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Background. Breast cancer is a kind of cancer that starts in the epithelial tissue of the breast. Breast cancer has been on the rise in
recent years, with a younger generation developing the disease. Magnetic resonance imaging (MRI) plays an important role in
breast tumor detection and treatment planning in today’s clinical practice. As manual segmentation grows more time-
consuming and the observed topic becomes more diversified, automated segmentation becomes more appealing. Methodology.
For MRI breast tumor segmentation, we propose a CNN-SVM network. The labels from the trained convolutional neural
network are output using a support vector machine in this technique. During the testing phase, the convolutional neural
network’s labeled output, as well as the test grayscale picture, is passed to the SVM classifier for accurate segmentation. Results.
We tested on the collected breast tumor dataset and found that our proposed combined CNN-SVM network achieved 0.93,
0.95, and 0.92 on DSC coeflicient, PPV, and sensitivity index, respectively. We also compare with the segmentation
frameworks of other papers, and the comparison results prove that our CNN-SVM network performs better and can accurately
segment breast tumors. Conclusion. Our proposed CNN-SVM combined network achieves good segmentation results on the
breast tumor dataset. The method can adapt to the differences in breast tumors and segment breast tumors accurately and

efficiently. It is of great significance for identifying triple-negative breast cancer in the future.

1. Introduction

Among the new cases of female malignant tumors, breast
cancer accounts for as high as 29%, and the mortality rate
ranks second in cancer mortality [1]. Breast cancer is a sys-
temic disease with local manifestations. There is currently no
effective preventive method for breast cancer. Early detec-
tion and early treatment are the only effective means to
improve postoperative survival [2]. Breast cancer mainly
relies on microvascular oxygen supply. However, in the early
diagnosis, due to the early manifestations of malignant
lesions and the enhancement of benign lesions, the specific-
ity of the disease is poor [3-5]. In recent years, molecular
typing of breast cancer has become a research hotspot
because different molecular types of breast cancer have sig-
nificant differences in disease expression, response to treat-

ment, prognosis, and survival outcomes. Triple-negative
breast cancer is defined as breast cancer that is immunohis-
tochemically negative for estrogen receptor (ER), progester-
one receptor (PR), and human epidermal growth factor
receptor 2 (HER2). TNBC accounts for 15% to 20% of all
breast cancer pathology types, with low-grade particular var-
iants like secretory carcinoma and adenoid cystic carcinoma
having a good prognosis. On the other hand, high-grade
malignancies such spindle cell metaplastic carcinoma and
basaloid carcinoma have a poor prognosis.

Triple-negative breast cancer is more common in pre-
menopausal women, and it is also a specific molecular sub-
type of breast cancer in clinical practice [6]. Breast cancer
that is triple-negative progresses quickly and is invasive.
The cancerous breast cells are loosely connected, and cancer
cells are efficiently distributed throughout the body along
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with the lymphatic system and blood circulation, resulting in
cancer metastasis, which not only increases the difficulty of
treatment but also has a particular impact on the health of
patients [7-9]. Furthermore, modern women are under more
physical and emotional stress, which has resulted in an
increase in the prevalence of breast cancer, particularly
triple-negative breast cancer. All of the receptors for human
epidermal symptom factor 2, progesterone receptors, and
estrogen receptors are negative. This is the term for triple-
negative breast cancer [10-12]. Furthermore, triple-negative
breast cancer is aggressive, with a high risk of recurrence, dis-
tant metastasis, and visceral and bone metastases. Breast can-
cer that is triple-negative has a poorer prognosis than other
types of breast cancer [13-15]. Because there is no known spe-
cific treatment for TNBGC, it is currently usually treated with
chemotherapy. Once metastasis and dissemination have
occurred, TNBC patients have a 5-year survival rate of less
than 30%. As a result, for triple-negative breast cancer
patients, early detection is critical [16, 17].

In clinical practice, there are several diagnostic programs
for triple-negative breast cancer, and X-ray irradiation
exposes the body to a significant quantity of radiation. Mag-
netic resonance imaging (MRI) is a noninvasive operation.
3.0 T MRI can determine the morphological information of
breast cancer and evaluate the tumor function and the sur-
rounding blood vessels of the tumor [18-20]. It has a high
application value for triple-negative breast cancer. This
method has a high application value [21-24]. The molecular
typing of breast cancer is generally diagnosed by an immu-
nohistochemical examination of patients, which is compli-
cated and invasive. Therefore, some researchers try to
predict the molecular type of breast cancer through patient
images. The imaging techniques mainly include mammogra-
phy, breast ultrasound, positron emission tomography, and
dynamic enhanced magnetic resonance. These techniques
generally use artificial extraction of features, and these are
subjective. It is difficult to objectively reflect the essential
characteristics of breast cancer [25, 26].

