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Abstract
The clinical use of histone deacetylase inhibitors (HDACi) for the treatment of bonemarrow failure and hematopoietic malignancies has
increased dramatically over the last decades. Nonetheless, their effects on normal myelopoiesis remain poorly evaluated. Here, we
treated cord blood derived CD34+ progenitor cells with two chemically distinct HDACi inhibitors MS-275 or SAHA and analyzed their
effects on the transcriptome (RNA-seq), epigenome (H3K27ac ChIP-seq) and functional and morphological characteristics during
neutrophil development. MS-275 (entinostat) selectively inhibits class I HDACs, with a preference for HDAC1, while SAHA (vorinostat)
is a non-selective class I/II HDACi. Treatment with individual HDACi resulted in both overlapping and distinct effects on both
transcriptome and epigenome, whereas functional effects were relatively similar. Both HDACi resulted in reduced expansion and
increased apoptosis in neutrophil progenitor cells. Morphologically, HDACi disrupted normal neutrophil differentiation what was
illustrated by decreased percentages of mature neutrophils. In addition, while SAHA treatment clearly showed a block at the
promyelocytic stage, MS-275 treatment was characterized by dysplastic features and skewing towards themonocytic lineage. These
effects could be mimicked using shRNA-mediated knockdown of HDAC1. Taken together, our data provide novel insights into the
effects of HDAC inhibition on normal hematopoietic cells during neutrophil differentiation. These findings should be taken into account
when considering the clinical use of MS-275 and SAHA, and can be potentially utilized to tailor more specific, hematopoietic-directed
HDACi in the future.
Introduction transferases (HATs), which are required for the deposition of the

Hematopoietic lineage choice and progression are complex and
dynamic processes, tightly regulated through epigenetic changes
and the expression of specific transcription factors and regulatory
cytokines.1–9 Over the last decade, many epigenetic modulators
regulating hematopoiesis have been identified, including networks
that affect DNA methylation, micro RNA expression, and post
transcriptional modifications such as histone acetylation.10–13

Histone acetylation is dynamically regulated by histone acetyl-
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acetyl group, and histone deacetylases (HDACs), which are
required for the removal of the acetyl group. This epigenomic
modification associates with active regulatory DNA and may
influence gene expression by chromatin remodeling and the
subsequent recruitment of transcriptional regulators.14 In addi-
tion, several studies have shown that HATs and HDACs also (de)
acetylate non-histone proteins such as transcription factors, which
play an important role in hematopoietic differentiation.15–22
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Given the transcriptional changes associated with neoplastic
growth, the use of “epigenetic drugs” has dramatically increased
as (adjuvant) treatment of (hematological) malignancies. These
drugs include HDAC inhibitors (HDACi) which induce a variety
of cellular consequences, including apoptosis, cell cycle arrest,
differentiation, and autophagy.23–28 Furthermore, HDACi tend
to have more pronounced effects on malignant cells than on
healthy cells, making them excellent candidates for clinical
use.29,30 In addition, the utility of HDACi are also explored in
healthy human hematopoietic stem/progenitor cells derived from
cord blood to increase the self-renewal capacity for their use in
clinical transplantations.31,32 Nevertheless, the effects of HDACi
treatment on lineage choice and progression in normal
hematopoietic cells remains surprisingly underexplored.
The potent but distinct HDACi MS-275 and SAHA are well

studied in cancer cell models, but their effect on normal
hematopoiesis is not yet known. MS-275 has mainly been
studied for the use in cutaneous T-cell lymphoma, breast and
colon cancer.33–36 SAHA is used for treatment of multiple
myeloid malignancies and other tumor types, including melano-
ma. These HDACi belong to different structural groups, thereby
having different affinity and selectivity for HDACs.37 The
benzamide MS-275 (entinostat) selectively inhibits class I
HDACs, with a preference for HDAC1 and to a lesser extent
HDAC3, while the hydroxamic acid SAHA non-selectively
inhibits class I/II HDACs.37 Although their differences in
inhibitory selectivity, both compounds are known to increase
acetylation on histones H3 and H4, induce p21 expression and
activate apoptotic pathways in malignant cells.38–42

