown on CS or
TCPS. (B) The numbers of genes that were subjected to cross-correlation analysis of mRNA and miRNA microarrays and the numbers of screened
genes based on the cross-correlation analysis. A complete list of screened genes as well as their expression ratios is shown in Additional file 2.
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upregulation of these cell adhesion/migration-associated
genes agreed with the high cell mobility of MSCs on CS.
On the other hand, a variety of genes that controls cell-to-

cell adhesion were upregulated for MSCs on CS, including
cadherins, cell adhesion molecules (CAMs), Notch, and
ephrin receptor. CDH18 (cadherin 18, also named as cad-
herin 14) is a Ca2+-dependent cell-cell adhesion molecule,
and expresses in the central nervous system [30]. PCDH18
(protocadherin 18) is also a member of cadherin family, and
has a role in embryo development [31]. PECAM1 (platelet
endothelial cell adhesion molecule, also known as CD31)
is an endothelial cell marker [32]. The expression of
NOTCH3 (Notch receptor 3) and its ligand, DLL1 (delta-
like protein 1), were both enhanced for MSC growth on CS.
Notch signaling pathway is critical for cell fate decisions
including proliferation, lineage commitment, and ter-
minal differentiation in many adult stem cell types [33].
EphA7 (Ephrin type-A receptor 7) can bind to cell surface-
associated ephrin ligands on neighboring cells to generate bi-
directional signals that affect both the receptor-expressing
and ephrin-expressing cells [34]. Based on the literature,
EphA7 is an axon guidance receptor important for the devel-
opment of cortical circuits [35]. The enhancement in these
cell-cell adhesion genes may provide better cell-cell com-
munication and coordination during spheroid formation.
The upregulation of chemokines and their receptors

for MSCs grown on CS vs. TCPS is of particular interest.

Among them, the gene encoding CMKLR1 (chemokine-
like receptor 1, also as chemerin Receptor 23, ChemR23)
was upregulated superbly (~50 times). CMKLR1 was re-
ported as a multifunctional receptor which can bind with
the proinflammatory chemokine, chemerin, or with the
anti-inflammatory lipid mediator, resolving E1 (RvE1, a
bioactive oxygenated product of the essential fatty acid, ei-
cosapentaenoic acid) [36]. Chemerin/CMKLR1 interaction
was also reported to promote adipogenesis and angiogen-
esis [36]. Other upregulated chemokine receptors or li-
gands included the CXCR4 and CXCR7 (CXC motif
chemokine receptor 4 and 7), which are the receptors of
stromal derived factor-1 (SDF1 or CXCL12). CXCR4 is
one of the most studied chemokine receptors that play an
important role in cell migration, proliferation, and differ-
entiation [37]. The CXCL10 (CXC motif chemokine lig-
and 10) is a ligand for another CXC motif chemokine
receptor, CXCR3, which was reported to crosstalk with
CXCR4 and CXCR7 [37]. The CCL2 and CCL7 [C-C
motif chemokine ligand 2 and 7, also referred as monocyte
chemotactic protein 1 and 3 (MCP-1 and MCP-3)] are im-
portant homing factors for MSCs [38,39].

Cell fate decision in MSC spheroids
The gene expression for a group of growth factors and
receptors was modulated in MSCs on CS vs. TCPS, as
listed in Table 3. These included TGF-β3 (transforming

Table 1 The group of calcium signaling-associated genes screened from microarrays

Gene symbol Gene full name Ratio (MA) Ratio (qRT-PCR)

ATP2B1 ATPase, Ca++ transporting, plasma membrane 1 2.40 3.17 ± 0.88*

ATP2B4 ATPase, Ca++ transporting, plasma membrane 4 0.48 0.68 ± 0.23*

SLC8A1 solute carrier family 8 (sodium/calcium exchanger), member 1 0.22 0.40 ± 0.15*

TRPA1 transient receptor potential cation channel, subfamily A, member 1 4.46 24.58 ± 16.15*

TRPC4 transient receptor potential cation channel, subfamily C, member 4 0.21 0.02 ± 0.01*

HTR2A 5-hydroxytryptamine (serotonin) receptor 2A, G protein-coupled 10.36 26.92 ± 10.07*

HTR7 5-hydroxytryptamine (serotonin) receptor 7, adenylate cyclase-coupled 2.99 -

PDGFRA platelet-derived growth factor receptor, alpha polypeptide 3.29 3.38 ± 1.17*

