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Abstract: Obesity has become a worldwide epidemic; 340 million of children and adolescents were
overweight or obese in 2016, and this number continues to grow at a rapid rate. Epidemiological
research has suggested that air pollution affects childhood obesity and weight status, but the current
evidence remains inconsistent. Therefore, the aim of this meta-analysis was to estimate the effects
of childhood exposure to air pollutants on weight. A total of four databases (PubMed, Web of
Science, Embase, and Cochrane Library) were searched for publications up to December 31, 2021, and
finally 15 studies met the inclusion criteria for meta-analysis. Merged odds ratios (ORs), coefficients
(β), and 95% confidence intervals (95% CIs) that were related to air pollutants were estimated
using a random-effects model. The meta-analysis indicated that air pollutants were correlated with
childhood obesity and weight gain. For obesity, the association was considerable for PM10 (OR = 1.12,
95% CI: 1.06, 1.18), PM2.5 (OR = 1.28, 95% CI: 1.13, 1.45), PM1 (OR = 1.41, 95% CI: 1.30, 1.53),
and NO2 (OR = 1.11, 95% CI: 1.06, 1.18). Similarly, BMI status increased by 0.08 (0.03–0.12), 0.11
(0.05–0.17), and 0.03 (0.01–0.04) kg/m2 with 10 µg/m3 increment in exposure to PM10, PM2.5, and
NO2. In summary, air pollution can be regarded as a probable risk factor for the weight status of
children and adolescents. The next step is to conduct longer-term and large-scale studies on different
population subgroups, exposure concentrations, and pollutant combinations to provide detailed
evidence. Meanwhile, integrated management of air pollution is essential.

Keywords: childhood; air pollution; obesity; BMI; meta-analysis

1. Introduction

Obesity has become a worldwide epidemic and urgent health issue [1]. The prevalence
of overweight and obesity has increased considerably in the last few decades and nearly
tripled since 1975. With regard to children and adolescents, 340 million of them were over-
weight or obese in 2016, and this number continues to grow at a rapid rate [2,3]. Childhood
obesity has been associated with obesity and increased risks for chronic disease in adult-
hood [4,5], and these adverse effects may last the whole lifetime [6]. Research has identified
multiple factors that can lead to childhood obesity and it has been shown that childhood
obesity can be attributed to genetic, dietary, and behavioral factors [7]. Despite genetic and
metabolic predispositions, the rising epidemic of obesity indicates environmental factors
may play a role in accelerating the progression of childhood obesity [8].

The Global Burden of Disease study revealed that air pollution can be the most adverse
environmental health hazard for disease and mortality worldwide [9,10]. Well over 80% of
urban dwellers suffer from air pollution, and the most seriously affected individuals were
low-income residents [11]. In recent years, mounting evidence suggests that air pollution
can be an obesogenic factor [12]. It is mainly through the biochemical and behavioral
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pathways that air pollution affects body weight. Metabolic disorders [13], inflammatory
reactions [14], reduced sleep duration and quality [15] that are caused by air pollution all
contribute to the accumulation of adipose tissue and weight gain, as has been demonstrated
in animal trials. Additionally, the decline in air quality reduces a person’s willingness to
engage in outdoor activities [16], which in turn increases indoor time, in order to reduce
the impact of pollution on the human body [17].

Although there are numerous original studies on air pollution and obesity, the effects
remained inconsistent and differed among the populations, pollutant types, and pollutant
concentrations [12]. We found that previous studies were more concentrated on exposure
during pregnancy [18,19], whereas recent studies have increasingly examined the direct
effects of children’s exposure to air pollution on obesity [20,21]. However, the findings
seem to be inconsistent even in studies of children and adolescents only [22–24]. For
instance, Fioravanti et al. suggested that the evidence that air pollution causes obesity was
limited [23]. In contrast, some studies indicated that long-term exposure to air pollutants
might be correlated with weight gain and the development of obesity [20,21,25,26]. Among
the available review articles, the existing studies have been mostly concentrated on adults or
whole populations, and quantitative synthesis of the contribution of air pollution to children
and adolescents remains scarce [12,27,28]. A meta-analysis by Parasin et al. examined the
relationship between air pollution and childhood obesity, but did not distinguish between
exposure during pregnancy and individual exposure, and also did not standardize when
combining the effects of pollutants across studies [29]. Therefore, we believe that the topic
still has potential for further research. As such, that this study aimed to systematically
review and quantitatively analyze the scientific evidence on the influence of exposure to air
pollution on weight gain and obesity in childhood.