Today, deep learning methods are applied to many pat-
tern recognition tasks with good results, in which convolu-
tional neural network algorithms can automatically learn
image features [27]. Men et al. [28] presented DD-ResNet,
an end-to-end deep learning model that allows for quick
training and testing. The authors then evaluated an extensive
dataset of 800 patients receiving breast-conserving therapy.
The authors found that the model can achieve good segmen-
tation results. By creating two fully convolutional neural net-
works (CNNs) based on SegNet and U-Net tumor
segmentation, two deep learning techniques were proposed
by El Adoui et al. [29] to automate breast imaging in
dynamic contrast-enhanced magnetic resonance imaging
(DCE-MRI). For a convolutional neural network (R-CNN)
network, Lei et al. [30] built a backbone network, a region
proposal network, a region convolutional neural network
head, a mask head, and a scoring head. The network prop-
erly segments breast cancers. Singh et al. [31] proposed a
breast tumor segmentation method based on a contextual
information-aware conditional generative adversarial learn-
ing framework. The approach extends a deep adversarial
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learning framework by collecting texture information and
contextual dependencies in tumor photographs to achieve
successful breast segmentation.

This study presents a fully automated segmentation
method based on a convolutional neural network algorithm
and SVM. The framework is split into two sections. In the
initial stage, the CNN is taught mapping from image space
to tumor label space. To accomplish accurate segmentation
in the testing phase, the CNN’s predicted label output is used
and combined with the test grayscale picture in an SVM
classifier. After the SVM classifier, a more accurate binary
segmentation image can be obtained. In recent years, the
algorithm combining CNN and SVM has been proposed in
much literature. The algorithm described in this work is pri-
marily distinct from the CNN research approach when com-
pared to other integrated algorithms. The N4ITK method,
with ReLU as the activation function, negative log-
likelihood loss function as the loss function, stochastic gradi-
ent descent as the optimization strategy, and so on, is
employed as a preprocessing technique in this study. Fur-
thermore, to improve the quality of the features retrieved
from CNN, they are sent to the SVM classifier. This paper
also includes a stage of intermediate processing that
improves segmentation.

2. Materials and Methods
2.1. Construction of the Dataset

2.1.1. Data Acquisition. We collected breast MRI data from
272 patients from the Second Affiliated Hospital of Fujian
Medical University. There were 165 cases of other molecularly
pressed breast cancer and 107 triple-negative breast cancer
cases. The inclusion criteria were as follows: (1) breast MRI
examination was performed before surgery. (2) The postoper-
ative pathology report accurately indicated the molecular sub-
type of breast cancer. MRI were collected utilizing a
specialized phased array 8-channel breast coil on a 3.0T
MRI scanner (PHILIPS, Ingenia 3.0 T) with patients in the
prone position. The identical imaging strategy was used on
all of the patients. The breast DCE-MRI protocol included
an axial T2-weighted Fast Spin Echo (T2-FSE) sequence
(Repetition Time/Echo Time (TR/TE) = 3600/100 ms,  flip
angle = 90°, matrix size = 512 x 512, and slice thickness = 4.0
mm) and an axial Short Tau Inversion Recovery (STIR)
sequence (TR/TE =3900/90 ms, flip angle = 90°, and matrix
size =512 x 512). The DWI methodology included a DWI
sequence (TR/TE =6000ms/90ms, flipangle=90°, matrix
size = 256 x 256, slice thickness =4.0 mm, and b values of 0
and 850s/mm?) collected before the contrast material was
injected. Figure 1 depicts a portion of the scanned picture data.

2.1.2. Data Annotation. Two senior medical radiologists
engaged in breast imaging diagnosis manually delineated
the tumor images we collected. The molecular subtype label-
ing was the gold standard based on the pathology report. In
addition, corresponding contour labels are also made
according to the boundaries of the tumor labels. The bound-
ary of the contour label is represented by 1, and the area
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FIGURE 1: Partially scanned image based on the (a) T2 scan sequence and (b) DWI scan sequence.

outside the boundary is represented by 0. Because Bayesian
field distortion alters the MRI picture, the gray value of the
same spot in the image will be unequal. We utilized the
N4ITK approach to solve this issue.