GPR68 G protein-coupled receptor 68 4.33 10.80 ± 1.42*

F2R coagulation factor II (thrombin) receptor 2.26 6.98 ± 1.53*

BDKRB2 bradykinin receptor B2 2.59 -

EDNRA endothelin receptor type A 2.27 -

ADRB2 adrenoceptor beta 2, surface 0.35 -

MAP3K8 mitogen-activated protein kinase kinase kinase 8 3.61 13.31 ± 2.04*

ITPR1 inositol 1,4,5-trisphosphate receptor, type 1 2.23 2.36 ± 0.32*

PLA2G4A phospholipase A2, group IVA (cytosolic, calcium-dependent) 5.51 6.44 ± 2.70*

RASGRP3 RAS guanyl releasing protein 3 (calcium and DAG-regulated) 4.35 2.78 ± 0.90*

CALM2 calmodulin 2 (phosphorylase kinase, delta) 0.30 0.08 ± 0.05*

MA: based on microarray data.
qRT-PCR: based on quantitative RT-PCR analysis.
*P < 0.05 between CS and TCPS groups (n = 5).
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growth factor beta 3), BMP2 (bone morphogenetic pro-
tein 2), HGF (hepatocyte growth factor), IGF1R (insulin-
like growth factor 1 receptor), KDR (kinase insert domain
receptor, also known as vascular endothelial growth factor
receptor 2, VEGFR2) and KIT (the stem cell factor recep-
tor, also known as CD117). The regulation of these genes
may influence the function and fate of stem cells.
Several WNT signaling related genes were also en-

hanced for MSCs on CS including the WLS (Wntless
protein), WNT2 (wingless-type MMTV integration site
family member 2), LEF1 (lymphoid enhancer-binding
factor 1), TCF7 (transcription factor 7), DAAM1 (dishev-
elled associated activator of morphogenesis 1), and CXXC4
(CXXC finger protein 4). The WNT proteins and WNT
signaling pathway are known to control cell specification
and fate during embryonic development and adult tissue
homeostasis. WNT2, a member of WNT family, can

promote the earliest aspects of lung airway smooth muscle
development [40], and accelerate cardiac myocyte dif-
ferentiation from ES-cell derived mesodermal cells
through the non-canonical WNT pathway [41]. WLS
is a multipass transmembrane protein, and was found
to control the secretion of WNT proteins [42]. The
TCF/LEF family is the downstream proteins in the ca-
nonical WNT/ β-catenin pathway. In response to WNT
signals, TCF/LEF members present as a switch to modu-
late the transcription of numerous target genes from
repression to activation as binding with β-catenin
[43]. DAAM1 was identified as a downstream protein
interacting with Dishevelled (Dvl), which mediates the
non-canonical Wnt/planar cell polarity (PCP) signaling
pathway. A study indicated that DAAM1 may play a crucial
role in regulating the actin cytoskeleton and tissue morpho-
genesis [44]. On the other hand, one of the negative

Table 2 The group of adhesion and migration/cytoskeleton-associated genes screened from microarrays

Gene symbol Gene full name Ratio (MA) Ratio (qRT-PCR)