2. Methods
2.1. Search Strategy

The systematic review and meta-analysis were based on the Preferred Reporting
Items for Systematic Review and Meta-Analysis (PRISMA) guidelines [30]. A literature
search was conducted through PubMed, Web of Science, Embase, and Cochrane Library to
examine the relationship between childhood exposure to air pollutants and weight gain.
The keywords included a combination of three main aspects, which were used to represent
exposure (air pollutants), outcome (body weight status), and population (children and
adolescents). The search strategies are presented in the Supplementary Materials. When
searched in PubMed and Embase, the “[All fields]” tag was used. The search function
“TS = Topic” was applied in Web of Science, represents topic term search limited to the
fields of title, abstract, keyword, and Keyword Plus [31]. No restrictions were placed on
the start time in the window of the search, for the period up to and including 31 December
2021, but the language was limited to articles in English. We also conducted a backward
reference search and forward reference search based on the full-text articles meeting the
study selection criteria in the search strategy while no additional studies were found.

2.2. Eligibility Criteria and Study Selection

The inclusion criteria were based on the following principles: (1) population: con-
ducted on children and adolescents (≤18 years old); (2) exposure: short-term (<3 months)
or long-term (≥3 months) exposure to ambient air pollution (PM, NOx, SOx, CO, O3);
(3) outcome: overweight or obesity status measured by body mass index (BMI), waist
circumference (WC), waist-to-height ratio (WHtR), skinfold thickness, or body fat; (4) ar-
ticle type: original research; and (5) article language: written in English. For articles to
be include in the meta-analysis, the outcome indicators of interest were further restricted
to provide the relative risks (RRs)/odd ratios (ORs)/hazard ratios (HRs)/coefficients (β),
and corresponding 95% confidence intervals (CIs). Studies were excluded from the review
if they met any of the criteria below: (1) studies conducted in adults only; (2) prenatal
exposure; (3) body weight status includes birth weight only; (4) animal experimental
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studies; (5) studies on the effects of passive smoking, wood smoke, and (environmental)
endocrine-disrupting chemicals; and (6) letters, editorials, protocols, or review articles.

2.3. Data Extraction and Quality Assessment

For the eligible studies, the extracted data included: basic information of studies
(authors, publication year, country, study database, study design, study period, sample size,
age, gender proportion), and exposure and outcome indicators (exposure type, exposure
assessment, statistical model, adjusted covariates, effect estimates).

The National Institutes of Health’s Quality Assessment Tool for Observational Cohort
and Cross-Sectional Studies [32] was used to assess the quality of the included research in
the meta-analysis. The scale assessed each study in terms of 14 criteria, covering several
aspects of study objectives, sample selection, exposure and outcome measurement, and
statistical analysis. The total score ranged from 0 to 14 and was calculated by adding up the
scores for each criterion. A quality assessment of studies was used to assist in measuring
the strength of scientific evidence, but not for determining the inclusion and exclusion
of studies.

The selection of studies, data extraction, and quality assessment were carried out
independently by two reviewers, with disagreements resolved by a third reviewer.

2.4. Data Synthesis and Statistical Analysis

Weight and height were measured by professionals according to clinical standard
protocols. Overweight and obesity were then defined according to different regional
standards. Long-term exposure means exposure for longer than 3 months [28].

In this review, a random-effects model was used to assess the combined effects and
the 95% CIs by incorporating RRs/ORs/HRs for binary outcome (obesity) and β for
continuous outcome (BMI) from initial studies [28]. Since the definition of pollutant
concentration increments varied across studies, we defined 10 µg/m3 as the standard
increment; other reported units were converted (formulas: NO2: 1 ppb = 46/22.4 µg/m3;
NOx: 1 ppb = 46/22.4 µg/m3; O3: 1 ppb = 48/22.4 µg/m3). Based on the assumption of a
linear relationship between air pollution and obesity or BMI, the following equations were
used to standardize the estimates of effects across studies [28,33]:

OR(standardized) = OR(original)
Increment(10)/Increment(original) (1)

β(standardized) = β(original) × Increment(10)/Increment(original) (2)

In addition, when multiple models were available in the study or estimates from
sensitivity analyses were reported, we used the full-adjusted model only, or the main
model that was indicated by the researchers. For studies with different groups (such as
gender, age group) for which overall effects were not accessible, we treated them as a
separate research based on their respective sample sizes [21,22,34].