In this study, we investigated the effects of HDAC inhibition on
normal hematopoiesis using two distinct HDACi, MS-275 and
SAHA. We performed transcriptomic, epigenomic, functional
andmorphological analysis during neutrophil development in the
presence and absence of the HDACiMS-275 and SAHA. HDACi
treatment resulted in both overlapping and differential effects on
the transcriptome and epigenome, with similar functional
outcomes. Both HDACi resulted in reduced expansion and
increased apoptosis in neutrophil progenitor cells. Morphologi-
cally, HDACi disrupted normal neutrophil differentiation which
was illustrated by decreased percentages of mature neutrophils.
In addition, while SAHA treatment clearly showed a block at the
promyelocytic stage, MS-275 treatment was characterized by
dysplastic features and skewing towards the monocytic lineage.
These effects could be mimicked using an shRNA-knockdown of
HDAC1, suggesting a role for HDAC1 in determining cell fate
decisions throughout neutrophil differentiation. Taken together,
our data provide novel insights into the effects of HDAC
inhibition on cell state transitions during normal hematopoiesis
which may have consequences for their clinical use.
Results

Treatment with MS-275 and SAHA differentially
regulates gene expression during neutrophil
development

To evaluate the effects of HDAC inhibition during normal
hematopoiesis, we differentiated CD34+ cells derived from
umbilical cord blood towards mature neutrophils in the absence
or presence of the class I specific HDACi MS-275 or the pan-
HDACi SAHA. To analyze changes in the transcriptome caused
byHDAC inhibition, CD34+ cells were differentiated for six days
and treated overnight with MS-275, SAHA or DMSO, after
2

which RNA-sequencing was performed (Supplemental Table 1,
Supplemental Digital Content 1, http://links.lww.com/HS/A36).
Differential RNA expression analysis (DESeq2) of HDACi
treatment compared to control DMSO resulted in 432 and
364 genes that were significantly differentially expressed (log2
fold change > 1, P<0.05) after MS-275 and SAHA treatment
respectively (Fig. 1A and B, Supplemental Table 2, Supplemental
Digital Content 1, http://links.lww.com/HS/A36). MS-275
treatment resulted predominantly in an up-regulation of genes,
and this was also observed after SAHA treatment, albeit to a
lesser extent (Fig. 1B). A minority of the genes showed expression
changes upon both HDACi treatments, although almost 45%
(113/258) of the genes that increased expression upon SAHA
treatment were also found to be upregulated upon MS-275
treatment (Fig. 1C and D). Functional analysis of the gene sets
using gene ontology revealed that commonly regulated genes
were predominantly involved in processes such as ‘cell
morphogenesis involved in differentiation’ and ‘negative regula-
tion of cell proliferation’, the HDACi-specific genes were
associated with distinct processes (Fig. 1E). Genes involved in
integrin signaling were found to be overrepresented in MS-275
regulated genes which was further confirmed using Gene Set
Enrichment Analysis, where the integrin pathway was enriched in
MS-275 treated cells compared to DMSO and this was not
observed upon SAHA treatment (Fig. 1F). Genes regulated by
addition of SAHAwere involved in cytokine production (Fig. 1E)
including downregulation of the interleukin-6 production gene
set, in contrast to no significant expression changes uponMS-275
treatment (Fig. 1F). Thus, besides overlapping transcriptional
effects, HDACi treatment induced compound-specific changes
illustrated by an anti-inflammatory gene expression profile upon
SAHA treatment, and increased expression of genes involved in
integrin signaling following MS-275 treatment.

