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Abstract: Eliciting effective immune responses using non-living/replicating DNA vaccines is 

a significant challenge. We have previously shown that ballistic dermal plasmid DNA-encoded 

flagellin (FliC) promotes humoral as well as cellular immunity to co-delivered antigens. 

Here, we observe that a plasmid encoding secreted FliC (pFliC(-gly)) produces flagellin capable 

of activating two innate immune receptors known to detect flagellin; Toll-like Receptor 5 

(TLR5) and Nod-like Receptor family CARD domain-containing protein 4 (NRLC4). To 
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test the ability of pFliC(-gly) to act as an adjuvant we immunized mice with plasmid 

encoding secreted FliC (pFliC(-gly)) and plasmid encoding a model antigen (ovalbumin) 

by three different immunization routes representative of dermal, systemic, and mucosal 

tissues. By all three routes we observed increases in antigen-specific antibodies in serum as 

well as MHC Class I-dependent cellular immune responses when pFliC(-gly) adjuvant was 

added. Additionally, we were able to induce mucosal antibody responses and Class II-dependent 

cellular immune responses after mucosal vaccination with pFliC(-gly). Humoral immune 

responses elicited by heterologus prime-boost immunization with a plasmid encoding HIV-1 

from gp160 followed by protein boosting could be enhanced by use of pFliC(-gly). We also 

observed enhancement of cross-clade reactive IgA as well as a broadening of B cell epitope 

reactivity. These observations indicate that plasmid-encoded secreted flagellin can activate 

multiple innate immune responses and function as an adjuvant to non-living/replicating 

DNA immunizations. Moreover, the capacity to elicit mucosal immune responses, in 

addition to dermal and systemic properties, demonstrates the potential of flagellin to be used 

with vaccines designed to be delivered by various routes. 

Keywords: adaptive immunity; DNA adjuvant; flagellin; NLRC4; TLR5 

 

Abbreviations: TLR, Toll-like Receptor; NLRC4, Nod-like Receptor family CARD domain-

containing protein 4; Naip5, Neuronal apoptosis inhibitory protein 5; HIV-1, Human 

Immunodeficiency Virus-1. 

1. Introduction 

DNA-vaccines are promising tools with great potential for combating infectious disease. Non-living/ 

replicating DNA vaccines have several advantages over living viral delivery vectors, such as lower 

production costs, increased stability, a higher overall safety profile, and recent evidence indicates that 

they can provide humans with protective immunity to viral infection [1]. However, living viral vectors 

used in DNA vaccine settings (such as Adenovirus) can still elicit stronger immune responses in 

humans than naked DNA. Yet in the case of adenovirus, evidence suggests that they may not promote the 

desired immune responses to the recombinant antigen. As results from clinical trials show, the use of a 

viral vector can, possibly as a consequence of the anti-vector immunity, potentially even enhance the 

risk of infection with certain pathogens [2]. These observations emphasize the critical need to continue 

research on methods for adjuvanting minimal, non-living/replicating DNA vaccines. 

There are many approaches to improving the efficacy of plasmid DNA vaccines such as  

choice of delivery method, modifications of antigen location/stability/presentation, and the use of 

immunopotentiators [3]. Here, we investigate a formulation-compatible immunopotentiating adjuvant, 

with the potential to activate innate and adaptive immune responses through Toll-like Receptor 5 (TLR5) 

and/or possibly Nod-like Receptor (NLR) family members NLRC4 and Naip5 [4]. This approach employs 

plasmid DNA encoding a secreted form of flagellin (FliC) from Salmonella typhimurium as an 

adjuvant in DNA vaccinations. This adjuvant allows mammalian cells to create an environment of 
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sterile-inflammation, thus mimicking natural infection in a safe manner and promoting adaptive 

immune responses to co-delivered DNA-encoded antigens [5]. This approach is unique in that it uses a 

plasmid-encoded agonist of innate immune receptors to activate a large variety of molecules capable of 

promoting adaptive immunity, unlike many other approaches which use single cytokines or chemokines [3]. 

A major benefit of this system is that it works without physically linking the antigen to flagellin. This 

ensures that the antigen is properly folded and processed and constitutes a major practical advantage as the 

system is flexible and can be applied with ease to various antigens without the need for time-consuming 

development of fusion-constructs. Recombinant flagellin produced in bacteria is currently being used 

by many as an experimental adjuvant to promote humoral and cellular immunity against microbial 

pathogens [6–8]. However, the use of flagellin in protein-form presents formulation and stability issues 

with non-living/replicating DNA vaccines such as plasmids. 

In previous work, we vaccinated mice epidermally, using a gene-gun, with a transmembrane-anchored 

form of flagellin (pFliC-Tm) and secreted ovalbumin (pOVA). We observed significant increases in  

antigen-specific serum IgG levels compared to pOVA alone as well as strong antigen-specific CD4
+
/8

+
 

cellular immune responses [5]. Importantly, we also showed that the pFliC-Tm adjuvant delivered with 

a DNA-encoded nucleoprotein gene from Influenza A resulted in a strong antigen-specific CD4
+
/8

+
 

cellular immune response which correlated with protection from lethal virus infection [5]. This work 

demonstrated that pFliC-Tm acts as an adjuvant when delivered dermally however it is not clear 

whether this is the optimal route for eliciting the broadest or strongest immune responses. Additionally, 

not all DNA vaccination approaches are applied dermally therefore further studies of adjuvant effects 

induced by various delivery routes are warranted. 

The HIV-1 pandemic has been estimated to have according with WHO/UNAIDS reports been spread 

globally and infected individuals exist in all countries in the world. So far, only a few experimental vaccine 

studies have shown promising and protective results in clinical trials. Thus there is a continued need to find 

more efficient vaccination strategies to provide protective immunity against the infection. Since, the main 

route of infection is via sexual transmission and via mucosal transmission such as breast-feeding, a vaccine 

that can provide mucosal immunity would be desirable. However, mucosal vaccines against infectious 

disease are few, and only polio, influenza, rotavirus, S. typhi, and V. cholerae have commercially 

available vaccines [9]. There are numerous adjuvants now found to promote mucosal immune responses, 

some of them lipid based, however none of these are in themselves plasmid-DNA based technologies [10]. 

Here, we studied if a plasmid vector expressing secreted FliC (pFliC(-gly)) activates TLR5- and 

NLRC4/Naip5-specific innate immune responses and acts as an adjuvant to plasmid-encoded antigen by 

three different routes representative of dermal, systemic, and mucosal locations. Additionally, we 

performed intranasal mucosal immunizations using plasmid encoding the clinically relevant HIV-1 

antigen gp160 followed by recombinant HIV-1 protein booster. The ability of pFliC adjuvant to enhance 

HIV-1 gp160 envelope immune responses at mucosal and systemic compartments was also investigated. 
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2. Experimental  

2.1. Cloning of Vaccination Expression Constructs and Molecular Mechanism Constructs 

pOVA and pFliC-Tm(-gly) have been described previously [5]. pFliC-Tm(-gly) was subjected to 

site-directed mutagenesis to insert two translational stop-codons after AA 459 of FliC(-gly) (AA 

numbering is based on GenBank Accession #D13689). Changes of all constructs were confirmed by 

DNA sequencing. Variants of FliC(-gly) were created for testing the molecular mechanism of FliC(-gly) 

detection in vitro. First, to make a cytoplasmically-expressed FliC(-gly) the secretion leader sequence 

of FliC(-gly) was removed from the pFliC(-gly) vector by PCR amplification using the primers  

5'-CCAGGTTCCAATCTTATGTATCCATATGATGTTCCAGATTATGCT-3' and 5'-GCAGCCGCG 

GATCCCGGGGTACCTATCGCAGTAAAGAGAGGACGTTTTGCGG-3' with the pFliC(-gly) template 

encoding a starting methionine, HA-tag, and complete FliC(-gly) open-reading frame (ORF) without 

the secretion leader sequence. Full-length products were digested with Hind III/BamH I and ligated into 

pcDNA 3.1/Zeo(+) prepared with HindIII/BamHI to make pcFliC(-gly). To remove the COOH-terminal 

