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Malaria eradication and vector control in Africa

Africa carries a disproportionate share of the malaria burden. For example, more than 90% of

the 446,000 malaria-related deaths reported in 2015 occurred in sub-Saharan Africa [1].

Anopheles gambiae, A. coluzzii, A. arabiensis, and A. funestus are some of the most important

African vectors of malaria [2,3]. Other species, such as A. melas and A. merus are also efficient

vectors but have a limited geographical distribution [3]. Insecticide-based strategies, mainly

the distribution of insecticide-treated nets and indoor residual spraying, are efficient against a

wide range of mosquitoes and are the current cornerstones of malaria control programs. How-

ever, the growing number of reports of insecticide resistance is driving the development of

novel vector control strategies [4].

Wolbachia infection in Drosophila and protection against viruses

Wolbachia is a genus of vertically transmitted endosymbiotic alphaproteobacteria that infect

about 40% of arthropod species [5]. Wolbachia infection often reaches a high prevalence in

natural insect populations, often through the induction of cytoplasmic incompatibility (CI)

[6]. Briefly, CI is a mechanism by which the sperm of Wolbachia-infected males is unable to

form viable offspring when eggs of uninfected females are fertilized, whereas eggs of infected

females are viable. This mechanism allows the spread of Wolbachia through the population by

giving infected females a reproductive advantage.

Many Wolbachia strains are known to confer resistance against viral infections. For exam-

ple, the Wolbachia wMel strain protects Drosophila melanogaster against Drosophila C virus

(DCV) [7] and Flock House virus [8], suggesting that protection is efficient against a variety of

RNA viruses. Although the molecular basis of protection remains under debate, the Wolbachia
genome has been shown to be a key player. Protection by genetic variants of wMel D. melano-
gaster correlates with the phylogeny of the Wolbachia strains analyzed [9]. Furthermore, viral

protection was observed in D. simulans lines infected with Wolbachia strains phylogenetically

related to wMel but not with more divergent strains [10].

Wolbachia in mosquito vectors and its effects on disease

transmission

Wolbachia also protects mosquitoes from viral infections. Native wPip infections in Culex
quinquefasciastus increases host resistance to West Nile virus [11]. Similarly, native Wolbachia
limits dengue virus (DENV) infection in Aedes albopictus [12]. However, the effect of
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Wolbachia on viruses is strain and host specific. For example, native Wolbachia had no effect

on DENV infection in Aedes notoscriptus [13].

Transinfection of host with Wolbachia triggers stronger antiviral protection than native

Wolbachia strains [14]. The Drosophila wMel-Pop [15] and wMel [16] Wolbachia strains were

adapted to infect Aedes aegypti cell lines and were used to transinfect A. aegypti mosquitoes by

embryonic microinjection. For both strains, transinfected mosquitoes displayed strong vertical

transmission with CI and greatly reduced DENV transmission [16]. A. aegypti transinfected

with wMel were released in test sites in Australia, where they replaced natural mosquito popu-

lations and reached near fixation levels within a few months after their initial release [17]. Wol-
bachia prevalence has been stable for several years in these locations [17,18] and has slowly

spread throughout the area [19].

A systematic survey in Thailand detected native Wolbachia infections in 23 species of mos-

quitoes, including species from the genera Aedes, Culex, and Mansonia [20]. None of the 19

species of Anopheles screened were found to harbor Wolbachia. The lack of Wolbachia infec-

tions in anophelines was later confirmed in screenings using European, African, and American

specimens [21,22].

Thoracic microinjections of Wolbachia in A. gambiae resulted in ubiquitous infections in

somatic tissues. However, germline cells were not infected and this precluded vertical trans-

mission [23]. A stable Anopheles stephensi line infected with A. albopictus wAlbB strain was

established by embryonic microinjection of A. albopictus ooplasm [24]. Wolbachia-infected A.

stephensi were partially protected against Plasmodium falciparum infections, resulting in a

modest decrease in oocyst numbers and a strong reduction in salivary gland sporozoites. Simi-

lar protection against Plasmodium was also observed when wMel-infected A. aegypti were

challenged with P. gallinaceum [15] or when A. gambiae carrying somatic Wolbachia infec-

tions were infected with P. falciparum [23]. Other reports have suggested that some combina-

tions of Wolbachia, host, and environmental factors could actually enhance Plasmodium
infection in mosquitoes [25,26].

Identification of Wolbachia in natural African anopheline mosquito

populations

Recently, traces of Wolbachia genomic DNA were identified in a microbiome survey of the

reproductive organs of A. gambiae and A. coluzzii in malaria-endemic areas of Burkina Faso in

West Africa (Fig 1A) [27,28]. Wolbachia-specific PCR amplification and sequencing was used

to confirm the presence of Wolbachia in these mosquito populations [27,29]. In an indepen-

dent study, native Wolbachia infections were identified in the same mosquito species collected

in two villages from Mali (Fig 1A) [30]. Wolbachia infection was observed in two collections

made five years apart, indicating that the symbiosis has remained stable in the population.

More recently, native Wolbachia infections were identified in a broad range of African anoph-

elines from the Democratic Republic of Congo, Guinea, Uganda, and Madagascar [31], as well

as Gabon [32]. Phylogenetic analysis suggested that several independent horizontal transfers of

Wolbachia infection have occurred, but whole-genome sequencing will be necessary for an in-

depth analysis of the evolutionary relationship between these strains.