In order to examine the heterogeneity of the included studies, we used Chi-squared
test and I2 statistics, either I2 > 50% or p-value of Chi-squared test < 0.10 was considered as
statistically significant heterogeneity [35]. Publication bias was evaluated using Egger’s
test and funnel plot [36]. We also conducted subgroup analyses to explore sources of
heterogeneity according to study design (cohort or cross-sectional), country (China or
others), and study quality (<13 or ≥13). To ascertain whether a particular study had an
undue influence upon the overall results, a sensitivity analysis was carried out using the
leave-one-out method. All statistical analyses were conducted using STATA (version 13.1).
Statistically significant differences were determined as two-tailed p-value < 0.05.

3. Results
3.1. Study Selection

Figure 1 shows the flowchart of study selection. The initial keyword search identified
6488 records, including 1699 from PubMed, 2229 from Web of Since, 2491 from Embase,
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and 69 from Cochrane Library. After the removal of duplicate records, 4892 unique titles
and abstracts were assessed, and 4871 records were further excluded. The full texts of the
remaining 21 articles were reviewed, 20 met the inclusion criteria (one author manuscript
excluded). Among the 20 studies that met the review inclusion criteria, 5 studies were fur-
ther excluded due to inconsistency with the intended required outcome effects [24,37–39],
and unavailability exposure dose [8]. A total of 15 studies were finally included in the
meta-analysis [20–23,26,34,40–48].
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3.2. Study Characteristics

The characteristics of the included studies are presented in Table 1. These studies
were carried out in seven countries: six in China, three in Spain, two in the United States,
and one in each of Italy, Mexico, the Netherlands, and the United Kingdom. Overall,
the data reported on 683,081 participants; all the subjects were children and adolescents
with two studies only for children under the age of five. As for study design, eight were
cross-sectional studies while seven were cohort. All studies were long-term (≥3 months)
exposures. In terms of research quality assessment, eight achieved a score of 13 and were
considered as good quality (Supplementary Table S1).
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Table 1. Characteristics of the 15 included studies on the association between air pollution and
childhood obesity.

Study ID Author (Year) Country Study Design Study Period Sample Size
(Boy %) Age Quality a

1 Zheng et al. (2021) China Cross-sectional 2019 36,456 (52.1) 9–17 13
2 Zhang et al. (2021a) China Cross-sectional 2013–2014 44,718 (50.5) 7–18 13
3 Zhang et al. (2021b) China Cross-sectional 2013–2014 9897 (50.3) 10–18 13
4 Tamayo et al. (2021) Mexico Cross-sectional 2006 and 2012 4306 (51.5) 2–18 11
5 Bont et al. (2021) Spain Cohort 2006–2018 416,955 (51.4) 2–15 12
6 Vrijheid et al. (2020) UK Cross-sectional 2013–2016 1301 (54.7) 6–11 11
7 Guo et al. (2020) China Cross-sectional 2013–2014 40,953 (48.3) 6–17 13
8 Bont et al. (2020) Spain Cohort 2011–2016 79,992 (51.0) 0–5 13
9 Chen et al. (2020) China Cohort 2012–2014 5752 (52.5) 0–2 12
10 Bont et al. (2019) Spain Cross-sectional 2012 2660 (51.1) 7–10 13
11 Bloemsma et al. (2019) Netherlands Cohort 1996–2014 3680 (51.9) 3–17 12
12 Kim et al. (2018) US Cohort 2002–2003 2318 (50.6) 6.5 ± 0.7 13
13 Fioravanti et al. (2018) Italy Cohort 2003–2004 719 (50.6) 4–8 12
14 McConnell et al. (2015) US Cohort 2003–2014 3318 (49.6) 10.1 ± 0.59 13
15 Dong et al. (2014) China Cross-sectional 2009 30,056 (50.4) 2–14 11

Abbreviations: US, United States of America; UK, United Kingdom of Great Britain and Northern Ireland.
a National Institutes of Health’s Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies
(NIH-QAT)

Table 2 demonstrates the exposure, outcome information, and association assessment
methods. In order to assess the exposure to air pollutants, thirteen studies used model
estimation (satellite-based spatial-temporal model, hybrid spatio-temporal model, land use
regression model, machine-learning model, California line-source dispersion model) while
two used monitoring station data directly. Weight status and obesity were mainly based on
BMI and its related indicators (except for one which used waist circumference), meanwhile
the reference standard for eight studies was based on international standards and seven on
national standards.

3.3. Air Pollution on Obesity and BMI in Children and Adolescents

The association of childhood obesity and air pollutants was estimated using a pooled
ORs, respectively 9, 11, 3, 2, and 11 studies investigated the effects of obesity in relation to
PM10, PM2.5, PM1, O3, and NO2 exposure (Table 3). The meta-analysis results (Supplemen-
tary Table S2) showed that long-term exposure to air pollution could increase the risk of
childhood obesity (Figure 2), the only pollutant that exhibited no significant correlation
was O3 (OR = 1.08, 95% CI: 0.99,1.18), while the association was considerable for PM10
(OR = 1.12, 95% CI: 1.06,1.18), PM2.5 (OR = 1.28, 95% CI: 1.13,1.45), PM1 (OR = 1.41, 95% CI:
1.30,1.53), and NO2 (OR = 1.11, 95% CI: 1.06,1.18).