ITGB8 integrin, beta 8 5.48 5.28 ± 2.30*

ITGA2 integrin, alpha 2 2.73 -

ITGA10 integrin, alpha 10 2.66 -

ITGA11 integrin, alpha 11 2.68 -

ITGB1 integrin, beta 1 0.32 -

ITGA6 integrin, alpha 6 0.33 -

MMP10 matrix metallopeptidase 10 (stromelysin 2) 14.14 39.10 ± 12.35*

MMP1 matrix metallopeptidase 1 (interstitial collagenase) 3.71 2.75 ± 0.72*

MMP3 matrix metallopeptidase 3 (stromelysin 1, progelatinase) 2.23 -

CDH18 cadherin 18, type 2 3.14 5.46 ± 3.08*

PCDH18 protocadherin 18 8.20 4.18 ± 1.70*

PECAM1 platelet/endothelial cell adhesion molecule 1 3.25 2.68 ± 1.04*

NOTCH3 notch 3 2.24 2.40 ± 0.43*

DLL1 delta-like 1 (Drosophila) 2.51 2.27 ± 0.19*

EPHA7 EPH receptor A7 20.49 12.34 ± 4.95*

SGCG sarcoglycan, gamma (35 kDa dystrophin-associated glycoprotein) 2.05 -

SHC4 SHC (Src homology 2 domain containing) family, member 4 2.36 -

PTPRB protein tyrosine phosphatase, receptor type, B 2.55 -

SORBS2 sorbin and SH3 domain containing 2 8.31 7.11 ± 1.90*

DMD dystrophin 0.48 0.38 ± 0.06*

CCBE1 collagen and calcium binding EGF domains 1 0.25 0.19 ± 0.07*

HMMR hyaluronan-mediated motility receptor (RHAMM) 0.23 0.29 ± 0.06*

CMKLR1 chemokine-like receptor 1 49.04 93.69 ± 36.86*

CXCR4 chemokine (C-X-C motif) receptor 4 13.40 16.61 ± 4.90*

CXCR7 chemokine (C-X-C motif) receptor 7 4.60 10.78 ± 4.99*

CXCL10 chemokine (C-X-C motif) ligand 10 4.10 8.99 ± 4.86*

CCL2 chemokine (C-C motif) ligand 2 3.44 -

CCL7 chemokine (C-C motif) ligand 7 2.83 -

*P < 0.05 between CS and TCPS groups (n = 5).
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regulators of WNT/ β-catenin signaling pathway, CXXC4,
was also enhanced for MSCs on CS [45].
Two other development-related genes worth mention-

ing are RARB (retinoic acid receptor beta) and EGR2
(early growth response 2). RARB is a nuclear receptor
for retinoic acid (RA) which is a vitamin A-derived, non-
peptidic, small lipophilic molecule. The RA signaling
during embryo development has been extensively inves-
tigated [46]. EGR2 is a zinc-finger transcription factor of
the early growth response gene (EGR) family that has
critical functions in hindbrain development and myelin-
ation of the peripheral nervous system [47]. The gene
expression of EGR2 may be regulated by TGF-β3 [48].

Antiinflammatory and antitumor properties of MSCs on
CS
Genes upregulated for MSCs growth on CS and encod-
ing cytokines or their receptors are listed in Table 4.
Among them, a small number of proinflammatory cyto-
kines were upregulated, which included IL1A (interleukin
1 alpha), IL1B (interleukin 1 beta), IL33 (interleukin 33)
[49], and TNFSF13B (tumor necrosis factor ligand super-
family member 13B, also as B-cell activating factor, BAFF)
[50]. Many antiinflammatory genes were enhanced to even

higher expression levels as compared with those of proin-
flammatory ones. These genes include the IL1RN (inter-
leukin 1 receptor antagonist) [51], IL4I1 (interleukin 4
induced gene 1) [52], LIF (leukemia inhibitory factor) [53]
and its common receptor subunit, IL6ST (interleukin 6
signal transducer, also named as glycoprotein 130, gp130)
[54], and TNFAIP6 (tumor necrosis factor, alpha-induced
protein 6, also as TNFα stimulated gene/protein 6, TSG6)
[55]. The TNFSF9 (tumor necrosis factor superfamily
member 9) was also upregulated which can mediate both
immune suppression and immune stimulation through
the CD137 receptor/ligand system [56]. Another up-
regulated antiinflammatory-associated gene was PTGS2
(prostaglandin-endoperoxide synthase 2, also named as
cyclooxygenase-2, COX-2), which is the rate-limiting en-
zyme for arachidonic acid metabolic transformation into
prostanoids during eicosanoid synthesis in response to
inflammatory stimuli [57]. Besides, the above-mentioned
LIF, TGF-β and HGF, are considered as factors associated
with the immunomodulatory property of MSCs [58]. This
aspect of MSCs is important in clinical application for
graft-versus-host and autoimmune diseases.
A few antitumor genes were upregulated for MSCs on

CS. Of interest to note is the high gene expression level

Table 3 The group of development-associated genes screened from microarrays

Gene symbol Gene full name Ratio (MA) Ratio (qRT-PCR)

TGFB3 transforming growth factor, beta 3 2.83 2.55 ± 0.89*

BMP2 bone morphogenetic protein 2 3.00 9.79 ± 3.33*

HGF hepatocyte growth factor (hepapoietin A; scatter factor) 2.56 7.89 ± 2.73*

IGF1R insulin-like growth factor 1 receptor 2.16 2.26 ± 0.71*

INSR insulin receptor 2.02 -

KDR kinase insert domain receptor (a type III receptor tyrosine kinase) 2.19 5.30 ± 1.48*