34 amino-acids of FliC a section of the FliC(-gly) gene encoding AA282 to 461 residing on a BsrG I/Xho I 

fragment (5'-ATGTACAAGTTGCAAATGCTGATTTGACAGAGGCTAAAGCCGCATTGACAGCAG 

CAGGTGTTACCGGCACAGCATCTGTTGTTAAGATGTCTTATACTGATAATAACGGTAAAACT

ATTGATGGTGGTTTAGCAGTTAAGGTAGGCGATGATTACTATTCTGCAACTCAAAATAAAG

ATGGTTCCATAAGTATTGATACTACGAAATACACTGCAGATGACGGTACATCCAAAACTGC

ACTAAACAAACTGGGTGGCGCCGACGGCAAAACCGAAGTTGTTTCTATTGGTGGTAAAACT

TACGCTGCAAGTAAAGCCGAAGGTCACAACTTTAAAGCACAGCCTGATCTGGCGGAAGCG

GCTGCTACAACCACCGAAAACCCGCTGCAGAAAATTGATGCTGCTTTGGCACAGGTTGACA

CGTTACGTTCTGACCTGGGTGCGGTACAGAACCGTTTCAACTCCGCTATTACCAACCTGGG

CAACACCGTAAACAACCTGAATTCTGCCCGTAGCCGTATCGAAGATTCCGACTACGCGACC

TAGTAGCTCGAGA-3') was synthesized (and used to replace the 3' end of both the pFliC(-gly) and 

pcFliC(-gly) constructs after digestion by BsrG I/Xho I to create pFliC(-gly)34 and pcFliC(-gly)34. 

pFliC(-gly), pcFliC(-gly), pFliC(-gly)34, or pcFliC(-gly)34 were transiently transfected into 

293T cells and 2 days later cell lysates were prepared as described [5], total protein concentration was 

determined by BCA assay (Pierce Thermo Scientific, Walthman, MA, USA), normalized, and 

subjected to SDS-PAGE (NuPAGE, Invitrogen Life Technologies, Stockholm, Sweden) followed by 

western blot analysis (anti-HA tag, Covance Research Products, Brussels, Belgium). 

The ORF of FliC(-gly) gene and three variants were excised using MfeI and XhoI and inserted into 

the retroviral expression vector pMSCV-IRES-GFP/neo digested with EcoR I and Xho I. Constructs 

were transfected into 293T cells and proteins from cell lysates and supernatants were analyzed for the 

presence and correct molecular weight of FliC(-gly) and variants by Western blotting as described 

above (data not shown). 

Plasmid vectors expressing gp160 and p24gag from HIV-1 clade B strain Ba-L have been described 

previously [11]. 
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2.2. In Vitro Macrophage Stimulations and Retroviral Lethality Screen 

All plasmid DNAs were prepared using a Qiagen EndoFree Plasmid Maxi Kit (Qiagen, Hamburg, 

Germany). Macrophage stimulations were performed as follows. Alveolar macrophages were 

harvested by BAL from C57BL6/N or TLR5
−/−

 mice backcrossed >10 generations onto C57BL6. Cells 

were seeded 50,000 cells/well in 96 well plates (Costar) in 50 µL RPMI 1640, 10% heat-inactivated 

FCS, 2 mM L-glutamine, 100 U/mL penicillin and 100 µg/mL streptomycin (Pierce Thermo Scientific, 

Walthman, MA, USA) and allowed to settle for 1 h. 50 µL of two day culture supernatants from 293T 

cells, transiently transfected with 0.8 µg of pFliC(-gly), pFliC(-gly)34, empty vector, recombinant 

FliC at 100 ng/mL (a gift from A. Gewirtz, Emory, GA, USA) or ultra-pure LPS at 100 ng/mL 

(InVivogen, San Diego, CA, USA), was placed on cells and incubated at 37 °C at 10% CO2 for 4 h. 

Cell supernatants were harvested and subjected to standard ELISA to detect secreted mouse TNF 

(BioLegend, San Diego, CA, USA). 

Retroviral Lethality Screen was performed as follows. pMSCV-IRES-GFP/neo alone or containing 

FliC(-gly), cFliC(-gly), FliC(-gly)34, or cFliC(-gly)34 ORF were packaged in Phoenix amphotropic 

virus packaging cells. After transfection media was replaced at day one and viral supernatants were 

harvested at days two and three. Pooled supernatants were 0.45 µm filtered, concentrated by centrifugation 

at 2,300 × g for 18 h at +4 °C, and frozen at −80 °C. 2 × 10
5
 J2-virus immortalized mouse bone-marrow 

derived macrophage cells (BcgR) or 293T cells were pre-treated with BX795 (5 µM) for 30 min at 37 °C 

to improve transduction efficiency [12] followed by 200 µL virus mixed with polybrene 8 µg/mL (Sigma, 

St. Louis, MO, USA) and centrifuged for 45 min at 27 °C. 4 days after triplicate transductions cells 

were subjected to analysis for GFP by flow cytometry using a 4-laser LSRII-Fortessa with standard filter 

sets (BD Bioscience, Stockholm, Sweden). >40,000 non-debris singlets were analyzed in every 

sample. FACS data was analyzed using FlowJo v9.2 (Tree Star, Ashland, OR, USA). 

2.3. Mice and Vaccinations 

For experiments using OVA antigen female C57BL6/J-crl sub-strain mice (8–12 weeks at priming) 

from Charles River Laboratories (Sulzfeld, Germany) were used and housed under standard specific 

pathogen-free conditions (Swedish Institute for Infectious Disease Control). All procedures were 

reviewed, approved, and performed under both institutional and national guidelines. Plasmid DNA was 

prepared using a Qiagen EndoFree Plasmid Maxi Kit (Qiagen, Hamburg, Germany) as described by the 

manufacturer without exception. Vaccinations were done in the animal facility at approximately 24 °C 

and 60% relative humidity. Mice receiving intramuscular vaccinations were injected with DNA 

resuspended in PBS in a total volume of 50 μL in one quadricep. Standard ballistic dermal vaccinations 

were performed as described [5]. For intra-nasal vaccinations, plasmid DNA was resuspended in 0.1 M 

Tris-HCL, pH 8.0 and placed on ice and mixed with a 1:1 volume of 2% Eurocine cationic N3 lipid 

(called N3) to make a final volume of 1% N3 lipid adjuvant (see Table 1 for details). Preparation of N3 

was carried out as described [13] and was gently stirred with DNA on ice until homogenous then brought 

to room temperature. Mice were briefly anesthetized with Isofluran, placed dorsal side up, and  

4 μL/nostril of N3/DNA mixture was applied to each nostril using a standard laboratory pipette. Mice 

were gently supported in this position until the mouse revived and attempted to turn over. 
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Table 1. Vaccinated groups for ovalbumin (OVA) experiments. 

Group n 
Total 

Immunizations 
Route 

a
 ImmunogenpOVA 

Adjuvant 

pFliC(-gly) 

Empty Vector 

pcDNA3.1/Zeo(+) 

N3 

Lipid 

1 7 2 g.g. 0.5 µg - 0.5 µg - 

2 7 2 g.g. 0.5 µg 0.1 µg 0.4 µg - 

3 8 2 g.g. 0.5 µg 0.2 µg 0.3 µg - 

4 8 2 g.g. 0.5 µg 0.5 µg - - 

5 7 2 i.m. 10 µg - 10 µg - 

6 8 2 i.m. 10 µg 2 µg 8 µg - 

7 8 2 i.m. 10 µg 5 µg 5 µg - 

8 8 2 i.m. 10 µg 10 µg - - 

9 8 2 i.na. 4 µg - 4 µg - 

10 7 2 i.na. 4 µg - 4 µg 1% 

11 8 2 i.na. 4 µg 1 µg 3 µg 1% 

12 8 2 i.na. 4 µg 2 µg 2 µg 1% 

13 7 2 i.na. 4 µg 4 µg - 1% 
a g.g.=gene-gun, i.m.=intra-muscular, i.na.=intra-nasal. 

For experiments involving gp160/p24gag, eight to ten-week-old female BALB/c mice were purchased 

from Scanbur BK, Sollentuna, Sweden. Six groups (n = 35) were vaccinated with DNA-plasmids 

expressing gp160 and p24gag (promoter CMV-IE) as previously described [11] with or without adjuvant 

(Table 2). For plasmid-DNA priming, mice were given 10 µg/plasmid dose/mouse as 5 µL/nostril/mouse 

with N3 prepared as described above. HIV-1 recombinant protein-boost antigens were gp160 and 

p24gag (Protein Sciences Inc., Meriden, CT, USA), containing HIV-1 gp160 LAI and p24gag prepared 

with anionic L3B as described [14]. Mice were given 5 µL of vaccine in each nostril, corresponding to 

1 µg recombinant protein antigen and 0%, or 2% of L3B adjuvant or 1% N3 with 5 µg pFliC(-gly) (see 

Table 2 for details). For delivery of intranasal vaccinations, the mice were treated as above. Groups 

studied for longetivity of immune responses were immunized three times at three weeks intervals then 

mice were sacrificed 4, 8, 12, 24, and 36 weeks after the last immunization for analysis. Mice studied 

for general immune reactivity were sacrificed 4 weeks after the final immunization. 