The relationships between PM10, PM2.5, NO2, and NOx and childhood BMI were
reported by 3, 3, 5, and 2 studies (Table 3). The BMI status increased by 0.08 (0.03–0.12),
0.11 (0.05–0.17), and 0.03 (0.01–0.04) kg/m2 with 10 µg/m3 increment in exposure to PM10,
PM2.5, and NO2, respectively. Exposure to NOx, however, was not significantly associated
with BMI growth (Figure 3).

3.4. Heterogeneity, Publication Bias, and Sensitivity Analysis

In studies with obesity as an outcome, heterogeneity existed in the analysis of air pol-
lutants (PM10: I2 = 85.9, p < 0.001; PM2.5: I2= 86.3, p < 0.001; O3: I2 = 71.5, p = 0.061; NO2:
I2 = 84.1, p < 0.001), except for PM1 (I2 = 0, p = 0.905). Funnel plots (Supplementary Figure S1)
and an Egger’s test showed potential publication bias that was only identified in NO2 (PM10:
p = 0.076; PM2.5: p = 0.238; PM1: p = 0.324; NO2: p = 0.001; O3: N/A).
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Table 2. Exposure, outcome, and statistical information of the 15 included studies on the association between air pollution and childhood obesity.

Study ID Author (Year) Exposure Duration Exposure Assessment Outcome Definition Statistical Model Adjusted Covariates

1 Zheng et al. (2021) PM10, PM2.5, O3, NO2 Long-term Monitoring stations
Age-and-sex specific
BMI cut-offs (Chinese
national standard)

Multivariate regression
model

Sex, age, paternal, sugar-sweetened beverage
consumption, sweetened food consumption,
frequency of having breakfast, fried food
consumption, physical activity duration

2 Zhang et al. (2021a) PM10, PM2.5, PM1, NO2 Long-term Satellite-based
spatial-temporal model

Age-and-sex specific
BMI cut-offs (Chinese
national standard)

Mixed-effects linear and
logistic regression models

Age, physical activity, fruit & vegetable intake,
parental smoking, parental education, north or
south, urban residency, regional GDP per capita

3 Zhang et al. (2021b) PM10, PM2.5,PM1, NO2 Long-term Satellite-based
spatial-temporal model

Waist circumference
(Chinese national
standard)

Generalized linear
mixed-effects models

Age, sex, weight status, temperature, relative
humidity, parental education level achieved,
parental smoking status, parental alcohol
consumption, family history of type 2 diabetes,
hypertension, obesity, or cerebrovascular
disease, outdoor physical activity time, diet of
high fat, SSBs intake.

4 Tamayo et al. (2021) PM2.5 Long-term Hybrid spatio-temporal
model

Age-specific BMI
(WHO standard) Logistic regression models Age, sex, SES, and smoking status

5 Bont et al. (2021) PM10, PM2.5, NO2 Long-term Land use
regression model

Age-and-sex specific
BMI (WHO standard)

Cox proportional
hazards models

Sex, deprivation index, nationality, deprivation
index, and had age (1-year categories) in the
strata statement.

6 Vrijheid et al. (2020) NO2 Long-term Land use
regression model

Age-and-sex specific
BMI (WHO standard)

Linear regression models,
and logistic
regression models

Sex, maternal BMI, maternal education,
maternal age at conception, parity, parental
country of origin, breastfeeding, and
birth weight

7 Guo et al. (2020) PM2.5 Long-term Machine-learning
model

Age-and-sex specific
BMI cut-offs (Chinese
national standard)

Logistic regression
models

Sex, age, urbanity, boarding school or not,
economic level, maternal occupation, maternal
education, vegetable intake, fruit intake,
beverages intake, activity times, ventilation,
cooking fuel type, household heating fuel type,
school heating fuel type, and secondhand
smoke duration

8 Bont et al. (2020) PM10, PM2.5, NO2 Long-term Land use
regression model

BMI z-scores
(WHO standard)

Linear spline
multilevel model Sex, age, deprivation index, nationality

9 Chen et al. (2020) NO2 Long-term Land use
regression model

Age- and sex-specific z
scores for BMI
(WHO standard)

Generalized estimating
equation models,
Distributed lag
nonlinear models

Maternal age, maternal education, annual
household income and residence area
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Table 2. Cont.