MS-275 modulation of H3K27acetylation correlates
with changes in gene expression

To link gene expression changes directly to changes in histone
acetylation, we analyzed the enrichment of H3K27 acetylation
(H3K27ac), which marks active non-coding regulatory DNA
elements such as promoters and enhancers and is a substrate of
HDACs. HDAC inhibition by MS-275 and SAHA resulted in a
global increase in H3K27ac, most prominently following
treatment with SAHA (Fig. 2A). To further analyze histone
acetylation levels specifically on regions surrounding the
differentially expressed genes, we analyzed H3K27ac on a
genome wide scale using ChIP-sequencing. Analyzing promoters
of differentially expressed genes, we observed significant differ-
ences in H3K27ac enrichment after both HDACi treatments
compared to DMSO control (Fig. 2B). Promoters of up-regulated
genes by MS-275 showed significant more H3K27ac enrichment
compared to DMSO control (P<0.001 for MS-275 specific
genes, P=0.008 for shared genes,Wilcoxon rank-sum test), while
promoters of down-regulated genes showed lower H3K27ac
enrichment (P=0.039 for MS-275 specific genes only, Wilcoxon
rank-sum test) (Fig. 2B and C). In contrast toMS-275, changes in
H3K27ac enrichment following SAHA treatment did not
correlate well with changes in gene expression. Promoters of
commonly up-regulated genes were higher H3K27ac enriched
after treatment (P=0.013, Wilcoxon rank-sum test) and,
surprisingly, promoters of SAHA down-regulated genes also
showed higher H3K27ac enrichment (P=0.002, Wilcoxon rank-
sum test) (Fig. 2B and C). No significant differences were
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Figure 1. Treatment with MS-275 and SAHA differentially regulates gene expression during neutrophil development. (A) Volcano plot of log2 fold
changes in gene expression vs �log10 p value derived from DESeq2 analysis of DMSO vs MS-275 (left) and DMSO versus SAHA (right) of duplicate RNA-seq
experiments. Colored dots (blue: MS-275, green: SAHA) indicate genes significantly differentially expressed compared to DMSO (log2 fold change > 1, p value <
0.05). (B) Number of significantly differentially expressed genes (log2 fold change> 1, p value< 0.05) upon MS-275 treatment and SAHA treatment (Supplemental
Table 2, Supplemental Digital Content 1, http://links.lww.com/HS/A36). (C) Heatmap of log2 fold changes (from DESeq2 analysis) of all differentially expressed
genes after MS-275 and SAHA treatment. Columns on the left indicate shared genes (grey), MS-275 specific genes (blue) or SAHA-specific genes (green), and up-
regulated genes (black) or down-regulated genes (white). (C) Overlap of differentially expressed genes upon HDACi treatment. (E) Significant overrepresented Gene
Ontologies identified by DAVID Gene Ontology for each gene set: commonly regulated genes (top), MS-275 specific genes (middle) and SAHA specific genes
(bottom). (F) Example of gene sets significantly differential expressed according to Gene Set Enrichment Analysis after MS-275 treatment (top) and SAHA treatment
(bottom) treatment compared to DMSO control. EGFR=epidermal growth factor receptor, FDR= false discovery rate, MAPK=mitogen-activated protein kinase,
NES=normalized enrichment score, pv=p-value, RPTP= receptor protein tyrosine phosphatase.

(2019) 3:4 www.hemaspherejournal.com
observed for promoters of SAHA up-regulated genes
and commonly down-regulated genes (Fig. 2B and C).
Thus, many of these genes are likely to be indirectly affected
by HDACi.
3

In addition to promoter acetylation, H3K27ac on distal
regulatory elements (DREs), including enhancers, can also be
regulated by HDACi treatment. Therefore, the closest DRE of
each differentially expressed gene was analyzed for changes in
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Figure 2. MS-275 modulation of H3K27acetylation correlates with changes in gene expression. (A) Quantification of three independent replicates of anti-
H3K27acetylation Western Blot after overnight treatment at day 6 of CD34+ differentiation towards neutrophils. (B) Log2 fold changes of H3K27ac enrichment on
promoters of commonly regulated genes, MS-275 specific (left) and SAHA specific differentially expressed genes (right) compared to DMSO control. Significance
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∗
P<0.05,

∗∗
P<

0.01,
∗∗∗

P<0.001. (C) RPM normalized H3K27ac ChIP-seq tracks of promoters of genes that where differentially expressed in MS-275 specific (up), shared
(middle) and SAHA specific (bottom). DMSO is visualized in black, MS-275 in blue and SAHA in green. Axis ranges from 0-7 RPM.

A.M.A.P. Govers et al. Profiling of HDAC Inhibitor Induced Gene Regulation In Impaired Neutrophil Development
acetylation enrichment. Similar as observed on promoters,
HDACi treatment with MS-275 resulted in increased levels of
H3K27ac on DREs of up-regulated genes and in decreased levels
on DREs of down-regulated genes although the magnitude of this
effect was attenuated (Supplemental Fig. 1, Supplemental Digital
Content 2, http://links.lww.com/HS/A37). SAHA treatment
induced a significant increase of H3K27ac enrichment only on
DREs of commonly up-regulated genes (Supplemental Figure,
Supplemental Digital Content 2, http://links.lww.com/HS/A37).
Thus, whereas MS-275 treatment resulted in specific changes in
H3K27acetylation that correlated with the changes in gene
expression, SAHA treatment overall did not show this connection
4

suggesting a larger proportion of the differentially expressed
genes are indirectly affected.
MS-275 and SAHA inhibit expansion and induce
apoptosis during neutrophil differentiation

In addition to transcriptomic and epigenomic analysis, the
functional effects of HDACi treatment regarding cell fate
decisions were evaluated. Proliferation and apoptosis of neutro-
phil precursors were analyzed during neutrophil differentiation in
the presence of HDACi. A concentration-dependent decrease was
observed in the expansion of neutrophil progenitor cells upon
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treatment with MS-275 and SAHA (Fig. 3A and B). To evaluate
whether decreased expansion was due to increased apoptosis, the
fraction of cells that stained positive for Annexin V (early
apoptosis) and propidium iodide (late apoptosis/necrosis) was
analyzed. At all-time points, apoptosis was significantly increased
in a concentration-dependent manner upon treatment with either
MS-275 or SAHA (Fig. 3C and D). To further evaluate whether
apoptosis occurred in a specific developmental stage during
neutrophil differentiation, the number of Annexin V/propidium
iodide-positive cells within the CD34+ and CD34- cell
populations was measured. In addition, we separated the
CD34-cell population in CD16/11b- and CD16/11b+ cells,
reflecting the different stages through which the commonmyeloid
progenitors evolve to mature neutrophils (Supplemental Fig. 2A,
Supplemental Digital Content 2, http://links.lww.com/HS/A37).
Both HDACi induced apoptosis similarly throughout the three
5