KIT v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog 4.50 6.21 ± 1.23*

EGF epidermal growth factor 0.21 -

HBEGF heparin-binding EGF-like growth factor 0.35 -

CTGF connective tissue growth factor 0.16 -

BDNF brain-derived neurotrophic factor 0.13 0.33 ± 0.10*

GHR growth hormone receptor 0.44 -

WLS wntless homolog 3.31 3.95 ± 0.71*

LEF1 lymphoid enhancer-binding factor 1 7.09 2.14 ± 0.16*

TCF7 transcription factor 7 (T-cell specific, HMG-box) 3.79 1.35 ± 0.03*

DAAM1 dishevelled associated activator of morphogenesis 1 3.17 3.61 ± 0.60*

WNT2 wingless-type MMTV integration site family member 2 3.83 4.66 ± 0.85*

LRP4 low density lipoprotein receptor-related protein 4 2.28 -

DGKG diacylglycerol kinase, gamma 90 kDa 2.56 -

CXXC4 CXXC finger protein 4 14.52 7.21 ± 1.02*

RARB retinoic acid receptor, beta 4.50 1.68 ± 0.16*

EGR2 early growth response 2 26.55 25.32 ± 4.83*

* P < 0.05 between CS and TCPS groups (n = 5).
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of IL24 (interleukin 24) observed for MSCs grown on
CS vs. TCPS. IL24 is considered as a tumor suppressor
and can selectively induce apoptosis in cancer cells with-
out affecting normal cells [59,60]. TP53 ( tumor protein
p53) is another upregulated tumor suppressor gene that
involves in various critical cellular functions such as pro-
liferation, cell cycle arrest, apoptosis, and DNA repair
mechanisms [61]. The members of TNFα-induced pro-
tein 8 (TNFAIP8) family were upregulated. TNFAIP8
was reported as an apoptosis regulator, while the gene
encoding TNFAIP8L3 (TNFα-induced protein 8 like 3)
is still unknown for its biological function [62].

Regulation of aryl hydrocarbon receptor (AHR) pathway
The upregulation of aryl hydrocarbon receptor (AHR)
system was also observed and displayed in Table 5. AHR
is a ligand-activated transcription factor activated by en-
dogenous physical ligands. AHR is involved in a variety
of toxicity mechanisms as well as in endogenous bio-
logical functions. ARNT (AHR nuclear translocator) was
also upregulated, which can transduce the AHR signaling
and promote the expression of target genes (e.g., cyto-
chrome P450s) [63]. Cytochrome P450s (CYPs) have been
identified as the functional enzymes that catalyze the
metabolic activation and detoxification of a variety of
xenobiotics [64]. The expressions of CYP1B1 (cytochrome
P450, family 1, subfamily B, polypeptide 1), CYP3A5
(cytochrome P450, family 3, subfamily A, polypeptide 5),
and CYP19A1 (cytochrome P450, family 19, subfamily A,

polypeptide 1) were upregulated for MSCs on CS. CYPs
play a critical role in drug metabolism, and therefore cells
with appreciated CYP activities can be used for risk as-
sessment of drug-induced hepatotoxicity [65]. A recent
study showed that the expression and activities of CYPs
were enhanced by culturing the transfected human dermal
fibroblasts as spheroids [65], which was in line with our
results.

Substrate-dependent nature of gene upregulation for 3D
spheroids
The expressions of special interested genes for MSC
spheroids grown on CS and those derived on a non-
adherent (polyvinyl alcohol, PVA) substrate were com-
pared by qRT-PCR. The mechanism driving spheroid
formation on the non-adherent PVA is similar to that in
suspension culture (where a low-attachment dish or
flask is used). The self-made PVA substrate, however, is
more chemically defined. The results (see Additional
file 1: Figure S2) showed significantly higher expression
levels of genes including LIF, IL24, TP53, TGF-β3,
PDGFRA, and PTGS2 for MSCs grown on CS vs. PVA.
The enhanced gene expressions may be attributed to the
greater cell-substrate interaction for MSCs on CS through
the upregulation of the calcium-associated genes.
Furthermore, the high expression levels for the above-

mentioned genes in CS-derived spheroids were main-
tained or even further enhanced at 72 h as compared
with those at 16 h. The sustained regulation of these

Table 4 The group of antiinflammatory and antitumor genes screened from microarrays