At the same time, we also performed block extraction on
the data. In this paper, each pixel in the image is taken as the
center to extract a two-dimensional data block as training
data. The retrieved data block is separated into positive and
negative samples based on the label of the center pixel, accord-
ing to the gold standard for tumor segmentation. Tumor areas
correlate with positive samples. The nontumor region, i.e,, the
normal tissue structure of the chest, corresponds to the nega-
tive samples. Because the lesion area is significantly less than
the normal tissue region in practice, the number of negative
samples far outnumbers the number of positive samples. A
random downsampling strategy is used to balance the quantity
of positive and negative data submitted to the training model.
Make the block size 17 by 17 inches.

2.2. Convolutional Neural Network Model Implementation.
A convolutional neural network [32] is essentially a multi-
layer perceptron with additional layers. It is a multilayer
neural network design. There are three levels to it: an input
layer, a hidden layer, and an output layer. In the hidden
layer, there might be several levels. Each layer is made up
of a number of two-dimensional planes, each containing a
number of neurons. A feature extraction layer and a subsam-
pling layer are stacked in the concealed layer. Figure 2
depicts the structure of a convolutional neural network.
Here are some of CNN’s most important features.

The activation function uses a linear correction unit

(ReLU), which is defined as
f(x) =max (0, x). (1)

It is found that the algorithm using ReLU can achieve
better results and faster training speed than the traditional
sigmoid or hyperbolic tangent function [33]. A softmax clas-
sifier was used for 2-class classification when using CNN
alone for segmentation.

This paper uses max pooling [34], which computes the
maximum value of a particular feature in an image region.
This solves the problem that after the features are obtained
by convolution if all the extracted features are used for train-
ing, the calculation will increase, and it is easy to overfit.

Regularization is used in this research to reduce overfit-
ting. When utilizing CNN alone for segmentation, dropout
technology is used in the FC layer to clear the output value
in the hidden layer node with a probability of 0.2 to reduce
the dependency between the hidden layer nodes. This is a
good approach to prevent overfitting.

The loss function, in its most basic form, is the function
that is used to calculate the training model’s error. In gen-
eral, it is intended that this function may be reduced to the
bare minimum. The negative log-likelihood loss function is
used in this study, and it is defined as

D]
NLL(6,D)=-) 10gp(Y = 0

i=0

(2)
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FIGURE 2: CNN network structure diagram.

2.3. SVM Principle. Based on statistical learning theory, VC
dimension theory, and structural risk reduction criterion,
support vector machine is a supervised learning strategy that
attempts the best balance between model complexity and
learning capacity. It can gain lower real risk and has a great
generalization capacity [35]. When using SVM to solve
nonlinear classification problems, the inner product kernel
function replaces the nonlinear mapping to the high-
dimensional space rather than the dimension of the sam-
ple space, avoiding the problems that traditional learning
classifiers can encounter when dealing with nonlinear
high-dimensional problems. It is difficult to keep track of
the digits. The support vector machine’s goal is to discover
the optimal hyperplane for feature space division, and it
works on the maximization of the classification interval
concept. The minimization function for determining the
best hyperplane margin and associated restrictions is
defined by equations (3) and (4) and (3)-(5).

]. — 2
min — Hw , (3)
w,b
subject to the constraints
yi(@% +b), (4)

where w is the normal, b is the threshold, and x; is each
sample instance.

The optimal classification surface or optimal classifica-
tion line should separate the two types of samples without
error and maximize the classification interval of the two
types, which is the essential requirement of the structural
risk minimization criterion. The purpose of separating the
two types of samples without errors is to minimize the
empirical risk; maximizing the classification interval of the
two types ensures that the classifier has the smallest VC
dimension and thus obtains the smallest confidence range,
so that the classifier has the least real risk. The optimal clas-
sification surface of the SVM method is unique.

The support vector machine in this work uses the Gauss-
ian radial basis kernel function, which is defined as

K(xx,) = exp <_M) (5)

o2

At this time, the support vector machine is a radial basis
function classifier, which is different from the traditional

radial basis function technique, and its weights are produced
automatically.

2.4. Breast Tumor Segmentation Based on the CNN-SVM
Combined Model. This study proposes a brain tumor seg-
mentation approach based on a convolutional neural net-
work and SVM. Preprocessing, feature extraction, CNN
and SVM training, and testing and providing final segmen-
tation results are the major steps of the proposed architec-
ture, as shown in Figure 3.

Convolutional neural networks and support vector
machines are trained separately in the first stage to learn
the mapping from the grayscale picture domain to the tumor
label domain. During the testing phase, the SVM classifier
receives the labeled output of the convolutional neural net-
work as well as the test grayscale picture for accurate seg-
mentation. A simple intermediate processing step is
introduced to create relevant features for CNN training, as
illustrated in Figure 4. To represent each pixel, we employ
first-order characteristics (grayscale, mean, and median). A
CNN is taught utilizing these properties during the training
phase to learn a nonlinear mapping between input informa-
tion and labels. The SVM classifier is trained independently
during the testing phase, using the CNN label map and the
same features as before.