Study ID Author (Year) Exposure Duration Exposure Assessment Outcome Definition Statistical Model Adjusted Covariates

10 Bont et al. (2019) PM10, PM2.5, NO2 Long-term Land use
regression model

Age- and sex-specific z
scores for BMI
(WHO standard)

Multilevel mixed linear
and ordered
logistic models

Maternal and paternal education, maternal and
paternal country of birth, paternal employment
status, number of siblings, household status
and maternal smoking during pregnancy

11 Bloemsma et al. (2019) PM10, PM2.5, NO2 Long-term Land use
regression model

Age-and-sex specific
BMI (International
Obesity Task
Force cut-offs)

Generalized linear
mixed models

Age, sex maternal level of education, paternal
level of education, maternal smoking during
pregnancy, parental smoking in child’s home
and neighborhood socioeconomic status
and region

12 Kim et al. (2018) NOx Long-term California line-source
dispersion model BMI (US CDC criteria) Linear mixed

effects models
Age, sex, race/ethnicity, parental education,
and Spanish baseline questionnaire

13 Fioravanti et al. (2018) PM10, PM2.5, NO2 Long-term Land use
regression model

Age- and sex-specific z
scores for BMI
(WHO standard)

Logistic regression
models, Generalized
Estimating Equation
models and linear
regression models

Maternal and paternal education, maternal
pre-pregnancy BMI, maternal smoking during
pregnancy, gestational diabetes, maternal age
at delivery, gestational age, childbirth weight,
breastfeeding duration, age at weaning and
inversely weighted for the probability of
participation at baseline and at the two
follow-ups, respectively

14 McConnell et al. (2015) NOx Long-term California line-source
dispersion model

Age-and-sex specific
BMI (US CDC criteria) Multilevel linear model Sex, ethnicity, community, year of enrollment,

and age

15 Dong et al. (2014) PM10, NO2, SO2, O3 Long-term Monitoring stations
Age-and-sex specific
BMI standards (Chinese
CDC criteria)

Logistic regression

Age, gender, parental education, breastfeeding,
low birth weight, area of residence per person,
house decorations, home coal use, ventilation
device in kitchen, air exchange in winter,
passive smoking exposure, and districts

Abbreviations: PM10, particulate matter with the diameter ≤ 10 mm; PM2.5, particulate matter with diameter ≤ 2.5 mm; PM1, particulate matter with the diameter ≤ 1 mm; NO2,
nitrogen dioxide; NOx, nitrogen oxides; SO2, sulfur dioxide; O3, ozone; BMI, body mass index; WHO, World Health Organization; US, The United States; CDC, Center for Disease
Control and Prevention.
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Table 3. Summary effects and 95% confidence intervals of each pollutant on obesity and BMI in
children and adolescents.

Pollution Type Author (Year) Group Sample Size Incremental Scale Original Effect Transformed OR/β

obesity

PM10

Zheng (2021) Total 36,456 10 µg/m3 1.03 (0.97, 1.09) -
Zhang (2021a) Boy 22,573 10 µg/m3 1.25 (1.15, 1.37) -
Zhang (2021a)’ Girl 22,145 10 µg/m3 1.32 (1.21, 1.45) -
Zhang (2021b) Total 44,718 10 µg/m3 1.32 (1.11, 1.55) -
Bont (2021) Total 416,955 6.4 µg/m3 1.02 (1.02, 1.03) 1.03 (1.02, 1.05)
Bont (2019) Home 2660 5.6 µg/m3 1.10 (1.00, 1.22) 1.18 (1.00, 1.43)
Bloemsma (2019) Total 3680 1.06 µg/m3 1.00 (0.88, 1.12) 1.00 (0.30, 2.91)
Fioravanti (2018) Total 719 10 µg/m3 0.97 (0.77, 1.23) -
Dong (2014) Total 30,056 31 µg/m3 1.19 (1.11, 1.26) 1.06 (1.03, 1.08)

PM2.5

Zheng (2021) Total 36,456 10 µg/m3 1.19 (1.05, 1.33) -
Zhang (2021a) Boy 22,573 10 µg/m3 1.40 (1.26, 1.55) -
Zhang (2021a)’ Girl 22,145 10 µg/m3 1.49 (1.34, 1.66) -
Zhang (2021b) Total 44,718 10 µg/m3 1.40 (1.19, 1.65) -
Tamayo (2021) Children 1370 10 µg/m3 3.64 (1.88, 7.06) -
Tamayo (2021)’ Adolescence 1519 10 µg/m3 1.62 (0.90, 2.93) -
Guo (2020) Total 40,953 10 µg/m3 1.10 (1.03, 1.16) -
Bont (2019) Home 2660 2.7 µg/m3 1.05 (0.96, 1.15) 1.19 (0.86, 1.68)
Bont (2019)’ School 2660 10.7 µg/m3 1.00 (0.93, 1.08) 1.00 (0.93, 1.07)
Bloemsma (2019) Total 3680 1.17 µg/m3 0.80 (0.59 1.09) 0.15 (0.01, 9.31)
Fioravanti (2018) Total 719 5 µg/m3 1.02 (0.75, 1.40) 1.04 (0.56, 1.96)