Table 2. Vaccinated groups for gp160/p24gag experiments. 

Group n 
Total 

Immunizations 

Priming Boosting 

ImmunogenP 
a
 Adjuvant 

EmptyVectorpc

DNA3.1/Zeo(+) 
ImmunogenB 

b
 Adjuvant 

1 35 3 
pgp160(5 µg) 

pGagp24(5 µg) 
None - 

rgp160/rp24gag 

(1 µg each) 
None 

2 35 3 
pgp160(5 µg) 

pGagp24(5 µg) 
N3 (1%) - 

rgp160/rp24gag 

(1 µg each) 
L3B(2%) 

3 35 3 
pgp160(5 µg) 

pGagp24(5 µg) 

pFliC(-gly) 

(5 µg) 
- 

rgp160/rp24gag 

(1 µg each) 
L3B(2%) 

4 35 3 
pgp160(5 µg) 

pGagp24( 5µg) 

N3(1%) + 

pFliC(gly) 

(5 µg) 

- 
rgp160/rp24gag 

(1 µg each) 

N3(1%) + 

pFliC(gly) (5 µg) 
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Table 2. Cont. 

Group n 
Total 

Immunizations 

Priming Boosting 

ImmunogenP 
a
 Adjuvant 

EmptyVectorpc

DNA3.1/Zeo(+) 
ImmunogenB 

b
 Adjuvant 

5 35 3 
pgp160(5 µg) 

pGagp24(5 µg) 
None 5 µg 

rgp160/rp24gag 

(1 µg each) 

N3(1%) + 

pcDNA3.1 (5 µg) 

6 35 3 
pgp160(5 µg) 

pGagp24(5 µg) 
N3(1%) 5 µg 

rgp160/rp24gag 

(1 µg each) 

N3(1%) + 

pcDNA3.1  

(5 µg) 

Saline 30 3 Saline     
a
 Plasmid DNA; 

b
 Recombinant protein. 

2.4. Antibody, Mucosal Cytokines and T Cell Analysis 

Anti-OVA humoral responses were performed as follows. Briefly, serum, fecal pellets (100 mg 

feces solublized in 1 mL PBS with protease inhibitors, Complete Mini, Roche, ) and vaginal washings 

(50 μL of PBS with protease inhibitors, as above) were subjected to anti-OVA ELISA as described [5]. 

Assessment of antigen-specific IgA in lungs was done as follows. Isolated lungs were rinsed in cold 

PBS then minced in PBS with protease inhibitors. Solids were removed by centrifugation and total IgA in 

washings were determined by ELISA, using a primary monoclonal goat-anti mouse IgA (Sigma 098K4823 

clone ISO2-1KT, St. Louis, MO, USA) and secondary rabbit anti-goat IgG HRP (Dako, Stockholm, 

Sweden). IgA anti-OVA titers were determined by ELISA then normalized for total IgA content. 

Individual samples were tested in triplicate at a dilution of 1/10. Amino acids were numbered 

according to the Los Alamos Data Base on Retroviruses (peptide source: AIDS Research and 

Reference Reagent Program, Division of AIDS, NIAID, NIH: from DAIDS, NIAID and J&J, San Diego, 

CA, USA) [15]. For IgG anti-gp160 measurements, individual mouse sera were diluted in ten-fold steps 

from a starting dilution of 1:100 in ELISA-buffer (2.5% dry milk and 0.05% Tween-20 (Sigma, St. Louis, 

MO, USA) in PBS to end-point. Goat-anti-mouse IgG (H+L)-HRP secondary conjugate (Bio-Rad, 

Hercules, CA, USA) was used, diluted 1:3,000 to detect IgG anti-gp160 immune complexes. Anti-gp160 

IgA and IgG isotype subclasses were measured using a mouse monoclonal antibody isotyping reagent 

(Sigma, St. Louis, MO, USA) according to the manufacturer’s protocol with peroxidase-conjugated 

anti-Goat IgG (Sigma, St. Louis, MO, USA), diluted 1:2,000. For developing ELISA reactions,  

O-phenylenediaminedihydrochloride (OPD) (Sigma, St. Louis, MO, USA) was used. Based on earlier 

studies, an OD of 0.2 was set as the cut-off value for positive samples. Clade A, Uganda 29 (UG29) and C, 

Brazil (BR25) envelope antigens were obtained from the AIDS Research and Reference Reagent Program, 

Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health 

(NIAID, NIH, Bethesda, MD, USA). Mucosal wash IgA analyses were performed as previously 

described [16–18]. Briefly, IgA was isolated from secretions collected by nasal washing using 

Kaptive/IgA/IgE reagents (Biotech IgG, Copenhagen, Denmark) as recommended by the manufacturer. 

IgA quantities were determined using an in-house murine IgA capture ELISA, and commercial murine 

IgA (1 mg/mL, Sigma, St. Louis, MO, USA) was used to prepare a standard curve. The purified IgA 

and the standard IgA were diluted in ten-fold serial dilutions. From each dilution, 100 µL was added to 

each well of a 96-microwell plate pre-coated with rabbit anti-murine IgA (Dakopatts AB, Sollentuna, 
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Sweden). Goat-anti-mouse IgA-HRP secondary conjugate (SouthernBiotech, Birmingham, AL, USA), 

diluted by 1:3,000, was used to detect IgA anti-gp160. The total amounts of IgA in nasal samples were 

determined by comparing the OD values of the test samples with the IgA standard and final anti-gp160 

values were normalized to total IgA values. 

T-cell responses to OVA was performed as described [5]. Briefly, spleens were isolated, single-cell 

suspensions were Ficoll-purified, washed twice with PBS and used in IFNγ ELISPOT analysis 

according to the manufacturer guidelines (Mabtech, Nacka, Sweden). Ag restimulation was performed 

using either the H-2Kb binding OVA peptide SIINFEKL (257-264) at 1 μM final concentration or the 

I-Ab binding OVA peptide ISQAVHAAHAEINEAGR (323-339) at 1 μM final concentration (GenScript, 

Piscataway, NJ, USA).). Cell reactivity was confirmed by incubation with ConA. Spot-forming cells were 

quantified after 24 h incubation and counted by AID ELISPOT reader (AutoImmun Diagnostika, 

Straßberg, Germany). 

T cell immune responses to gp160 were measured using a cell-in-well murine cytokine capture-ELISA 

assay as described previously [11]. Briefly, 96-well ELISA plates were coated with capture anti-IFN 

(AN18) or anti-IL-5 (TRFK4) according to the manufacturer’s protocol (Mabtech, Nacka, Sweden) 

overnight at 4 °C. Following well washing and blocking according to the manufacturer’s protocol 2.5 × 10
5
 

ficoll-purified splenocytes from individual mice were added to each well, either with or without 

recombinant HIV-1 gp160, p24gag (Protein Sciences Inc., Meriden, CT, USA), control antigen (Sf9 

cell lysate), the positive control Concanavalin A (2.5 µg/mL, Sigma, St. Louis, MO, USA) or RPMI 

1640-medium alone. Plates were incubated at 37 °C, 5% CO2 for 5–6 days. Cells were then removed, 

plates were washed with PBS, and biotinylated detection antibodies were added, washed, followed by 

streptavidin-ALP (Mabtech, Nacka, Sweden). The plates were developed with substrate solution 

(Mabtech, Nacka, Sweden) for 5–10 min until spots became visible, and the color reaction was stopped 

by 2.5 M H2SO4. Plates were then read in an ELISA reader (BioRad, Hercules, CA, USA) at 405 nm. 

T-cell proliferation to gp160 was performed as described previously [18] using 1 µg/mL of rgp160 

or rGag p24 as specific antigens. 

Nasal washings were performed trice with 25 µL PBS/nostril on Isofluran sedated mice kept in 

supine position. Collected washings were frozen until analyzed. Nasal washings were tested individually 

for the cytokines IL-6, IFN, and IFN according to the manufacturer’s protocols (R&D Systems, 

Minneapolis, MN, USA). 