developmental stages, suggesting that apoptosis increased
throughout whole neutrophil differentiation (Fig. 3E, Supple-
mental Fig. 2B, Supplemental Digital Content 2, http://links.lww.
com/HS/A37). Thus, MS-275 and SAHA decrease progenitor cell
expansion during neutrophil differentiation, which is at least in
part explained by an increase in apoptosis upon treatment with
these drugs.

MS-275 and SAHA differentially modulate neutrophil
differentiation

We subsequently analyzed whether MS-275 and SAHA treat-
ment interfered with normal neutrophil differentiation by
analysis of morphological features, neutrophil surface marker
expression and intracellular lactoferrin staining. At day 14 of
neutrophil development, cytospin analysis demonstrated a
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concentration-dependent decrease of mature neutrophils upon
treatment with both MS-275 and SAHA (Fig. 4A and B,
Supplemental Fig. 3A, Supplemental Digital Content 2, http://
links.lww.com/HS/A37). In addition, SAHA treatment showed a
decrease in lactoferrin expression, a marker of secondary granule
formation and reflecting functionally mature neutrophils
6

(Fig. 4C). A decrease in the percentage of CD16/CD11b+ cells
after terminal differentiation upon treatment with SAHA was
observed, while this percentage remained similar upon MS-275
treatment compared to control DMSO (Fig. 4D). In addition, we
observed a decrease in the absolute numbers of CD16/CD11b+
upon treatment with both MS-275 and SAHA (Fig. 4E), as
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Figure 5. HDAC1 is required for neutrophil differentiation. (A) Fold change in HDAC1 expression, normalized for b2-microglobulin, after HDAC1 knockdown,
scrambled and control. (B) Percentage of mature neutrophils after HDAC1 shRNA knockdown and scrambled control. Mature neutrophils were counted using
cytospin analysis as described in the Materials and Methods. (C) Micrographs of cells at day 14 of neutrophil differentiation for control, scrambled and HDAC1
knockdown. Cells are stained according to May-Gru ̈nwald Giemsa staining. (D) Percentage of promyelocytes after HDAC1 shRNA knockdown and scrambled
control. Error bars represent SEM from 3 independent replicates,

∗
P<0.05.
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expected by the observed decrease in expansion (Fig. 3).
Furthermore, a relative accumulation of promyelocytes was
observed upon SAHA-treatment, at the expense of further
differentiation. This accumulation was also observed after
treatment with MS-275, although not significant (Fig. 4B-F,
Supplemental Fig. 3B, Supplemental Digital Content 2, http://
links.lww.com/HS/A37). On the other hand, MS-275 treatment
resulted in an increased number of cells with dysplastic features,
such as a ring-shaped nucleus and increased percentage of
monocytes (Fig. 4B, 4G, Supplemental Fig. 3C, Supplemental
Digital Content 2, http://links.lww.com/HS/A37).
Taken together, both treatment with MS-275 and SAHA

disrupted normal neutrophil differentiation what was illustrated
by decreased percentages of mature neutrophils. In addition,
while SAHA treatment clearly showed a block at the promye-
locytic stage, MS-275 treatment was characterized by dysplastic
features and skewing towards the monocytic lineage.
HDAC1 is required for neutrophil differentiation

Since both MS-275 and SAHA predominantly inhibit HDAC1
activity, the role of HDAC1 in terminal neutrophil differentiation
was investigated by using an shRNA knockdown approach.
CD34+ cells were transduced with an shRNA for HDAC1,
resulting in a 50% decrease in mRNA expression (Fig. 5A), and
differentiated into mature neutrophils. A significant decrease in
7

the percentage of mature neutrophils at the end of differentiation
was observed upon knockdown of HDAC1 (Fig. 5B and C). In
addition, an increase in the percentage of promyelocytes was
observed (Fig. 5C and D). These findings are similar to those
observed upon treatment with the HDACi MS-275 and SAHA.
Furthermore, the percentage of monocytes was also increased
compared to the control (Supplemental Fig. 4, Supplemental
Digital Content 2, http://links.lww.com/HS/A37). However,
upon transduction with the control shRNA, we also observed
an increase in the percentage of monocytes, albeit without a
decrease in mature neutrophils or an increase in promyelocytes.
This therefore most likely reflects aspecific effects of retroviral
manipulation of CD34+ progenitor cells. Summarized, we
observed a similar outcome in morphological analysis upon
HDAC1 knockdown compared with both HDACi, suggesting a
role for HDAC1 during neutrophil differentiation which is
affected by HDACi treatment.