2.5. Model Design Details. Softmax is a multiclass classifier
used here for 2-class classification whose output is a condi-
tional probability value between 0 and 1. The convolutional
neural network structure proposed in this paper consists of a
convolutional layer, a pooling layer, a fully connected layer,
and a softmax classification layer, where softmax is a multi-
class classifier used here for 2-class classification whose out-
put is a conditional probability value between 0 and 1.
ReLU is used in the network’s transfer function. The sto-
chastic gradient descent technique is used to get the network
parameters and model by minimizing the loss function. The
network’s input image data block is 17 x 17 bytes long. After
the first convolution layer C1, 32 filter templates of size 5 x 5
are used for convolution to obtain 32 feature maps of size
13 x 13, and then, the maximum pooling is performed. With
sampling layer S2, use 2 x 2 template nonoverlapping pool-
ing to obtain 32 feature maps of size 66, and then, through
convolution layer C3, use 64 filter templates of size 3 x 3
convolutions to obtain 64 sizes. It starts with a 2 x 2 feature
map, then downsamples S4 using the maximum pooling of
the 2 x 2 templates, then converts each feature map into a
single neuron node wusing 128 2x2 filter template
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FIGURE 3: Algorithm framework of breast tumor segmentation based on the combination of CNN and SVM.
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FIGURE 4: Intermediate processing steps.

convolutions, and lastly links all of them together. At the
connection layer F6, some tumor edge and texture features
will be acquired from the network, and the low-level features
will be converted into high-level features after multilayer
learning. Finally, intermediate preprocessing is performed
to give the SVM classifier the obtained high-level features.
Each pixel in the image is sorted into two groups based on
the likelihood value of the category to get the probability
value of tumor or normal chest tissue. Size classification is
utilized to create a segmented binary image of the tumor.

With the increase in the window size, the correct rate of
SVM classification samples will decrease, and the effect is
better when the window size is small. At the same window
scale, the segmentation results of SVMs with different kernel
functions are not much different.

The SVM technique using polynomial kernels, on the
other hand, yields slightly poorer results than the linear ker-
nel and radial basis kernel SVM methods. In addition, we set
C =1, 10, 100, 1000, and 10000 and o =0.01,0.125,0.5, 1.5
,and 1.0, respectively, for sample training and found
through experimental data that when C is set between 100
and 1000, when o? is set between 0.01 and 0.125, the
cross-validation accuracy is the highest. As a result, when
utilizing the radial basis kernel function to offer the best seg-
mentation results, the penalty factors C and 2 should not be
too little or too large. As a consequence, we chose C = 1000,
0% =0.01, 5% 5 as the window size, and 2000 as the training
sample count.

3. Results

3.1. Evaluation Metrics. Dice Similarity Coefficient (DSC) is
an index that measures the rate at which manual and auto-

matic segmentation is repeated. It is defined as follows:

2TP

DSC= ——— .
FP +2TP + FN

(6)

The number of tumor sites identified as true positive,
false positive, and false negative, respectively, is denoted as
TP, FP, and FN.

Positive predictive value refers to the ratio of correctly
segmented tumor points to the segmentation result of tumor
points (PPV), which is defined as

TP

PPV=_— .
TP + FP

(7)

The percentage of successfully segmented tumor points
to the real value of tumor points is known as sensitivity,
and it is defined as

- TP
Sensitivity = TPTEN

(8)

3.2. Segmentation Results of the CNN-SVM Model. We train
and segment the gathered breast tumor photos and present
the experimental findings to demonstrate the CNN-SVM
model’s segmentation effect. The segmentation impact is
clearly visible in the ensuing graph, demonstrating the effi-
cacy of our strategy. The segmentation results of image slices
of triple-negative breast cancer samples are shown in
Figure 5.

At the same time, to verify our method’s effectiveness
again, we randomly selected several samples from the
scanned images of other types of breast cancer for testing.



()

Computational and Mathematical Methods in Medicine

FIGURE 5: Image slice segmentation results of triple-negative breast cancer samples based on (a) raw MRI scan image, (b) segmentation

results of CNN-SVM, and (c) real image segmentation result.

Figure 6 shows the segmentation results of image slices of
other types of breast cancer samples.

As can be seen in the diagram, our network is capable of
successfully segmenting breast cancers. As a result, our net-
work is extremely successful in segmenting breast cancers.