2.5. HIV-1 Neutralization Assay 

The HIV-1 neutralization assay was performed as described previously [11]. The viral isolates used 

for the neutralization were the subtype B laboratory strains IIIB LAI (vaccine homologus) and the 

primary subtype B isolate 6,794. Briefly, the sera from mice were pooled group wise and inactivated at 

56 °C for 1 h to prevent complement-mediated neutralization. Sera were diluted in RPMI 1640 

medium (Invitrogen Life Technologies, Stockholm, Sweden) in 96-well tissue culture plates (Nunc 

microwell plates, Nunc, Pierce Thermo Scientific, Walthman, MA, USA). Dilutions were mixed with 

virus and incubated at 37 °C for 1 h followed by the addition of 1 × 10
5
 human PBMCs (activated by 

phytohemagglutinine and rIL-2; PeproTech, Rocky Hill, NJ, USA) or Jurkat T cells. The cultures were 

incubated at 37 °C in 5% CO2 over night, after which the cells were washed twice with RPMI 1640. 
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After 6 days of culture, the presence of HIV-1 p24 antigen in the culture medium was measured by 

ELISA [19]. The background in the p24 ELISA was determined for each plate and subtracted from all 

wells before the percentage neutralization was determined as [1-(mean p24 OD in the presence of test 

serum/mean p24 OD in the absence of test serum)] × 100. Ethical permission for use of huPBMCs was 

approved by the ethical committee at Linköping University Hospital. 

Statistical analysis was performed using GraphPad Prism 5 (La Jolla, CA, USA). Comparisons 

between groups with the HIV-1 antigens were performed by using the non-parametric Mann-Whitney 

U test with Bonferroni correction, p < 0.05 was considered significant.  

3. Results and Discussion  

3.1. Construction of Secreted FliC Adjuvant 

A secreted variant of flagellin with reduced glycosylation (called pFliC(-gly)), based on the pFliC-Tm 

(-gly) plasmid [5], was constructed by removing the human transmembrane PDGFR domain from the 

ORF to eliminate potential immune responses to this region and to prepare a base vector for adjuvant 

use. Three additional variants of pFliC(-gly) were also constructed to test the ability of FliC(-gly) to 

activate the two known innate immune receptors capable of sensing flagellin TLR5 and NLRC4/Naip5. 

These four constructs are depicted in Figure 1a relative to the defined domains of Salmonella 

typhimurium FliC. To prepare pFliC(-gly) control variants capable of activating cytoplasmically expressed 

NLRC4/Naip5 we recloned the FliC(-gly) insert sans leader sequence (pcFliC(-gly)). We also prepared 

additional control versions of pFliC(-gly) and pcFliC(-gly) removing the COOH-34 amino-acids of 

FliC(-gly) shown to activate NLRC4/Naip5 [20]. These versions were designated pFliC(-gly)34 and 

pcFliC(-gly)34 respectively. All four vectors were capable of expressing proteins of predicted size 

with an apparent polypeptide of approximately 52 kDa for pFliC(-gly) and pcFliC(-gly) and 

approximately 48 kDa for pFliC(-gly)34 and pcFliC(-gly)34 (Figure 1b). To determine if secreted 

FliC(-gly) protein produced from pFliC vectors could activate TLR5 culture supernatants from pFliC(-gly), 

pFliC(-gly)34 transfected 293 cells, or recombinant FliC protein were applied to alveolar macrophages 

from B6 or TLR5-deficient mice. Plasmid vectors produced full-length or 34 secreted FliC(-gly) able 

to activate B6 alveolar macrophages to produce TNF but not macrophages from TLR5-deficient mice 

(Figure 1c). To determine if secreted FliC(-gly) has the potential to activate cytoplasmic NLRC4/Naip5 

inflammasome responses we performed a retroviral lethality screen using the macrophage cell line BcgR 

which undergoes pyroptosis in the presence of the COOH-terminal tail of FliC [21]. This assay detects 

the ability of macrophages virally transduced with genes expressing GFP as well as various flagellin 

constructs to undergo pyroptotic cell death in response to whole flagellin dependent on the 

NLRC4/Naip5 35 amino-acid carboxy-terminal activating domain [20,21]. GFP positive BcgR cells 

are taken as evidence of a lack of NLRC4/Naip5 activation while GFP negative cells, relative to GFP 

positive identically transduced 293T control cells, are taken as evidence of NLRC4/Naip5 activation. 

FliC(-gly), cytoplasmic expressed FliC (cFLiC(-gly)), and a variant of each lacking the final 34 amino-acid 

COOH-tail (34) (Figure 1a) were subcloned into the retroviral vector pMSCV-IRES-GFP which are 

designed to produce FliC(-gly) and variants as well as GFP upon transduction. Various FliC(-gly) 

constructs were Amphotropic packaged, and used to transduce BcgR or 293T cells. Using GFP as a 
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reporter for FliC expression we observed that all versions of FliC(-gly) were expressed at nearly equal 

frequency in 293T cells indicating that all vectors were packaged with equal efficiency and could 

deliver GFP and FliC genes (Figure 1d). However, when identical vector preparations expressing 

FliC(-gly) were trandsuced into BcgR cells we observed GFP expression only with 34 versions 

(Figure 1d). These results demonstrate that secreted form of FliC(-gly) we use as an in vivo adjuvant has 

the ability to activate NLRC4/Naip5 pyroptotic cell death when expressed in a responsive cell type.  

FliC(-gly) produced from pFliC(-gly) stimulated TNF production in a TLR5-dependent manner as 

well as inflammatory cell death (pyroptosis) dependent on a defined FliC region known to be a 

NLRC4/Naip5 agonist. These results suggest that TLR5 and NLRC4 expressed in vivo could be 

important factors in the adjuvant effects of pFliC(-gly) in immunized mice. It is interesting that FliC(-gly) 

destined for secretion has the capacity to activate the cytoplasmic flagellin detectors NLRC4/Naip5. 

We consider it likely that a portion of secreted FliC(-gly) undergoing translation is retro-translocated 

from the endoplasmic reticulum back into the cytoplasm where it may detected by NLRC4/Naip5 

leading to the induction of pyroptosis. 

3.2. pOVA DNA Vaccinations; Timeline, Routes, and Dose 

To compare the effectiveness of secreted flagellin (pFliC(-gly)) as a DNA adjuvant by various routes, 

DNA vaccinations were carried out using plasmid pOVA together with empty vector (pcDNA3.1/Zeo(+)) 

or with vector expressing pFliC(-gly). Empty vector control was used to include possible adjuvant 

effects contributed by sensing of B-DNA by innate immune receptors [22,23] but to exclude adjuvant 

effects contributed by secreted flagellin (Table 1). Vaccinated mice were primed once, boosted once 

and then sampled 9 and 10 days later (Figure 2a). The amount of total DNA given to the mice varied and 

was dependent on the limitations of the delivery route (Table 1). Mice were vaccinated by three different 

routes representative of dermal (gene-gun, g.g.), systemic (intramuscular, i.m.), and mucosal tissues 

(intra-nasal, i.na.). A constant sub-optimal amount of pOVA was used with each route (0.5 μg/g.g.,  

10 μg/i.m., 5 μg/i.na.) to allow the study of the adjuvant effects of flagellin. 