Gene symbol Gene full name Ratio (MA) Ratio (qRT-PCR)

IL1A interleukin 1, alpha 2.12 3.48 ± 1.09*

IL1B interleukin 1, beta 2.12 -

IL1RN interleukin 1 receptor antagonist 6.33 5.72 ± 0.88*

IL33 interleukin 33 3.85 -

IRAK2 interleukin-1 receptor-associated kinase 2 2.50 -

IL4I1 interleukin 4 induced gene 1 2.34 -

IL24 interleukin 24 4.77 18.59 ± 10.05*

IL6ST interleukin 6 signal transducer (gp130, oncostatin M receptor) 4.07 -

LIF leukemia inhibitory factor 2.02 3.70 ± 1.77*

TNFAIP8L3 tumor necrosis factor, alpha-induced protein 8-like 3 13.87 10.28 ± 2.41*

TNFAIP8 tumor necrosis factor, alpha-induced protein 8 3.89 7.02 ± 1.75*

TNFAIP6 tumor necrosis factor, alpha-induced protein 6 3.31 -

TNFSF13B tumor necrosis factor (ligand) superfamily, member 13b 2.50 -

TNFSF9 tumor necrosis factor (ligand) superfamily, member 9 2.36 -

TNFRSF11B tumor necrosis factor receptor superfamily, member 11b 2.23 -

C1QTNF6 C1q and tumor necrosis factor related protein 6 2.43 -

PTGS2 prostaglandin-endoperoxide synthase 2 (prostaglandin G/H synthase and cyclooxygenase) 4.71 15.09 ± 1.73*

TP53 tumor protein p53 2.11 1.48 ± 0.03*

*P < 0.05 between CS and TCPS groups (n = 5).
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genes by CS vs. the transient upregulation by PVA sug-
gested the importance of cell-substrate interaction in
gene regulation. The differential gene expression in dif-
ferent substrate-derived MSC spheroids also suggested
substrate-dependent gene regulation and the critical role
of culture substrates in influencing the cell functions
and fates even in 3D spheroids.

Discussion and conclusions
The gene expression profiles of CS substrate-derived 3D
MSC spheroids vs. 2D cultured MSCs were cross-
analyzed by mRNA as well as miRNA microarrays and
confirmed by qRT-PCR measurement. The critical role of
calcium signaling in CS substrate-derived MSC spheroids
was justified by the upregulation of various calcium-
associated genes, which has not yet been reported in any
other spheroid systems. The unique role of calcium in
self-assembled spheroids may be related to the observa-
tion that the surface-bound calcium on CS may be trans-
located into MSCs [9].
Several kinds of integrin subunit which participate in

the processing of cell adhesion or migration were modu-
lated. Besides, members of matrix metalloproteinases
(MMPs) were upregulated for MSCs grown on CS. MMPs
are proteolytic enzymes that degrade various components
of the extracellular matrix (ECM). The proteolytic effects
of MMPs play an important role in vascular remodeling,
cellular migration, and the processing of ECM proteins
and adhesion molecules [66]. The modified chemotactic
function of the migrating MSC spheroids was also verified
by the upregulation of many chemokines and their recep-
tors. Since the chemotactic function is critical for the
therapeutic performance of MSCs, the migration and
chemotaxis of MSC spheroids and their link to homing
phenomena deserve further investigations.
The multilineage differentiation capacities as well as

antiinflammatory and antitumor properties of MSCs
may be enhanced after forming spheroids on CS. The

antiinflammatory and antitumor properties have been
reported in MSC spheroids generated by hanging
drop [2], including the upregulated gene expression of
TNFAIP6 and IL24, which were also observed in CS-
derived MSC spheroids. The favorable chondrogenic and
osteogenic differentiation capacities previously demon-
strated for CS-derived MSC spheroids [5,7] may be associ-
ated with the induced expression of TGF-β3 and BMP2
genes. On the other hand, HGF, EGR2, MMP3, and
EPHA7 are involved in the development of nervous sys-
tem [29,47,67,68]. The upregulation of these genes may
suggest the enhanced transdifferentiation ability of CS-
derived MSC spheroids. Most of all, the upregulation of
WNT related genes suggested a profound influence of CS
on the fate decision of MSCs. The regulatory changes in
the expression of these genes were significantly greater for
MSC spheroids derived on CS substrates than those
derived on the non-adherent PVA substrates. The critical
importance of substrates in stem cell culture, even in the
circumstance of 3D spheroid culture, was substantiated
in this study. The distinct gene expression profiles on
different substrates were in line with the significant
substrate-dependent alterations in cell-cell interaction
(e.g. cadherins, CAMs, and Notch, etc) and cell-substrate
interaction (e.g. integrins) based on the gene analysis.
Finally, it has been mentioned that cells in the core of