PM1

Zhang (2021a) Boy 22,573 10 µg/m3 1.38 (1.21, 1.57) -
Zhang (2021a)’ Girl 22,145 10 µg/m3 1.44 (1.25, 1.67) -
Zhang (2021b) Total 44,718 10 µg/m3 1.42 (1.23, 1.64) -

O3
Zheng (2021) Total 36,456 10 µg/m3 1.04 (1.00, 1.08) -
Dong (2014) Total 30,056 11.3 ppb 1.14 (1.04, 1.24) 1.06 (1.02, 1.09)

NO2

Zheng (2021) Total 36,456 10 µg/m3 1.13 (1.04, 1.22) -
Zhang (2021a) Boy 22,573 10 µg/m3 1.14 (1.04, 1.24) -
Zhang (2021a)’ Girl 22,145 10 µg/m3 1.21 (1.10, 1.34) -
Zhang (2021b) Total 44,718 10 µg/m3 1.44 (1.22, 1.71) -
Bont (2021) Total 416,955 21.8 µg/m3 1.03 (1.02, 1.04) 1.01 (1.00, 1.02)
Chen (2020) Total 5752 10 µg/m3 1.11 (1.00, 1.22) -
Bont (2019) Home 2660 13.7 µg/m3 1.05 (0.97, 1.13) 1.04 (0.98, 1.09)
Bont (2019)’ School 2660 22.3 µg/m3 1.09 (0.92, 1.28) 1.04 (0.96, 1.12)
Bloemsma (2019) Total 3680 8.9 µg/m3 1.40 (1.12, 1.74) 1.46 (1.14, 1.86)
Fioravanti (2018) Total 719 10 µg/m3 0.99 (0.86, 1.12) -
Dong (2014) Total 300,56 5.3 ppb 1.13 (1.04, 1.22) 1.13 (1.04, 1.21)

BMI

PM10

Zhang (2021a) Boy 22,573 10 µg/m3 0.11 (0.07, 0.14) -
Zhang (2021a)’ Girl 22,145 10 µg/m3 0.09 (0.06, 0.12) -
Bont (2020) Total 79,992 6.3 µg/m3 0.02 (0.01, 0.03) 0.04 (0.02, 0.05)

PM2.5

Zhang (2021a) Boy 22,573 10 µg/m3 0.15 (0.11, 0.19) -
Zhang (2021a)’ Girl 22,145 10 µg/m3 0.13 (0.09, 0.17) -
Bont (2020) Total 79,992 1.5 µg/m3 0.01 (0.00, 0.01) 0.05 (0.00, 0.09)

NO2

Zhang (2021a) Boy 22,573 10 µg/m3 0.05 (0.01, 0.09) -
Zhang (2021a)’ Girl 22,145 10 µg/m3 0.04 (0.01, 0.08) -
Vrijheid (2020) Total 1301 92.8 µg/m3 0.15 (0.01, 0.28) 0.02 (0.00, 0.30)
Bont (2020) Total 79,992 21.3 µg/m3 0.02 (0.01, 0.03) 0.01 (0.00, 0.02)
Chen (2020) Total 5752 10 µg/m3 0.03 (0.01, 0.05) -

NOx
Kim (2018) Total 2318 9.4 ppb 0.10 (0.03, 0.20) 0.05 (0.02, 0.10)
McConnell (2015) Total 2994 16.8 ppb 1.13 (0.61, 1.65) 0.33 (0.18, 0.50)

Abbreviations: PM10, particulate matter with the diameter ≤ 10 mm; PM2.5, particulate matter with
diameter ≤ 2.5 mm; PM1, particulate matter with the diameter ≤ 1 mm; NO2, nitrogen dioxide; NOx, nitro-
gen oxides; O3, ozone; BMI, body mass index; OR, odds ratio; β, regression coefficient.
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Figure 3. Associations of PM10 (a), PM2.5 (b), NO2 (c), and NOx (d) with BMI in children and adolescents.