3.3. Antibody Immune Responses to pOVA DNA Vaccination 

To determine if pFliC(-gly) promotes humoral immune response to co-delivered DNA-encoded 

antigen (pOVA), we studied antigen-specific antibody responses in dermal, systemic, and mucosal 

compartments. When anti-OVA antibody responses were examined in the sera of vaccinated mice we 

observed that the pFliC(-gly) adjuvant increased the antigen-specific total IgG antibodies in the sera of 

mice vaccinated with pOVA by all three routes (Figure 2b). These responses were dependent on the 

dose of pFliC(-gly) used as mice given 0.1 or 0.2 μg of pFliC(-gly) by g.g. or mice given 2 or 5 μg of 

pFliC(-gly) by i.m. did not exhibit any increases in anti-OVA antibody responses (data not shown; 

Table 1, Groups 2, 3 and 6, 7 respectively). Significant increases were seen when mice were vaccinated 

by g.g. or i.na., however, we also observed a reproducible trend of pFliC(-gly) to promote increases in 

anti-OVA total IgG when mice were vaccinated i.m. To see if the adjuvant effects of pFliC(-gly) 

delivered by various routes affected skewing of anti-OVA IgG isotypes, we analyzed the titers of anti-OVA 

IgG1, IgG2b, and IgG2c in the sera of vaccinated mice. We observed increases in all three IgG 

isotypes when pFliC(-gly) adjuvant was used, regardless of the route of delivery (Figure 2c–e). 
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Figure 1. Flagellin (FliC)(-gly) variants for in vivo and in vitro use activate innate immune 

responses. (a) Depiction of pFliC(-gly) and variants relative to FliC polypeptide and domains 

produced by S. typhimurium. Grey domains D0/1 indicate conserved regions important for 

activating innate immune responses. L and HA indicates a leader and HA-epitope tag domains 

respectively. Names of the four FliC(-gly) constructs used in this study are indicated to the 

right of the drawings; (b) Western blot analysis of cellular lysates from 293T cells transfected 

with the indicated constructs. Apparent molecular weights were determined by comparison to 

the standard depicted to the left of the blot. Signals were not detected from cells transfected 

with empty vector (data not shown); (c) Release of TNF from B6 alveolar macrophages but 

not Toll-like Receptor 5 (TLR5) −/− alveolar macrophages after stimulation with FliC(-gly) and 

FliC(-gly)34. Supernatant from 293T cells transfected with pFliC(-gly) and pFliC(-gly)34 

vectors was incubated with cells for 4 h followed by analysis of secreted TNF by ELISA. 

Data are mean ± SEM of triplicate samples representative of two independent experiments; (d) 

Activation of pyroptotic cell death by retroviral transduction of BcgR macrophages with 

constructs expressing FliC(-gly) but not FliC(-gly)34 as determined by GFP expression. Upper 

panels represent representative data from BcgR cells transduced with FliC(-gly), FliC(-gly)34 

and controls (as indicated) when comparing GFP and forward-scatter (FS) parameters. 

Quantitative data of the percentage of GFP positive BcgR cells from each construct after 

transduction. Lower panel represent representative data from 293T cells transduced in identical 

fashion. Data are mean ± SEM of GFP positive cells observed during three independent 

transduction experiments. * Differences of the response relative to the FliC(-gly) construct 

without 34 defined as p ≤ 0.05 calculated using a two-tailed unpaired Student t test. 
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Figure 2. Vaccination schedule and serum antibody responses to OVA. (a) Immunization 

and sample isolation timeline; (b) Anti-OVA total IgG responses. Anti-OVA IgG1 (c), 

IgG2b (d), IgG2c (e) responses. (White bars) g.g. (Dark Grey Bars) i.m. (Grey bars) i.na. 

immunized mice. Striped bars indicate the use of pFliC(-gly). Results are representative of 

two independent experiments (n = 7–8 mice/group). The concentration of OVA-specific 

Abs are expressed as the reciprocal of the last dilution of samples giving an OD equal to, or 

higher than, the mean + 3 SDs (the determined cutoff value for the assay) of the values of 

serum samples from unimmunized mice. Absorbance values equal to or above the cutoff value 

were considered positive. The error bars represent 95% confidence intervals calculated from 

the geometric mean titers. * Differences of the response relative to pOVA immunizations 

without pFliC(-gly) defined as p ≤ 0.05 were considered significant using a two-tailed 

unpaired Student t test. 

 

To assess whether DNA vaccination of mice with pOVA and empty vector or pFliC(-gly) by 

various routes could elicit antibody responses in mucosal compartments, we collected extracts from 

fecal pellets, vaginal washes, and extracts from lung homogenates. We observed no significant differences 

in total amounts of total IgG or IgA immunoglobulins isolated from g.g., i.m. or i.na.-immunized 

animals (data not shown). Fecal extract samples were assessed for the relative amount of anti-OVA 

total IgG and IgA. We were able to detect significant increases in fecal anti-OVA IgG and IgA in the 
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groups of mice vaccinated intranasally with pOVA together with the highest amounts of pFliC(-gly), 

but not when the same plasmids were delivered by g.g. or i.m. (Figure 3a–b). Similarly, only animals 

receiving the highest doses of pFliC(-gly) and pOVA intranasally developed measurable anti-OVA 

IgA in the vaginal washes (Figure 3c) and lungs (Figure 3d). 

We find it interesting that pFliC(-gly) promotes antigen-specific IgG and IgA responses to in mucosal 

compartments after mucosal delivery but not when it is delivered systemically or dermally. Despite this 

specificity we observed antigen-specific IgG in the sera by all routes. Other studies using purified 

flagellin protein and mucosal cell populations however, has revealed that the small intestine lamina 

propria contains CD103
+
 dendritic cells which express TLR5 and respond directly to flagellin to 

promote T cell-independent class switching of naive B cells from IgM
+
IgD

+
 to IgA [24]. It may be that 

a similar phenomenon occurs in vivo when flagellin is present in the compartments of the nasal mucosa 

and upper airway. However, it is not known why flagellin acts to promote humoral immune responses 

by all routes explored, but does not elicit mucosal antibodies when delivered systemically or dermally. 

Differences in the numbers, types, or the immune-skewing potential of flagellin-responsive cells 

interacting with flagellin after i.m. or g.g. delivery could be responsible for these effects. 

Figure 3. Mucosal antibody responses to OVA. (a) Fecal anti-OVA IgG and (b) IgA 

responses; (c) Vaginal anti-OVA IgA responses. (White bars) g.g. (Dark Grey Bars) i.m. 

(Grey bars) i.na. immunized mice. Striped bars indicate the use of pFliC(-gly); (d) Lung 

anti-OVA IgA responses shown are from mice only vaccinated i.na. and immunizations 

given are shown below the axis. Results are representative of two independent experiments 

(n = 7–8 mice/group). The concentration of OVA-specific Abs in samples are expressed as 

OD equal to, or higher than, the mean OD of the values of samples from unimmunized mice. 

The error bars represent SEM calculated from the mean OD. * Differences of the response 

relative to pOVA immunizations without pFliC(-gly) defined as p ≤ 0.05 were considered 

significant using a two-tailed unpaired Student t test. 
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3.4. Cellular Immune Responses to pOVA DNA Vaccination 

MHC class I-dependent responses were analyzed by stimulation of splenocytes from immunized mice 

with peptide representing the immunodominant OVA H2-Kb restricted epitope. We observed significant 

increases in the numbers of antigen-specific IFNγ-producing cells in mice receiving either g.g. or i.na. 

immunization with pOVA and pFliC(-gly) when compared to mice receiving pOVA together with empty 

vector (Figure 4a). We also observed a reproducible trend of pFliC(-gly) to promote antigen-specific 

increases in IFNγ-producing cells when mice were vaccinated i.m. (Figure 4a). These Class I cellular 

responses were dependent on the dose of pFliC(-gly) delivered as mice given 0.1 or 0.2 μg of pFliC(-gly) 

by g.g or mice given 2 or 5 μg of pFliC(-gly) i.m. did not exhibit detectable Class I-dependent responses 

(data not shown; Table 1, Groups 2, 3 and 6, 7 respectively). When Class II-dependent cellular immune 

responses were studied by stimulating splenocytes with the immunodominant I-Ab binding OVA 

peptide we observed significant increases in the numbers of antigen-specific IFNγ-producing cells in 

mice receiving pOVA intranasally together with the highest amounts of pFliC(-gly), but not with 

pOVA and empty vector (Figure 4b). We did not observe any OVA-specific class II-restricted 

responses after i.m or g.g. immunization (Figure 4b). 

Figure 4. Class I- and Class II-dependent T cell responses to OVA. IFN ELISPOT 

analysis of splenic T cell responses to (a) Class-I and (b) Class-II MHC binding OVA 

peptides after vaccination. (White bars) g.g. (Dark Grey Bars) i.m. (Grey bars) i.na. 

immunized mice. Striped bars indicate the use of pFliC(-gly). Results are representative of 

two independent experiments (n = 7–8 mice/group). Data is expressed as the calculated 

geometric mean of the Ag-stimulated cells minus unstimulated cells. The error bars represent 

SEM calculated from the mean SFC/10
6
 splenocytes. Statistical analyses were conducted using 

a two-tailed Student t test. * Differences of the response relative to pOVA immunizations 

without pFliC(-gly) defined as p ≤ 0.05 were considered significant using an two-tailed 

unpaired student t test. 