A significant reduction in Plasmodium prevalence was observed in mosquitoes carrying

native Wolbachia infection in Mali. This effect was dose dependent, with a nonlinear negative

correlation (Fig 1B) [29,30]. Because confounding environmental or ecological variables could

influence the analysis of field-collected mosquitoes, a colony of wAnga-Mali-infected A. coluz-
zii was established. Infection of colony-adapted mosquitoes with P. falciparum NF54

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007333 November 15, 2018 2 / 6

https://doi.org/10.1371/journal.ppat.1007333


confirmed that Wolbachia negatively affects sporozoite infection with a similar negative corre-

lation (Fig 1B) [30].

Challenges for the development of Wolbachia as a tool for malaria

control

The identification of native Wolbachia infections in A. gambiae that reduce malaria transmis-

sion is a remarkable finding. The fact that several species of Anopheles, including all the major

malaria vectors in Africa, have been shown to harbor a variety of Wolbachia strains opens the

possibility that one of these strains may confer CI and disrupt disease transmission. However,

several challenges remain before Wolbachia can be proposed as a tool for malaria control.

Implementation of Wolbachia-based strategies would rely on CI for Wolbachia to spread rap-

idly in natural populations following mosquito releases. At present, it is not clear whether

native Wolbachia can induce CI in Anopheles. Induction of CI was not observed in caged

experiments using wAnga-BF-infected Anopheles. However, CI has been shown to be influ-

enced by environmental factors [33], and optimal conditions might be different from the ones

typically used for rearing laboratory mosquitoes.

Wolbachia levels have also been shown to influence CI [34,35], and the lack of CI might be

due to the low levels of native Wolbachia infection in Anopheles (wAnga-Mali genome copies

are usually less than 0.1% of the mosquito genome). Wolbachia levels are also positively corre-

lated with the intensity of protection against viruses. Similarly, higher Wolbachia levels may

induce CI in anophelines and confer stronger protection against Plasmodium, which will be

essential for Wolbachia to be developed as a tool against malaria.

Fig 1. Effect of mosquito infection with native African Wolbachia strains on P. falciparum transmission. (A) Native Wolbachia infections were identified in

independent field collections of A. gambiae sensu lato in several countries in sub-Saharan Africa. Approximate locations of field collections, when made available,

are indicated as yellow circles. (B) The presence of systemic Wolbachia infection reduces P. falciparum sporozoite infection of mosquito salivary glands. The effect

of native Wolbachia in Anopheles mosquitoes collected in Mali is dose dependent and follows a nonlinear negative correlation. These observations suggest that

there is a threshold level of Wolbachia infection in mosquitoes above which malaria transmission would no longer be effective.

https://doi.org/10.1371/journal.ppat.1007333.g001
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The mechanisms limiting Wolbachia levels are not well understood. One hypothesis is that

Wolbachia might have adapted to control its replication as a strategy to hide from host immu-

nity. Alternatively, high levels of Wolbachia could reduce mosquito fitness and be negatively

selected. Another possibility is that Anopheles might not be a good host for Wolbachia. For

example, the mosquito microbiota limits Wolbachia infections in A. gambiae. More specifi-

cally, the presence of bacteria from the genus Asaia in germline cells prevents Wolbachia inva-

sion of A. gambiae ovaries [36]. Microbiome analyses of mosquitoes collected from

Wolbachia-endemic areas found that the prevalence of Asaia was lower than in reports from

other locations in Africa [28] or failed to find evidence of co-infections between Wolbachia
and Asaia [31]. However, the level of P. falciparum infection was not significantly different

between females with or without Asaia in A. gambiae s.l. females collected in Guinea [31]. It is

also possible that Anopheles metabolism or immunity might limit Wolbachia levels. In Aedes,
Wolbachia manipulates host lipid metabolism, and cholesterol sequestration seems to play a

role in the protection against viruses [37,38]. The current understanding of Anopheles’ lipid

metabolism is incipient, but poor nutritional stores could explain the inability of anophelines

to sustain high Wolbachia densities.

Infection of embryo-derived somatic cell lines would be an invaluable in vitro model to

identify the components limiting wAnga levels. Transcriptomics and metabolomics of infected

cells would also allow for a detailed analysis of the effect of Wolbachia on host homeostasis.

Once potential target genes are identified, it would be possible to carry out functional screens

to identify genes or nutrients limiting Wolbachia infection. However, it will still be necessary

to evaluate how this information can be translated to a whole mosquito and eventually to the

field. An alternative approach would be the development of directed evolution protocols that

would allow progressive adaptation of Wolbachia or hosts to sustain higher bacteria levels.

Future perspective

Laboratory transinfection of Wolbachia to African vectors of malaria has been limited to

somatic tissues, and Wolbachia failed to be vertically transmitted. We now know that Wolba-
chia strains in Africa have been able to overcome this barrier and establish infections in anoph-

elines. The presence of this bacteria negatively correlates with Plasmodium sporozoite

prevalence. This is an exciting new development in the field, but several challenges remain. It

is not clear whether those strains can induce CI, which is needed for implementation of Wol-
bachia as a control strategy. Further studies should address this question and identify the fac-

tors limiting Wolbachia replication in anophelines. A more detailed understanding of the

molecular components mediating Wolbachia establishment and host adaptation might make it

possible to adapt CI-carrying Wolbachia strains to infect anophelines or to increase the levels

of native Wolbachia infections and disrupt malaria transmission.
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