3.3. Comparison with Existing Methods. To demonstrate the
usefulness of our suggested approach, we compare it to
methods offered by other researchers, and the results of the
comparison are presented in Table 1. To segment breast can-
cers, Byra et al. [36] designed a Selective Kernel (SK) U-Net
convolutional neural network. Rouhi et al. [37] used convo-
lutional neural networks for breast tumor segmentation.
Hagq et al. [38] proposed an automatic breast tumor segmen-
tation method using conditional GAN (cGAN). Table 1
shows that the CNN-SVM combination model developed
in this study outperforms other approaches in terms of

DSC, PPV, and sensitivity, demonstrating the practicality
of our strategy.

4. Discussion

Breast cancer is increasing at a rate of 3% to 4% every year,
and it has become the first cancer-related death among
women. Most of them go to the hospital for treatment only
after symptoms, and they have the worst understanding of
the census. The etiological factors of this disease include oral
contraceptives, a high-fat diet, heavy drinking, obesity, long-
term smoking, and unstable ovarian function, which seri-
ously affect patients’ quality of life and increase the eco-
nomic burden on patients. As a result, it is vital to
diagnose and treat people with breast cancer or suspected
breast tumors as soon as possible. In recent years, MR is
often used to diagnose breast cancer. Most studies have
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FIGURE 6: Image slice segmentation results of other types of breast cancer samples based on (a) raw MRI scan image, (b) segmentation

results of CNN-SVM, and (c) real image segmentation results.

TaBLE 1: Comparison of different algorithms.

Method Literature DSC PPV Sensitivity
U-net Byra et al. [36] 0.88 0.89 0.90
CNN Rouhi et al. [37] 0.90 0.92 0.89
BTS-GAN Hagq et al. [38] 0.92 0.93 0.91
CNN+SVM Our method 0.93 0.95 0.92

shown that 3D imaging of MRI has the advantages of multi-
parameter and multiplanar imaging and has a higher soft tis-
sue resolution. Compared with mammography, MRI can
more accurately display the type of lesions and tumor stag-
ing. At the same time, MRI dynamic contrast-enhanced
scanning has high diagnostic sensitivity and accuracy and
can well present high breast lesions, deep lesions, and multi-

focal lesions. In addition, this inspection method can show
the morphological changes of the mass and reflect the
microvascular perfusion and angiogenesis of the mass
through dynamic enhanced scanning to effectively evaluate
the malignancy of the mass and facilitate grading diagnosis.

Based on a convolutional neural network method and
SVM, we present a hybrid network for complete automatic
segmentation. The network is made up of two phases that
are linked together. The CNN is trained initially to learn
the mapping from image space to tumor label space. The
anticipated label output from the CNN is then added to an
SVM classifier together with the test grayscale picture to
obtain correct segmentation. A more accurate binary seg-
mentation picture can be obtained after the SVM classifier.

Similar to other researchers, our method also suffers
from certain limitations. First, the accuracy of data annota-
tion needs to be improved, and the size of the dataset needs



to be expanded. Existing medical imaging data is primarily
labeled by hand, which necessitates a significant amount of
people and material resources. The accuracy of labeling is
closely related to the level of doctors, so the quality of data-
sets is uneven. In addition, the private nature of medical
images also makes it difficult to obtain data. Doctors at the
hospital use regular sketching software to annotate the
obtained annotation dataset. The annotation quality must
be enhanced, and the quantity of MRI pictures must be
increased. Secondly, the network performance also needs
to be improved, reducing the number of parameters and
speeding up the training speed. The segmented breast tumor
may be reconstructed into a three-dimensional model [39]
for better visualization. In addition, one may use extreme
learning techniques [40, 41] for the segmentation to com-
pare against our proposed method in future implementation.

5. Conclusion

For MRI breast tumor segmentation, this research presents a
CNN-SVM network. The label output of a learnt convolu-
tional neural network is guided into a support vector
machine in this technique. The convolutional neural net-
work and the support vector are trained separately in the
training phase to learn the mapping from the grayscale pic-
ture domain to the tumor label domain. The SVM classifier
receives the labeled output of the convolutional neural net-
work and the grayscale picture of the test for correct seg-
mentation in the testing stage. In future study, we will look
at convolutional neural networks paired with additional
robust classifiers. When compared to previous studies’ seg-
mentation frameworks, the DSC, PPV, and sensitivity of
our CNN-SVM combined network are 0.93, 0.95, and 0.92,
respectively, indicating that it has higher segmentation per-
formance and can accurately segment breast cancers. The
diagnosis of breast cancer by medical elastography can be
further enhanced with the possibility of implementing
optical flow motion analysis on the MRI scans [42, 43] and
identifying the regions of abnormal stiffness.
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