a 3D spheroid may be exposed to mild hypoxia [69]. The
hypoxic environment may resemble the natural niche of
MSCs (e.g. O2 tension ~1−7% in bone morrow) more
than the normal culture condition (21% O2) [70]. A re-
cent literature has demonstrated that MSCs can benefit
from hypoxia to inhibit the senescence, increase the pro-
liferation, and enhance the differentiation potential along
the mesenchymal lineages [70]. The hypoxia-inducible
factor 1α(HIF-1α) signaling pathway was proposed to be
involved in the modulation mechanism of hypoxia effect
[70]. Spheroids generated by suspension culture could
precondition the human adipose-derived stromal cells

Table 5 Other significant genes screened from microarrays

Gene symbol Gene full name Ratio (MA) Ratio (qRT-PCR)

AHR aryl hydrocarbon receptor 3.48 4.29 ± 1.33*

ARNT2 aryl-hydrocarbon receptor nuclear translocator 2 2.12 -

CYP1B1 cytochrome P450, family 1, subfamily B, polypeptide 1 7.66 10.91 ± 0.57*

CYP19A1 cytochrome P450, family 19, subfamily A, polypeptide 1 5.48 -

CYP3A5 cytochrome P450, family 3, subfamily A, polypeptide 5 3.95 -

FOXO1 forkhead box O1 2.22 1.75 ± 0.17*

HS3ST1 heparan sulfate (glucosamine) 3-O-sulfotransferase 1 16.47 9.06 ± 1.16*

G0S2 G0/G1switch 2 7.67 -

CDKN2B cyclin-dependent kinase inhibitor 2B (p15, inhibits CDK4) 3.65 6.00 ± 1.73*

INHBB inhibin, beta B 0.16 0.26 ± 0.13*

* P < 0.05 between CS and TCPS groups (n = 5).
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[69] and umbilical vein endothelial cells [71] to hypoxia
environment, leading to upregulations of HIF-1α and
angiogenesis. Another recent literature showed that form-
ing 3D spheroids of human gingiva-derived MSCs by sus-
pension culture upregulated many hypoxia-responsive
genes, such as HIF-1α, VEGF, SDF-1α, and CXCR4 [72].
The apoptosis signal-regulating kinase 1 (ASK1) and its
downstream proteins, the p38α mitogen-activated protein
kinase (MAPK) family, act as sensors of oxidative stress
[73,74]. In our study, the upregulation of CXCR4 was ob-
served for MSC spheroids grown on CS. On the other
hand, neither the oxidative stress-sensitive genes (includ-
ing HIF-1α, ASK1, and p38α MAPK) nor the oxidative
stress-associated microRNA (such as miR-200a [74], miR-
125b [75] miR-30b [76], miR-144 [77] and miR-27b [78])
were screened out by the mRNA and miRNA microarrays.
These results suggested that the oxidative stress and the
associated genes may not be activated during the forma-
tion of MSC spheroids on CS, and the modulating mech-
anism of the development-associated genes such as
CXCR4 in CS-derived spheroids may be distinct from that
in spheroids derived on a non-adherent substrate. This
finding reinforces the uniqueness of culture substrates as
a microenvironment to predefine the properties of 3D
stem cell spheroids.
Although MSCs also formed spheroids on non-

adherent substrate (such as PVA), the forming process
and the gene regulation profile were not the same as
those on CS. On the other hand, MSCs showed similar
features of spheroid formation and calcium-related cell
behavior on CS substrates even when they were isolated
from different tissue sources (adipose, placenta, or um-
bilical cord) or species (human or rat) [5,9]. The capacity
of MSCs to form spheroids on CS was more influenced
by their stemness [5], and the surface-bound calcium on
the substrate [9]. In this study, we observed that a few
genes were regulated during spheroid formation which
may participate in calcium signaling pathway. However,
the critical genes that turn on the mechanism as well as
the link between calcium regulation and the genes in-
volved in different cell functions (adhesion, migration,
antiinflammatory, and differentiation) remains unknown.
These issues are interesting and worthy of further inves-
tigations. The gene regulation profile screened by the
cross-correlation analysis described here may provide
helpful information for studying these unique substrate-
induced MSC spheroids.