Discussion

In this study, we investigated the effects of HDAC inhibition
on normal neutrophil differentiation by performing transcrip-
tomic, epigenomic, functional and morphological analysis.
CD34+ progenitor cells derived from umbilical cord blood
were differentiated into mature neutrophils in the presence of
class I specific HDACi MS-275 or pan-HDACi SAHA. HDAC
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inhibition generally resulted in decreased expansion rate,
increased apoptosis, and decreased percentage of mature
neutrophils. While SAHA treatment clearly showed a block at
the promyelocytic stage, MS-275 treatment was characterized by
dysplastic features and skewing towards the monocytic lineage.
Since both HDACi inhibit HDAC1 activity, and knockdown of
HDAC1 resulted in similar effects as HDACi treatments, our data
suggest a role for HDAC1 in lineage progression and terminal
neutrophil differentiation. This has indirectly been implicated in
previous studies by using class I HDACi.43,44

Interestingly it appears that while HDACi-treatment results in
distinct epigenetic and transcriptional changes with some overlap,
functional phenotypic effects are generally similar. The differential
effects on the transcriptome and epigenome can be explained in part
by the fact that MS-275 preferentially targets HDAC1, whereas
SAHA also inhibits class I/II HDACs. Naturally, nonspecific effects
such as oxidative stress or DNA damage might play a role as well,
but this was beyond the scope of our study.45 While our study is
limited regarding sample size for the RNA-seq experiments, it does
provide important insights into the transcriptional effects of the
HDACi in terms of transcriptional regulation. Future experiments
are now required to further confirm the effects on expression of
individual genes. Genes down-regulated upon SAHA treatment
were involved in cytokine production, specifically of tumor necrosis
factor-alpha (TNF-a)-associated cytokines, and interleukins (IL) 1
and 6. Thismight indicate an anti-inflammatory responsewhich has
beenobserved inother studies.46There ismuchdebate about the role
of interleukins and other cytokines in neutrophil development. In
particular the direct effect of IL-6 on neutrophil function remains
poorly understood, illustrated by conflicting evidence in the
literature reporting that IL-6 can either delay, accelerate or have
no effect on neutrophil apoptosis.47–50 On the other hand, HDAC
inhibition using MS-275 resulted in increased expression of
integrins, including CD11c and CD11d. Activation of integrins
upon HDACi-treatment has also been previously described.51–53

While integrins, in multiple cells including neutrophils, are mostly
known for their role in adhesion at the site of inflammation and
transition to extravascular tissue, integrin signaling has also been
proven to be of importance in other cellular processes, including
degranulation, cytokine production, and activation of transcription
through the nuclear transcription factor kappa B (NF-kB) pathway.
In addition to its role in innate immunity, NF-kB signaling was
shown to control a great variety of other well conserved cellular
processes, including cell proliferation and apoptosis.54–57

Historically, two models concerning hematopoietic lineage
commitment have been proposed. A deterministic model posits
that lineage commitment and differentiation occurs through
signaling by specific cytokines. This extrinsic motivation triggers
uncommitted cells to differentiate into a given cell type. A second
stochastic model describes that lineage commitment is driven by
lineage specific transcription factors, that modulate expression of
lineage specific genes including cytokines and cytokine receptors,
making these cytokines select the fate of committed cells.2–7,58–64

Based on this, it is possible that upon treatment with SAHA,
cytokine production is regulated through several HDACs, but
independently of HDAC1 function, resulting in uniquely
modulated gene expression profiles of these cytokines for SAHA
compared to MS-275. Furthermore, this could well be the
explanation for the differences observed in our functional studies
regarding dysplastic features and differentiation blockage at the
promyelocyte stage of neutrophil development.
In our study we evaluated the enrichment of H3K27ac, since this

histone modification is a widely accepted mark for active gene
8

regulatory elements. While changes in H3K27ac levels correlated
with gene expression afterMS-275 treatment, SAHA treatment also
resulted in increased acetylation levels on promoters of down-
regulated genes. This can potentially be explained by increased
sensitivity of specific genomic regions to hyperacetylation, which
results in the abolishment of transcription factor recruitment and
proper chromatin remodeling, leading to decreased gene expres-
sion.66 ChIP-seq experimentswith spike-in controlswill further help
evaluate global effects onH3K27ac, which is possibly affectedmore
by SAHA compared to MS-275 treatment, as illustrated by the
Western blot analysis (Fig. 2A). In addition, while our study was
limited by the analysis of only one histonemark, acetylation of other
histone residues or non-histone proteins are probably also of
importance.65,67 This has been demonstrated in certain leukemia,
where both hyperacetylation and hypoacetylation have been
implicated indiseaseoutcome.68–72Apart from targeting acetylation
on histones, HDACi are able to deacetylate non-histone proteins.70