 

We observed unique Class-II dependent IFNγ-responses in the spleen after mucosal delivery of 

pFliC(-gly) but not when delivered systemically or dermally. This mirrors our observations of mucosal 

IgG and IgA with pFliC(-gly) use. Why does pFliC(-gly) promote strong Th1-like CD4
+
 T cell and 

IFNγ-producing CD8
+
 T cell responses when delivered mucosally but only promotes increases in 

IFNγ-producing CD8
+
 T cells when applied systemically or dermally? It could be that splenic Th1-like 
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CD4
+
 cells have trafficked to other locations before analysis or are below the level of detection. 

Alternatively, there may be a strong ability of FliC to promote CD4+ responses when delivered 

mucosally. It has been observed that certain mucosal DC populations expressing TLR5 have a special 

ability to promote flagellin-specific CD4
+
 T cell responses [25]. However, it remains to be seen if these 

TLR5-dependent responses can be extended to other antigens encountered in the same environment as 

flagellin. Nevertheless, as an adjuvant, we find it interesting that flagellin can promote different immune 

responses to the same antigen encountered in different environments. This may have relevance to 

immune responses elicited by flagellated pathogens. 

Adjuvant effects of pFliC(-gly) were dose-dependent. Lower doses delivered intranasally re-capitulated 

the effects seen after systemic and dermal routes giving increases in anti-OVA IgG in the sera as well 

as IFNγ-producing Class I-dependent cellular responses. Higher doses of pFliC(-gly) however, were 

able to induce mucosal anti-OVA IgG and IgA responses. These observations suggest there may be a 

lower threshold for flagellin to promote systemic responses to an antigen compared to mucosal responses, 

which might require more of the adjuvant. Whether this could be through the triggering of a threshold 

of pre-existing cells at the vaccination site, recruitment of new cell populations to the site after 

vaccination, or differences in triggering TLR5 and NLRC4 responses is not known. 

3.5. gp160 DNA and Protein Vaccinations; Timeline and Antibody Responses 

Experiments with pOVA and pFliC(-gly) indicated that delivery of plasmids using N3 and the 

intranasal route was able to promote cellular immune responses as well as humoral mucosal immune 

responses. To compare the effectiveness of secreted flagellin to promote immune responses to a clinical 

antigen using a heterologus prime/boost regime, priming intranasal DNA vaccinations were carried out 

using plasmid pgp160Lfai/pRev [16] with delivery lipid N3 alone or together with pFliC(-gly). Boostings 

were performed using recombinant gp160 proteins with a protein-delivery lipid L3B alone or together 

with N3 mixed with pFliC(-gly) (Table 2). In these experiments mice were given doses of antigen and 

adjuvant believed to maximize detectable responses. Mice were primed, boosted, and analyzed according 

to the indicated timeline (Figure 5a). Four weeks post-final boost serum total-IgG titers anti-rgp160 

indicated that addition of N3 to pgp160 was able to strongly promote anti-gp160 antibody responses 

(Figure 5b). Similar to responses seen using OVA, addition of N3/pFliC(-gly) to the immunization 

regime enhanced antigen-specific antibody titers further (Figure 5b). The adjuvant effect was 

dependent on N3. Likely due to it’s ability to encapsulate plasmid DNA and protect it from the degradative 

environment of the mucosal compartment. These higher titers of antigen-specific IgG in the sera and 

the presence of antigen-specific mucosal IgA indicate that the mucosal adjuvant effects of pFliC(-gly) 

are not limited to experimental antigens.  

Kinetic analysis of anti-gp160 IgG isotypes revealed that addition of N3 to pgp160 was able to 

promote anti-gp160 IgG1 at 4 weeks following the final boost. This titer was generally sustained to  

24 weeks but fell sharply by week 36 (Figure 5c). A similar trend was seen when anti-gp160 IgG2a was 

studied (Figure 5d). When pFliC(-gly) was added to N3/pgp160 vaccinations IgG1 and IgG2a anti-gp160 

titers were enhanced further as well as sustained to later time points (Figure 5c,d). These results 

suggest that the adjuvant effects of pFliC(-gly) not only boost antigen-specific antibody but that these 

effects may also lead to longer persistence of antibody. 
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One should bear in mind that the antigen doses used were chosen to be relatively weak at inducing 

immune responses when given via the nasal route in small volume once or twice without adjuvant. 

Therefore, it was not surprising to see a short-lived serum and mucosal antibody response unless 

adjuvant was used. Longevity of total anti-gp160 IgG was significantly enhanced in groups where the N3 

adjuvant was used especially when combined with pFliC-DNA. Since the N3 adjuvant has cationic and 

surfactant properties one proposed mechanism would be that there is an increased mucosa-penetrating 

property when HIV-antigen and adjuvant is given in mixture. This would increase the amount of 

antigen reaching below the mucosal surface, thereby making the antigen available at higher dose for 

antigen-presenting cells in the mucosa. Equally important, the capacity of the serum immunoglobulins to 

neutralize HIV-1 virus in vitro, both cell-line adapted (HIV-1IIIB), and primary patient isolate (HIV-1 

6794B) remained clearly detectable at 36 weeks in serum from groups 2 and 4 (Figure 5e).  

Although we observe enhanced titers of anti-viral spike antigen antibodies in the serum of animals 

immunized with antigen and pFliC(-gly) adjuvant the antibodies in mucosal secretions may be more 

likely to potentially neutralize viral particles. Studies of vaginal IgA anti-gp160 responses had assay 

backgrounds that precluded the determination of antigen-specific titers (data not shown). As a surrogate 

location representative of antigen-specific IgA responses we studied the titers of IgA anti-gp160 

harvested from nasal washes. We observed trends similar to those found in the serum. Addition of N3 

to pgp160 vaccinations followed by L3B protein boostings lead to clear IgA anti-gp160 titers which 

could be further enhanced by the addition of pFliC(-gly) (Figure 6a). The ability of nasal IgA anti-gp160 

to cross-react against homologous (clade B) as well as heterologus clades (A and C) of HIV-1 gp160 

was also tested. We observed nasal wash reactivity to clades A and B (Figure 6b). As with serum IgG, 

N3 could promote detectable anti-gp160 antibodies while pFliC(-gly) could enhance responses even 

further (Figure 6b). These results indicate that higher titers of antigen-specific clade B160 IgA also 

correlate with higher titers of antibody able to cross react with HIV-1 clade A gp160. Increases in 

cross-clade reactivity may likely be a behavior central to the development of an effective vaccine. 

Figure 5. Vaccination schedule, serum antibody responses to gp160, and virus neutralization 

titers. (a) Immunization and sample isolation timeline. Priming (ImmunogenP, plasmids) and 

boostings (ImmunogenB, rec proteins) are indicated in days while time after the final boost 

are indicated in weeks. Immunization details are listed in Table 2; (b) Serum IgG titer against 

rgp160 at 4 weeks post immunization in all seven study groups; (c) Serum titer anti-rgp160 

IgG1 isotype kinetics in the four first study groups in Table 2; (d) Serum end-point titer 

anti-rgp160 IgG2a isotype kinetics in the four first study groups. The concentration of 

rgp160-specific Abs are expressed as the end-point titers giving an OD equal to, or higher 

than, the mean + 3 SDs (the determined cutoff value for the assay) of the values of serum 

samples from unimmunized mice. Absorbance values equal to or above the cutoff value 

were considered positive; (e) Serum neutralization of HIV shown as IC50 in serum 

samples of the four first study groups in Table 2. The TCID50 (the reciprocal of the virus 

dilution where 50% of the cultures were infected) of IIIB (LAI) or 6794 was incubated 

with sample mouse serum (dilutions: 20, 60, 180, 540, 1 620). 5 × 10
4
 cells well were then 

added, incubated, washed, and incubated for 7 days. Culture supernatants were tested for 

virus production by HIV-1 p24 capture ELISA. The lowest serum concentration giving a 
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50% reduction (IC50) of ELISA absorbance value compared with the mean of the negative 

controls are presented [19]. Statistical analyses were conducted using a two-tailed unpaired 

Student t test. * Differences of the responses between compared groups defined as p ≤ 0.05 

were considered significant. n.s. = non-significant. Comparisons between groups with the 

HIV-1 antigens were performed by using the non-parametric Mann-Whitney U test with 

Bonferroni correction, p < 0.05 was considered significant.  
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Figure 6. Mucosal antibody responses to gp160. (a) Nasal IgA anti-rgp160; (b) Nasal IgA 

anti-gp160 cross-reactivity against clade A, B, and C envelope antigens. Priming 

(ImmunogenP, plasmids) and boosting (ImmunogenB, rec proteins) groups are shown in 

the key. Immunization details are listed in Table 2. ELISA was performed using individual 

serum from the indicated immunization groups. Absorbance values equal to or above the 

cutoff value were considered positive. Statistical analyses were conducted using a two-tailed 

unpaired Student t test. * Differences of the responses between compared groups defined as 

p ≤ 0.05 were considered significant. 