Methods
Isolation and culture of MSCs
All human subjects and protocols involved were ap-
proved by the institutional review board of Chang Gung
Memorial Hospital (IRB#92-176). The fresh umbilical
cords were collected at the hospital after obtaining written

informed consent from each donor participating in this
study. The informed consent is always obtained from the
mother. The blood vessels were removed by washing with
PBS. The cleaned-up tissue was sliced into small pieces
and digested with 0.05% trypsin and 300 U/ml collagenase
in alpha minimum essential medium (α-MEM, Gibco)
for 1 h at 37°C. Cells were gathered from pellets after
centrifugation and incubated at 37°C with 5% CO2.
The culture medium consisted of α-MEM supplemented
with 10% fetal bovine serum (Hyclone), 10 mg/l penicillin-
streptomycin, and 10 mg/l l-glutamine (Gibco). On the
next day, non-adherent cells were removed. The medium
was refreshed two times every week. Cells of the 2nd to
the 6th passages were used in this study.

Analysis of surface markers for the human MSCs
Surface markers for human umbilical cord MSCs were
quantified by flow cytometry using CD13, CD14, CD29,
CD31, CD34, CD44, CD45, CD56, CD59, CD61, CD71,
CD105, CD106, CD133, HLA-ABC, HLA-DR (all from
BioLegend), CD73 (BD Pharmingen), and CD90 (Serotec)
antibodies. MSCs (5×105 cells) were washed twice with
PBS, resuspended in 100 μl of PBS containing monoclonal
antibodies, and incubated for 30 min at 4°C. These cells
were then washed twice and resuspended in 500 μl of
PBS. Fluorescence analysis was performed with a flow cyt-
ometer (FACS Caliber, BD). The non-specific binding of
the fluorescein isothiocyanate (FITC) and phosphatidyl
ethanolamine (PE) conjugates were determined in control
samples using a mouse IgG1-FITC and IgG1-PE negative
control (Serotec). Analysis was conducted using the
WinMDI 2.9 software.

Preparation of chitosan (CS) membranes as the culture
substrate
CS powder (molecular weight ~416 kDa, 77.7% deacety-
lation, Fluka) was dissolved and stirred in 1% aqueous
acetic acid solution for 24 h at room temperature to ob-
tain a 1% CS solution. The 1% CS solution was casted
on 6-well tissue culture plate (1.5 ml/ well) or 15 mm
microscope coverslip glass (300 μl/ slip) and air-dried
for 2 days. The CS substrates were treated with 0.5 N
NaOH in 75% ethanol for 5 minutes, and then washed
extensively by distilled water. These CS substrates were
further antiseptically rinsed with 75% ethanol and
washed by phosphate buffer saline (PBS) before use. The
static water contact angle of CS membranes were deter-
mined by a contact angle meter (FTA, USA). The surface
zeta potential was determined by electrophoretic light
scattering using the Delsa Nano C Analyzer (Beckman
Coulter, USA) with a flat solid cell. To analysis the amount
of surface-bound calcium on substrates, CS-coated cover-
slip glass was placed into the well of a 24-well tissue cul-
ture plate where 1 ml of culture medium was added. After
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incubation at 37°C for 24 h or 72 h, the medium was col-
lected for later analysis of the free calcium ion remained
in the bulk solution. A blank well (TCPS) was used as the
control. The concentration of calcium in each of the col-
lected solution was measured by the atomic absorption
(AA) spectrometry (iCE 3300; Thermo Scientific, USA).
The content of surface-bound calcium was calculated by
subtracting the amount of calcium remained in the col-
lected solution from those in stock culture medium.

MSC culture on CS membranes
MSCs (2.5 × 105 cells per well for 6-well plate) were
seeded in each well and the morphology of cells on the
membranes was observed by an inverted microscope
(Leica DMIRB). Cells seeded in the culture well (tissue
culture polystyrene, TCPS) served as the control. The
average diameters of spheroids were quantified from the
images. The cell viability in MSC spheroids was deter-
mined by using propidium iodide (PI) (Sigma) staining
and flow cytometry. After grown on CS for 24 h, MSC
spheroids were collected and dissociated in 0.25% trypsin-
EDTA solution for 10 min at room temperature. These
cells were then washed and resuspended in 500 μl of PBS.
The solution of PI (concentration 2 mg/ml) was added to
cell suspension before the analysis by the flow cytometer.
The percentage of cells without being stained by PI was
defined as the cell viability.