For example, it has been shown that deacetylation of TAF9 by
HDAC1 is required for expression of PU.1, a key regulator in
hematopoietic lineage specification. In addition, acetylation of
CCAAT/enhancer binding protein e (C/EBPe) has been shown to be
required for normal neutrophil development.71–73 These types of
responses could also play a role in the differential changes in the
transcriptome that we observe between treatment withMS-275 and
SAHA.
Although HDACs are globally involved in the growth and

differentiation of mammalian cells, relatively little is known
about their specific roles in hematopoiesis, particularly in
humans. It has been demonstrated that the expression of HDAC1
in hematopoiesis is dependent on the developmental stage of cells
and plays a direct role in lineage choice.74 During myeloid
development, HDAC1 expression is inhibited by CCAAT/
enhancer binding proteins, while HDAC1 is activated by
GATA-1 during erythro-megakaryocytic development. In rela-
tion to this, HDAC1-knockdown, or lower HDAC1 expression,
resulted in impaired myeloid differentiation.74,75 This is in line
with our study, demonstrating that inhibition of HDAC1 by two
distinct HDACi resulted in impaired neutrophil differentiation.
Our data provide novel insights into the effects of HDAC

inhibition on normal hematopoietic cells during neutrophil
differentiation. Two distinct HDACi disrupt neutrophil develop-
ment through alternative and overlapping effects on the tran-
scriptome and epigenome, potentiallymediated byHDAC1.These
findings should be taken into accountwhen considering the clinical
use ofMS-275 and SAHA, and can be potentially utilized to tailor
more specific, hematopoietic-directed HDACi in the future.

Materials and Methods

Ethics approval and consent to participate

Umbilical cord blood (UCB) was collected after written informed
consent was provided according to the Declaration of Helsinki.
The use of UCB for this study was approved by the ethics
committee of the University Medical Center Utrecht.

Isolation and culture of human CD34+ progenitor cells

CD34+ progenitor cells were isolated from UCB as described
previously.44,73 Cells (1 � 105/mL) were cultured in Iscove’s
Modified Dulbecco’s Medium (IMDM), and were differentiated
towards neutrophils upon addition of SCF (50 ng/mL), FLT3(50
ng/mL), IL-3 (100 nmol/mL), GM-CSF (100 nmol/mL) and G-
CSF (30 ng/mL) on day 0. On day 3 and 7 only G-CSFwas added.
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On days 3, 7, 10, and 14, cells were counted with trypan blue,
and freshmediumwas added to a density of 3� 105/mL on day 3,
and 5� 105/mL on day 7 and onwards. TheHDACiMS-275 (25,
50, and 100nM) and SAHA (20, 50, and 100nM) were freshly
added with each change of medium.
RNA-sequencing experiments

CD34+ cells were differentiated towards neutrophils for 6 days,
followed by overnight treatment with MS-275 (100nM), SAHA
(100nM) or vehicle DMSO. The next day, total RNA was
extracted using the RNAeasy Kit (QIAGEN). RNA quality was
tested on the Bioanalyzer (Agilent, Santa Clara, CA), and sample
quality was optimal with RNA integrity number higher than 9.0.
Samplepreparationwasperformedusing aPoly(A)PuristMAGKit
(Thermo Scientific) according to the manufacturer’s instructions.
IsolatedmRNAwas subsequentlypurifiedusing anmRNA-ONLY
Eukaryotic mRNA Isolation Kit (Epicentre Illumina, Madison,
WI). Sequencing libraries were prepared using a SOLiD Total
RNA-SeqKit (Applied Biosystems Life Technologies) according to
the standard protocol recommendations and sequenced on a
SOLiD 5500 Wildfire sequencer to produce 50 bp reads as
described previously.76 Multimapped and duplicate reads were
removed using Samtools version 1.5. Reads in genes were counted
using HTSeq.77 Noncoding genes (list from HUGO Gene
Nomenclature Committee) were removed from the analysis. Read
counts (prior to normalization) are deposited in Supplemental
Table 1, Supplemental Digital Content 1, http://links.lww.com/
HS/A36. Library size normalization and differential gene expres-
sion analysiswasperformedusing theDESeq2package inR.Genes
were significantly differentially expressed with a log2 fold change
of > 1 and a p value<0.05. Heatmaps were generated using the
heatmap.2 function from gplots in R. GeneOntology analysis tool
DAVID (version 6.8, https://david.ncifcrf.gov)78,79 was used to
identify overrepresented gene ontologies in our gene sets. To
analyze complete gene sets that significantly changeduponHDACi
treatment, we used the Gene Set Enrichment Analysis (https://
software.broadinstitute.org/gsea/index.jsp) tool.