For the outcome of BMI status, heterogeneity was found among all the pollutants
(PM10: I2 = 89.1, p < 0.001; PM2.5: I2 = 82.6, p = 0.003; NO2: I2 = 48.6, p = 0.0100; NOx:
I2 = 91.0, p < 0.001), Funnel plots (Supplementary Figure S2) and an Egger’s test showed
publication bias only existed in research that related to PM10 (PM10: p = 0.018; PM2.5:
p = 0.131; NO2: p = 0.156; NOX: N/A).

Due to the limitation of the number of included studies, we only performed a subgroup
analysis of the effects of PM10, PM2.5, and NO2 on obesity. The results of the subgroup analy-
sis indicated that the effects of PM10, PM2.5, and NO2 on obesity in children and adolescents
remained significant. However, the sources of heterogeneity were not well explained in
terms of the study design, study region, and study quality (Supplementary Table S3).

The associations between exposure to PM10, PM2.5, PM1, and NO2 on childhood
obesity in sensitivity analysis were generally similar and significant with the original
findings (Supplementary Figure S3). Meanwhile, exposure to PM10, PM2.5, and NO2 had
relatively robust effects on childhood BMI growth (Supplementary Figure S4).

4. Discussion

The objective of this study was to comprehensively assess the relationship between
childhood exposure to air pollutants with obesity and weight status among children and
adolescents. We conducted a systematic review and meta-analysis of 15 studies from
7 countries. The results showed that long-term exposure to particulate matter and NO2
was significantly correlated with the risk of childhood obesity, while BMI also showed
similar elevated results. Although O3 and NOx also had a positive effect on the increase
in weight status, none reached significant levels. Notably, as the aerodynamic diameter
of particulate matter decreases, the fattening effect on children increases, and researchers
have begun to concentrate on the smaller particle size pollutants (PM1).
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Of the 15 studies that were included in the analysis, around 73% were published in
the last three years, and most were conducted in developing countries. We compared a
meta-analysis of the association between air pollutants and obesity in adults [28], where
half of the included studies were published after 2019, with the difference that the study
areas were predominantly developed countries. An identifiable trend is that concerns
about air pollution and childhood obesity are rising rapidly in developing countries. One
plausible explanation is that although developed countries still maintain high rates of
childhood obesity [49,50], the effect of air pollutants on body weight has been limited
because air pollution levels have declined significantly in these countries [28]. Developing
countries, in contrast, appear confronted with a double crisis, with increasing prevalence
and growth rates of childhood obesity on the one hand [51], and deteriorating air quality
resulting from urbanization and industrialization on the other [52,53]. Thus, numerous
original studies were conducted in developing countries in recent years, and the effects
tend to be more significant, further providing foundations for the analysis of our research.

As the main air pollutants of concern in the present study, particulate matter signifi-
cantly influenced childhood obesity and BMI growth. Our findings were consistent with
the previous hypothesis that with smaller aerodynamic diameters of respirable particulate
matter, the more toxic compounds would be adsorbed and also more easily inhaled deep
into the lungs, therefore are more harmful to health [54,55]. In contrast to children, long-
term exposure to PM10 and PM2.5 showed insignificant effects on adult obesity according
to a meta-analysis that was conducted on adults [28]. Similar results were found for NO2
and O3, both pollutants were positively associated with the development of obesity. As
can be seen, the effects of different pollutants on people can be diverse and complex, even
for the same pollutant, the impact can vary depending on the characteristics of the popu-
lation (i.e., age, gender, region). These specific mechanisms require further investigation
and validation.

While the mechanisms linking exposure to air pollution and obesity are not completely
understood, biochemical mechanisms have been commonly mentioned and accepted as the
main obesity-causing mechanisms in relation to air pollutants [12,25,56]. Firstly, from the
perspective of human metabolism, air pollutants entering the body from the respiratory
tract may increase oxidative stress in tissues and systems [57]. Take PM2.5, as an example, it
can affect gene expression in mitochondria in brown adipose tissue, resulting in increased
production of reactive oxygen species in brown fat stores, which lead to metabolic dysfunc-
tion [13], and susceptibility to lipid metabolism and glucose metabolism [58]. Secondly,
the inflammatory response that is triggered by air pollutants can lead to vascular damage
as well as insulin resistance, can also have an impact on body weight [14]. Studies also
found that the occurrence of sleep-disordered breathing (SDB) was related to exposure
to air pollutants [59]. Those who lived in regions with high NO2 and PM2.5 levels were
much more likely to suffer from SDB, which in turn caused mental and physical health
disparities [60]. Sleep deprivation correlated with decreased levels of leptin secretion,
lower thyroid stimulating hormone secretion, and lower glucose tolerance, all of which
may increase BMI status [15]. Finally, behavioral mechanisms can be explained in another
direction [12]. For example, air pollution can reduce people’s willingness to participate in
outdoor activities [16]. In addition, it can also improve the consumption of trans fats and
fast food [61], which may contribute to obesity. However, attention should be drawn to the
fact that while the obesogenic mechanisms of air pollution have been validated in animal
models, uncertainties remain for humans or for different pollutants, and more research
should be conducted to elucidate such pathways.