 

To determine the breadth of antibody responses against hypervariable regions of gp160 within 

antigen-specific IgG we performed B cell epitope mapping of group-pooled serum against individual 

20-mers of gp160 from AA249–499 containing the V3 variable loop region. We observed clear populations 

of IgG anti-gp160 peptide immune responses in the sera of mice immunized with pgp160 with N3 

followed by boosting with rgp160 protein with L3B (Figure 7a). However, the addition of pFliC(-gly) 

to immunizations expanded the number of detectable populations by five (Figure 7a). Analysis of 

amino acid identities and similarities between FliC and clade B LAI gp160 within the region encoded 

by the peptides were performed using NCBI BLASTP analysis (v2.2.26+) with default settings. Two 

regions were identified containing identity and similarity. Of these two regions only one (containing 
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36% identities and 55% similarity) overlapped with a region of increased reactivity (peptides AA 439 

and 444) and was excluded. There were no regions of alignment identified within the 5 annotated 

populations that exhibited equal or greater identity and similarity than the 22AA region.  

Figure 7. B cell epitope mapping to C2-C5 region of gp160 after immunization with gp160 

with and without adjuvant. ELISA was performed using group-pooled serum (equal 

volumes) from immunization group 2 (n = 35) or 4 (n = 35) against individual peptides. 

Priming (ImmunogenP, plasmids) and boosting (ImmunogenB, rec proteins) groups are shown 

in the key. Immunization details are listed in Table 2. The concentration of gp160-peptide 

specific Abs are expressed as the end-point titers giving an OD equal to, or higher than, the 

mean + 3 SDs (the determined cutoff value for the assay) of the values of serum samples 

from unimmunized mice. Absorbance values equal to or above the cutoff value were 

considered positive. Statistical analyses were conducted using a two-tailed unpaired 

Student t test. * Differences of the responses between compared groups defined as p ≤ 0.05 

were considered significant.  

 

These use of pFliC(-gly) appears to promote a broadening of B cell epitope reactivity to rgp160 

and/or presentation of additional ―masked‖ epitopes. Similar responses have been seen in response to a 

TLR-adjuvanted malaria vaccine using advanced techniques [26]. However, how this increased reactivity 

occurs is not known. It may be that the higher titers of anti-gp160 elicited by use of pFliC(-gly) revealed 

reactivity normally below threshold when samples from un-adjuvanted groups were studied. Additionally, 

it may be that pFliC(-gly) is able to promote expansion of B cell populations normally under 

stimulated or neglected due to competition. However, it may also be possible that there is cross-epitope 

reactivity between rgp160 and FliC, and new regions of anti-gp160 reactivity are actually due to anti-FliC 

antibodies. Although this cannot be formally excluded here it may be unlikely due to the low nature of 

homology between antigen (gp160) and adjuvant (FliC). Nevertheless, these results suggest that 

detailed study of antibody responses in mice receiving pFliC(-gly) are warranted. 

3.6. gp160 and p24gag DNA and Protein Vaccinations; Cellular Responses 

To study T cell immune responses to DNA-prime/protein-boost i.na. immunizations we chose to 

assay standard cytokines associated with Th1-like (IFN) or Th2-like (IL-5) populations. Responses to 
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gp160 were assayed following individual splenocytes harvesting at 4, 8, 12, 24, and 36 weeks after 

final boost and restimulation with rgp160. Observed response trends were similar to those seen when 

studying antibody responses. Addition of N3 to pgp160 vaccinations followed by L3B protein 

boostings lead to clear and significant IFN, IL-5, and proliferative responses over mice immunized 

without adjuvant (Figure 8a–c). The IFN and proliferative responses could be further enhanced by the 

addition of pFliC(-gly) but not IL-5 (Figure 8a–c) demonstrating the ability of pFliC(-gly) to act as an 

adjuvant but with a propensity to strengthen Th1-like responses. 

To study the T cell immune responses to p24gag individual splenocytes were harvested at 4 weeks after 

final boost and restimulated with rp24gag. Interestingly, the addition of N3 to p24gag vaccinations 

followed by L3B protein boostings only lead to clear and significant increases in IL-5 and proliferative 

responses compared to mice immunized without adjuvant (Figure 9a–c). Increases in IFN production were 

not seen. IFN and proliferative responses could be significantly enhanced by the addition of pFliC(-gly) 

but the IL-5 responses gained by use of N3 were suppressed by the addition of pFliC(-gly) (Figure 9a–c). 

Interestingly the abilities of N3 and pFliC(-gly) to act as adjuvants did not completely overlap and, 

in one combination, even counteracted the other. In our immunizations the secreted antigen gp160 with 

N3 promoted a somewhat Th2-like response (including IFN) which was further enhanced by the 

addition of pFliC(-gly). Similar results were seen with the intracellular antigen p24gag where addition 

of pFliC(-gly) promoted IFN responses [27–31]. However, with p24gag the pFliC(-gly) addition 

actually suppressed IL-5 responses. 

Together these results suggest that N3 has the ability to promote Th2-like adjuvant effects (IL-5 and 

proliferation) to extracellular and intracellular antigens whereas the effects of pFliC(-gly), which were 

greatly dependent on the presence N3, promoted Th1-like adjuvant effects (IFN, proliferation) 

sometimes at the expense of Th2-like responses (IL-5). Why these effects were dependent on the 

―location‖ of the antigen is unknown. However, it does suggest that with complex antigen/adjuvant 

mixtures that we are unable to predict exactly how they will affect adaptive immune responses. 

3.7. Immune Activation Potential of Adjuvants 

To determine the types of inflammatory factors elicited intranasally by the adjuvants used we 

performed nasal mucosal washings at various time points after adjuvant delivery. We detected 

increases in the inflammatory cytokines IL-6, IFN, and IFN at 18 to 48 h post-nasal adjuvant 

administration compared to nasal saline exposure (Figure 10a–c). Significant increases in IL-6 and 

IFN were elicited by N3 use at 18 hours post exposure while significant increases in IL-6 was elicited 

using a combination of pFliC(-gly) and N3 only at later time points (Figure 10a). These increases in 

IL-6 were dependent on the use of N3 with pFliC(-gly) but were not due to N3 or pFliC(-gly) alone. 

3.8. Longevity of Immune Responses 

Currently, it is still likely that several alternative prime-boost combinations will need to be tested to 

identify the most promising vaccine/adjuvant and vaccine design regimes for HIV-1 vaccines [32–34]. 
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Figure 8. Kinetic analysis of T cell responses to immunizations with gp160 with and 

without adjuvant combinations. (a) Anti-mIFN ELISA was performed on cells restimulated 

with rgp160. Values shown were adjusted for baseline values seen using identical stimulations 

using splenocytes from naive mice. Priming (ImmunogenP, plasmids) and boosting 

(ImmunogenB, rec proteins) groups are shown in the key. Immunization details are listed 

in Table 2; (b) Anti-mIL-5 ELISA was performed on cells restimulated with rgp160. 

Values shown were adjusted for baseline values seen using identical stimulations using 

splenocytes from naïve mice; (c) Proliferative response to stimulation with rgp160 defined 

as stimulation index relative to identical stimulations using splenocytes from naïve mice. 

Statistical analyses were conducted using a two-tailed unpaired Student t test. * Differences 

of the responses between compared groups at week 4 after final boost defined as p ≤ 0.05 

were considered significant. n.s. = non-significant. Comparisons between groups with the 

HIV-1 antigens were performed by using the non-parametric Mann-Whitney U test with 

Bonferroni correction, p < 0.05 was considered significant. 
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Figure 9. Analysis of T cell responses to immunizations with p24gag with and without 

adjuvant combinations. (a) Anti-mIFN ELISA was performed on cells restimulated with 

p24gag. Values shown were adjusted for baseline values seen using identical stimulations 

using splenocytes from naïve mice. Priming (ImmunogenP, plasmids) and boosting 

(ImmunogenB, rec proteins) groups are shown in the key. Immunization details are listed 

in Table 2; (b) Anti-mIL-5 ELISA was performed on cells restimulated with p24gag. 