Chromatin immunoprecipitation followed by high-
throughput sequencing (ChIP-seq) experiments

CD34+ cells were differentiated towards neutrophils for 6 days,
followed by overnight treatment with MS-275 (100nM), SAHA
(100nM) or vehicle DMSO. ChIP-seq was performed as
described previously utilizing an anti-acetylated H3K27 antibody
(ab4729, Abcam, Cambridge, MA).76 Chromatin was sheared,
end-repaired, followed by ligation of sequencing adaptors and
amplification of the library by ligation±mediated PCR
(LMPCR). After LMPCR, the library was purified, checked for
the proper size range and for the absence of adaptor dimers on a
2% agarose gel, followed by sequencing on the SOLiD/AB
sequencer (Applied Biosystems Life Technologies, Carlsbad, CA).
Sequencing reads were mapped against the reference genome
(hg19, NCBI3) using the BWA package (�c± l 25±k 2±n 10).80

Non-uniquely placed reads were discarded. Statistical significant
H3K27ac enriched regions compared to background were
calculated for each sample using MACS2 version
2.1.1.2016030981 (p value<10�5, extsize 300, local lambda
100,000) and extended to 2000bp in length (+/� 1000bp from
peak center). Peaks from all samples were merged into one non-
redundant list for further analysis, where overlapping peaks were
merged. Reads in peaks were counted using Bedtools version
9

2.26.0 and fraction of reads in peaks per sample exceeded the
1% threshold used by the Encyclopedia of DNA Elements
(ENCODE).83 Enriched regions that overlapped within 1000bp
from a transcriptional start site from the hg19 RefSeq list were
annotated as promoters. For analysis of differences in H3K27ac
enrichment, read counts were normalized for library size and
peak size (reads per kilobase per million (RPKM)). Statistical
analysis of differential H3K27acetylation enrichment was
analyzed using a Wilcoxon rank-sum test in R. ChIP-seq panels
were visualized in Integrated Genomics Viewer (IGV version
2.3.40, Broad Institute).84,85
Western blot analysis

Western blot analysis was performed using standard techniques. In
brief, differentiating CD34+ progenitors were lysed in Laemmli
buffer [0.12mol/L Tris-HCl (pH 6.8), 4% SDS, 20% glycerol,
0.05mg/mL bromophenol blue, and 35mmol/L b-mercaptoetha-
nol], sonicated, and boiled for 5minutes. Equal amounts of total
lysatewere analyzedby12%sodiumdodecylsulfate polyacrylamide
gel electrophoresis. Proteins were transferred to a polyvinylidene
difluoride membrane (Millipore, Bedford, MA), incubated with
blocking buffer (Tris buffered saline/Tween 20) containing 5% low-
fat milk for 1 hour at room temperature before incubation with
antibodies against acetyl-histone 3 (lysine 27) (Millipore, Billerica,
MA) or histone 3 (Millipore, Billerica, MA) overnight at 4°C in a
buffer containing Tris buffered saline/Tween 20 with 5% bovine
serum albumin (BSA) (Sigma-Aldrich, Zwijndrecht, the
Netherlands). Blots were subsequently incubated with peroxidase-
conjugated secondary antibodies (Dako, Glostrup, Denmark) for 1
hour at room temperature. Chemiluminescence was used as a
detection method according to the protocol of the manufacturer
(Odyssey, Amersham Pharmacia, Amersham, UK).
Measurement of fold expansion and apoptosis

Cells were counted at days 3, 7, 10, and 14 to analyze fold
expansion. Cells were stained with Trypan Blue (Thermo Fisher
Scientific) and Trypan Blue negative cells were counted using a
Fuchs-Rosenthal chamber. Tomeasure apoptosis duringHDACi
treatment, cells were harvested at the indicated time points and
washed with phosphate-buffered saline (PBS). Samples were
subsequently incubated for 20 minutes with annexin V-
fluorescein isothiocyanate (Bender MedSystems, Vienna,
Austria) in binding buffer [10mmol/L HEPES-NaOH (pH
7.4), 150mmol/L NaCl, 2.5mmol/L CaCl2] before being washed
and resuspended in binding buffer containing 1mg/mL propi-
dium iodide (BenderMedSystems). Percentages of apoptotic cells
were determined by FACS analysis (FACS Canto, Becton
Dickinson, Alphen a/d Rijn, the Netherlands), as previously
described.44,73