The strength of the present study is that it comprehensively and quantitatively as-
sesses the relationship between long-term exposure to air pollutants and childhood obesity.
Previous studies focused on the whole population [12] or adults [28], with limited studies
on children and adolescents [25,62]. Meanwhile, the majority of the original studies that
were included in this study were published in the past three years, and the results are
relatively new. Thirdly, the exposure doses in the original studies were mostly different,
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thus it is difficult to compare the effects, and we converted the data in a standardized way
to improve the comparability of the data. Finally, analyses and collations were performed
according to the standard methods that are required by the PRISMA checklist.

However, this meta-analysis still has many limitations that need to be noted. Firstly, al-
though we systematically searched the currently that is available epidemiological evidence,
the amount of research was still limited and the potential sources of heterogeneity remain to
be explored. When we integrated the results across studies, the quality of the articles varied,
exposure was not measured and estimated in a standardized way, analytical methods were
imperfect, and the certainty of the evidence in the articles was generally poor, so caution
should be exercised in interpreting the results as well. Secondly, the findings were based
on numerous cross-sectional studies; therefore, causality was difficult to be determined
accurately. According to GRADE system, the level of evidence for observational studies
was still low. Thirdly, due to the complexity of growth patterns, the BMI that was applied
to measure obesity in adults may not be applicable to a certain extent to children and
adolescents. Fourth, for younger children (before two years of age), early obesity may
be associated with the subsequent catch-up growth of low birth weight due to maternal
exposure to air pollution [63], and the mechanisms for infants need to be further probed.
Finally, obesity is a disease with complex causes, the magnitude of the direct role that is
contributed by air pollution was unclear, and residual bias (i.e., socio-economic conditions,
physical activity) may still influence the outcomes. For example, high-income families (or
parents with higher education levels) tend to live in more privileged residential areas with
relatively lower levels of air pollution, better green spaces and have a more structured diet,
while low-income families tend to be the opposite. Likewise, parents who live in more
polluted areas may restrict their children’s outdoor activities to reduce the exposure to air
pollutants. These potentially confounding variables were not comprehensively captured
and reasonably explained in studies

The results of the study further reveal the risk of air pollution on childhood obesity.
The implications of air pollutants are direct and significant, not only for human health
but also for the climate. Therefore, policy-makers can also benefit from these findings
that economic development and urbanization can create a number of problems, especially
in developing countries, and require reflection on how to develop appropriate policies
to balance economic development and environmental pollution. A synergistic approach
to air pollution and climate change management that is based on global cooperation is
essential. Important sectors such as transportation, energy, and manufacturing are the
main focus of high emissions of PM, SO2, NOx, and GHG. It is imperative to accelerate the
transformation of the energy mix and use technology to drive low-carbon production. At
the same time, it is essential to establish an integrated system of atmospheric monitoring,
emissions supervision, and pollution remediation.

The present review also provides insights for future studies. Firstly, long-term cohort
studies with large samples of children and adolescents across age, gender, and ethnicity
are required in order to provide more representative and convincing results. Secondly,
the diagnosis of childhood obesity requires more diverse anthropometric measures such
as waist circumference, waist-to-hip ratio, subcutaneous fat, and total and high-density
lipoprotein cholesterol. In addition, the health effects of ultrafine particulate matter still
need to be clarified. Finally, interactions between multiple pollutants and their effects on
humans also require estimation.

5. Conclusions

In summary, air pollutants can be considered as a probable risk factor for the weight
status of children and adolescents. Although studies are still limited, our study provides
some indication. The next step is to conduct longer-term and large-scale studies on different
population subgroups, exposure concentrations, and pollutant combinations to provide
detailed evidence on the impacts of air pollution on human health. Measures should also
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be taken by the government to regulate and control the emission of air pollutants to provide
a pleasant living environment for residents.
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Figure S1: Funnel study in the meta-analysis on the association between PM10 (a), PM2.5 (b), PM1 (c),
and NO2 (d) exposure and childhood obesity; Figure S2: Funnel study in the meta-analysis on the
association between PM10 (a), PM2.5 (b), and NO2 (c) exposure and childhood BMI status; Figure S3:
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