Values shown were adjusted for baseline values seen using identical stimulations using 

splenocytes from naïve mice; (c) Proliferative response to stimulation with p24gag defined 

as stimulation index relative to identical stimulations using splenocytes from naïve mice. 

Statistical analyses were conducted using a two-tailed unpaired Student t test. * Differences 

of the responses between compared groups at week 4 after final boost defined as p ≤ 0.05 

were considered significant. n.s. = non-significant. Comparisons between groups with the 

HIV-1 antigens were performed by using the non-parametric Mann-Whitney U test with 

Bonferroni correction, p < 0.05 was considered significant.  
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Figure 10. Cytokines produced after intranasal adminstration of adjuvant combinations.  

Kinetic analysis of (a) IL-6, (b) IFN, and IFN2 (c) at 18, 36, and 48 h by ELISA using 

nasal wash samples. Mock adjuvant shown as White bars, use of pFliC(-gly) as Striped 

Bars, and N3 as Grey bars (n = 5 mice/group). Data is expressed as the calculated  

mean ± SEM. Statistical analyses were conducted using a two-tailed Mann-Whitney test. 

** Differences relative compared groups defined as p ≤ 0.005 were considered significant. 

 

There are several important aspects concerning the flexibility associated with HIV-vaccine antigen 

development: first, the selection of immunogens and adjuvants. In this study, and in several others, 

DNA-plasmids should be selected that have long-lasting stability and allow persistence as stable 

antigen-expressing vectors. Second, production of DNA-plasmids, is today quite efficacious and can easily 

be performed at large-scale. Third, DNA-plasmids are attractive due to their great adaptability, and 

modifications in expression efficacy, gene exchange, or other desired modification is today easy to carry out. 

Recombinant HIV-proteins as vaccine antigens are instead more of a challenge, especially when it 

comes to production and expression of such delicate proteins like the HIV-1 outer envelope. If they need 

to structurally mimic the envelope spikes found at the surface of HIV-1 primary isolates they need to be 

produced and maintained as multimeric, glycosylated envelope proteins. This production is not a trivial 

matter, and search for the ideal HIV-1 envelope vaccine candidate is still an unsolved issue [32,33]. 

Finally, the stable storage of sensitive recombinant proteins antigens is likely more of a problem. Thus 

a potent and safe adjuvant, formulated with obtainable amounts of quality antigen, may be a critical 

way to use these immunogenic proteins as vaccine candidates. In this study, we chose the recombinant 

baculovirus expressed HIV-1 gp160 due to its modest immunogenicity, its fair degree of glycosylation 

and trimeric structure and the content of both gp41 and gp120 envelope proteins [16,18]. 

From an immunological perspective, immunizing with a DNA plasmid with its endogenous in vivo 

expression of the HIV-antigen and especially of a highly glycosylated, conformation-sensitive antigens 

as HIV-1 gp120 is an attractive technology. Much of the trouble of production, safe storage and 

efficient administration of a neutralization antibody-inducing multimeric protein may then be reduced 

or avoided [35].  

The durability of protective immune responses can often be enhanced by broadening antigen 

recognition ability through enhanced antigen delivery, enhanced antigen uptake, and/or prolonged 

antigen exposure [36,37]. Furthermore, by triggering several innate immune recognition pathways such 

as multiple Toll-like receptors (with DNA-plasmid CpG motifs, (TLR9), with FliC expression (TLR5), 

cytoplasmic DNA sensors [38,39] and increased induction of cell death using surfactant adjuvants in 
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conjunction with antigen presentation as with cationic lipids more potent immune enhancement may be 

obtained [40]. In this study, we endeavored to optimize the immunological outcome (strength and 

longevity) of these vaccine technologies by methodologically studying optimal route delivery for 

adjuvants with DNA-plasmid vaccination followed by the application of this knowledge to a heterologus 

prime-boost regime using HIV-1 antigens. Importantly, we show that in the HIV-1 study group (group 

No.4) receiving potentially the broadest HIV-1 antigen variants and the most complex adjuvant 

combination we obtained the most long-lasting humoral and cell mediated immune responses. 

3.9. Impact of Adjuvant on Local Innate Immunity 

Certain studies have described the induction of innate and adaptive immune reactivity when 

immunogens and adjuvant have been given to mice [41–43]. In the current studies we have performed 

analyses on how the cationic lipid-based N3 adjuvant, the DNA-plasmid-based FliC (-gly) adjuvant, 

and the combination of both together influence the local and systemic innate and adaptive immune 

responses. The data indicate that the adjuvants stimulate the production of pro-inflammatory IL-6 and 

interferon (IFN), two cytokines described promote innate immunity and B cell activation [44,45]. 

Each of the adjuvants are likely to contribute, in their own way, to immune activation, and lipid-based 

adjuvants (such as the N3) have been observed to induce cell death (as seen with N3 in vitro, data not 

shown) and local inflammation. This would provide danger signals to attract antigen-presenting cells, 

stimulate antigen uptake, and induce dendritic cell maturation. For instance, cell death and endogenous 

DNA release would be able to function as an endogenous adjuvant capable of supporting IL-6 release 

and a T-helper type 2 response [41,45,46]. Inflammatory cytokine patterns, accompanied higher 

antibody titers have been reported by Valesi et al., when using the MF59 lipid emulsion adjuvant and 

influenza vaccine given to mice [47]. Similar results in inflammatory cytokine production with the N3 

lipid adjuvant and HIV antigens were also observed in our work. 

DNA-plasmid vaccination used to express antigen and adjuvant proteins can trigger TLR systems and 

promote inflammatory cytokine production (such as IL-6) [48]. Intranasal recombinant FliC polypeptide 

has also been observed to induce inflammatory cytokines including IL-6 [49]. Interestingly, the 

induction of IL-6 secretion in mucosal stimulation has been reported to improve transepithelial 

transport over mucosal epithelial barriers [50]. This effect of IL-6 may explain the enhanced mucosal 

immune responses we observe using mucosally delivered pFliC(-gly). However, the ability of FliC to 

promote mucosal adaptive immunity is complex and appears to also involve the production of 

numerous other factors not studied here such as IL-17, IL-22, and IL-23 [51,52]. 

Our observations of mucosal, antigen-specific IgA elicited by intra-nasal immunization indicates 

presence of a Th2-type response with N3 use while IFN production detected in the nasal washes of 

pFliC(-gly) immunized animals suggest a Th1-type response. Our results also suggest that these 

responses need not be mutually exclusive. Adjuvant emulsions such as MF59 and similar products 

applied mucosally have been shown to act as Th2-type adjuvants, and addition of additional stimuli such 

as CpGs, and other TLR agonists have been observed to skew immune responses towards a Th1-type or 

a balanced Th1/Th2-type immune pattern [38,53]. Here, we show data that immune responses induced 

using a Th2-enhancing lipid adjuvant (N3) may be modified by the addition of a TLR-agonist and 

inflammasome trigger (pDNA, FliC), to also promote a Th1-type (IFN) response when administered nasally. 



Vaccince 2013, 1 439 

 

 

4. Conclusions 

Adjuvant choice during DNA vaccine development will depend on formulation relative to method 

of delivery, the recipient, the protective antigens used, as well as the desired induction of immunity at 

the portal of infection. As the detection of flagellin by innate immune receptors is evolutionarily 

conserved, it has the potential to be easily used in many species without the need to isolate and prepare 

species-specific adjuvants such as cytokines [27–31]. These unique properties as well as its ability to 

promote both humoral and cellular responses to co-delivered antigens by multiple routes without a 

need for manipulating the antigen indicate that it works as an easy and efficient adjuvant to improve 

non-living non-replicating DNA vaccines. 

Finally, in this work, all immunizations with HIV-antigens were delivered as heterologous prime 

boost immunizations. Antigens are presented both through endogenous expression and as recombinant 

soluble proteins to the immune system to provide the antigenic regions or epitopes with greater 

variation than in a homologous immunization. With this approach we demonstrate that cationic lipids 

formulated with plasmid FliC-DNA and plasmid HIV-DNA, followed by cationic lipids formulated 

with plasmid FliC-DNA and recombinant HIV-1 proteins (study group 4) elicited the longest-lived 

immunity and broadest antigen epitope recognition. 
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