Flowcytometric analysis of myeloid progenitor cells

After 3, 7, 10 and 14 days of differentiation, cells were washed
and resuspended in PBS/5% FCS (Hyclone) and subsequently
incubated for 30 minutes on ice with a PE-conjugated CD34
antibody (Becton Dickinson), FITC-conjugated CD11b antibody
(Becton Dickinson) and an APC-conjugated CD16 antibody
(Becton Dickinson). After incubation, cells were again washed in
PBS/5% FCS (Hyclone) and the percentages of CD34+, CD11b+
and CD16+ cells were determined by flow cytometry analysis
(FACS Canto, Becton Dickinson).
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Histochemical staining of hematopoietic cells

May-Grünwald Giemsa staining was used to analyze myeloid
differentiation. After 14 days of neutrophil differentiation,
cytospins were prepared from 5.0�104 differentiating granulo-
cytes and were fixed in methanol for 3minutes. After fixation,
cytospins were stained in a 50% eosin methylene blue solution
according toMay-Grünwald (SigmaAldrich, Seelze,Germany) for
15min, rinsed in water for 10seconds, and nuclei were counter-
stained with 10% Giemsa solution (Merck kGaA, Darmstadt,
Germany) for 20minutes. Neutrophil differentiation occurs
through distinct stages from myeloblasts, promyelocytes I,
promyelocytes II, myelocytes and metamyelocytes towards
neutrophils with banded or segmented nuclei (Supplemental
Figure 2A, Supplemental Digital Content 2, http://links.lww.com/
HS/A37). Mature neutrophils were characterized as cells contain-
ing either banded or segmented nuclei. Micrographs were
acquired, after staining with May-Grünwald Giemsa solution,
with an Axiostar plus microscope (Carl Zeiss, Sliedrecht, the
Netherlands) fitted with an 100�/1.3 NA EC Plan Neofluor oil
objectiveusing Immersol 518Foil (CarlZeiss), aCanonPowershot
G5 camera (CanonNederland, Hoofddorp, the Netherlands), and
Canon Zoombrowser EX image acquisition software.
Lactoferrin staining

To analyze lactoferrin levels after 14 days of neutrophil
differentiation, cells were fixed in 100mL 0.5% formaldehyde
for 15 minutes at 37°C, after which the cells were permeabilized
in 900mL of ice-cold methanol for 30 minutes on ice. Cells were
subsequently washed with PBS, resuspended with phycoerythrin
(PE)-conjugated lactoferrin antibody (Immunotech, Marseille,
France) and incubated for 20 minutes. Cells were then washed
again and FACS analysis was performed (FACS Canto, Becton
Dickinson), as described before.73
shRNA viral transduction of CD34+ progenitor cells

A lentiviral construct was used containing shRNA control
(Sigma-Aldrich) or shRNA targeting HDAC1 (Sigma-Aldrich)
and a GFP fluorescent gene in the pLKO.1 vector. HEK293FT
cells were grown in 10-cm dishes at 37°C and 5% CO2, in
DMEM supplemented with 10% FBS, 2mM glutamine and
antibiotics (50U/ml penicillin and 50mg/ml streptomycin). After
1 day, lentivirus was produced by co-transfection of 5mg of
pLKO.1 vector containing shRNA, 1.8mg of lentiviral packaging
vector pLP/VSVG, and 3.25mg of lentiviral packaging vector
psPAX2 overnight using 50ml of PEI (Polysciences Inc.,
Warrington, PA). The next day, medium was replaced, and
the cells were cultured for 24hours. The supernatant containing
virus was collected and filtered through a 0.2-mm filter.
Transduction was performed by adding 1ml of viral supernatant,
1 ml of culturing medium, and 8mg/ml Polybrene to CD34+
progenitor cells. After 1 day, the cells were washed with PBS, and
new culturing medium was added. Selection was achieved by
fluorescence-activated cell sorting on GFP. Expression changes of
HDAC1 upon knockdown were analyzed using RT-qPCR, and
normalized for b2-microglobulin.
Statistical analysis

Statistical analysis what involved multiple concentrations of
HDACi and control DMSO was performed using a one-way
10
analysis of variance test, followed by a Dunnet multiple
comparison test (comparison with the control) (Prism GraphPad
Software). P values of 0.05 or less were considered significant
(
∗
P<0.05;

∗∗
P<0.01,

∗∗∗
P<0.001).
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