Analysis of gene and miRNA expression microarray
To understand the signaling events involved in the
spheroid formation on CS, MSCs of the 6th passage
were cultured on TCPS or CS substrates for 16 h. Total
RNA of these MSCs were extracted, and then analyzed
by gene and miRNA expression microarrays. As for the
analysis of gene expression, treatment RNA (CS sub-
strates) was labeled by Cy5 and RNA from human refer-
ence RNA (TCPS) was labeled by Cy3. Cy-labeled cRNA
(2 μg) was fragmented to an average size of about 50-
100 nucleotides by incubation with fragmentation buffer
at 60°C for 30 min. Correspondingly, fragmented-labeled
cRNA was then pooled and hybridized to the Human
1A (version 2) gene expression microarray (Agilent
Technologies) at 60°C for 17 h. After washing and dry-
ing in nitrogen, the microarrays were scanned with the
Agilent microarray scanner at 535 nm for Cy3 and at
625 nm for Cy5. Scanned images were analyzed using
Feature Extraction software 10.7 (Agilent Technologies).
Only the microarray images with signal significant ra-
tios > 3 in either the Cy3 or Cy5 channel were retrieved
for further analysis.
On the other hand, the miRNA was isolated by using

miRNeasy Mini kits (Qiagen) followed by quality checks of
both total RNA and small RNA using a 2100 Bioanalyzer
and software which detected 28S and 18S ribosomal RNA

ratios, generated a RNA Integrity Number (RIN), con-
centration of sample, and ribosomal ratio. Only sam-
ples with 28S/18S > 1.2, RIN > 8, and detectable miRNA
were used for this study. The Agilent customer Human
R16 miRNA array was employed for this study following
manufacturer's protocols. The screened data of miRNA
microarray were analyzed by the software, GeneSpring
7.3.1 (Agilent Technologies). The miRNA microarray im-
ages with signal ratio greater or lower than three times
were screened out and defined as the normalized miRNA
profile for further analysis.

qRT-PCR confirmation for the genes screened by cross-
correlation analysis of microarrays
In order to further validate the results derived from mi-
croarrays, qRT-PCR was performed for special interested
genes. In brief, total RNA of cells at the end of the
culture period was extracted by the Trizol® reagent
(Invitrogen) according to the manufacturer’s instruc-
tions. Human MSCs cDNA synthesis and amplification
via qRT-PCR were performed using the RevertAidTM
First Strand cDNA Synthesis Kit (Thermo, Fermentas).
Paired forward and reverse primers were designed from
UniSTS database in National Center for Biotechnology
Information. The 100 ng of cDNA was used for quan-
titative real-time PCR using the GM SYBR qPCR Kits
(GeneMark, Taiwan) with 150 nM targeted gene oligo-
nucleotide primer pairs. 40 cycles of PCR consisting of
denaturing at 95°C for 2 s (3 min in the first cycle), an-
nealing and extension for 30 s were performed by a
Chrom4 Thermal Cycler System (MJ Research). The value
of each sample was normalized to the expression of the
GAPDH housekeeping gene in the same sample. The pri-
mer sequences for each gene used in this study are shown
in Additional file 4: Table S1).

Statistical analysis
Multiple samples were used in each experiment. Numerical
values were expressed as the mean ± standard deviation.
Statistical differences among the experimental groups were
evaluated by two-tailed student’s t-test. A significant differ-
ence was considered when P ≤ 0.05. In all studies, three in-
dependent experiments were performed for each type of
experiments.

Additional files

Additional file 1: Figure S1. Flow cytometric analysis of various surface
markers for human umbilical cord MSCs. Figure S2. The relative ratio of
gene expressions for MSCs on CS or PVA (non-adherent) vs. TCPS after
72 h of culture.

Additional file 2: Cross-correlation analysis. The list of genes
screened by the cross-correlation analysis as well as their expression
ratios.
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Additional file 3: Gene enrichment analysis. Results from gene
enrichment analysis in terms of gene ontology (GO terms) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway maps, using the
DAVID program.

Additional file 4: Table S1. Information for each primer used for the
real-time RT-PCR.
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