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omics data analysis
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Abstract

Precision medicine aims to empower clinicians to predict the most appropriate course of action for patients with
complex diseases like cancer, diabetes, cardiomyopathy, and COVID-19. With a progressive interpretation of the clinical,
molecular, and genomic factors at play in diseases, more effective and personalized medical treatments are anticipated
for many disorders. Understanding patient’s metabolomics and genetic make-up in conjunction with clinical data will
significantly lead to determining predisposition, diagnostic, prognostic, and predictive biomarkers and paths ultimately
providing optimal and personalized care for diverse, and targeted chronic and acute diseases. In clinical settings, we
need to timely model clinical and multi-omics data to find statistical patterns across millions of features to identify
underlying biologic pathways, modifiable risk factors, and actionable information that support early detection and
prevention of complex disorders, and development of new therapies for better patient care. It is important to calculate
quantitative phenotype measurements, evaluate variants in unique genes and interpret using ACMG guidelines, find
frequency of pathogenic and likely pathogenic variants without disease indicators, and observe autosomal recessive
carriers with a phenotype manifestation in metabolome. Next, ensuring security to reconcile noise, we need to build
and train machine-learning prognostic models to meaningfully process multisource heterogeneous data to identify
high-risk rare variants and make medically relevant predictions. The goal, today, is to facilitate implementation of
mainstream precision medicine to improve the traditional symptom-driven practice of medicine, and allow earlier
interventions using predictive diagnostics and tailoring better-personalized treatments. We strongly recommend
automated implementation of cutting-edge technologies, utilizing machine learning (ML) and artificial intelligence (AI)
approaches for the multimodal data aggregation, multifactor examination, development of knowledgebase of clinical
predictors for decision support, and best strategies for dealing with relevant ethical issues.
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Background
Since the beginning of scientific discoveries, it has been
central to understand the cause of disease and senes-
cence [1]. Pain is one of the key triggers for patients to

seek diagnosis and treatment. However, when dealing
with some of the life-threatening diseases, patients may
not feel pain. To identify and help patients with known
diseases and symptoms, and those heading toward late
stages of novel infectious (e.g., COVID-19), chronic (e.g.,
diabetes, heart disease), acute (e.g., flu, stroke, heart at-
tack), and complex (e.g., cancer) diseases, it is essential
to provide timely personalized treatment [2–10]. Our
evolving understanding of the complex nature has led us
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to realize that to effectively diagnose and treat patients
with these conditions, it is essential to provide personal-
ized utilize a precision medicine approach [10]. Progress
in the molecular technology developments have led to
vast amounts of human health-related data that are ex-
pected to greatly expand our understanding of human
biology and health, and to drive personalized medicine.
We hypothesize that on-demand access and analysis of
clinical, genetic, and metabolic data will align biomarker
identification with treatment windows necessary for
real-time personalized care and enhance prediction of
potential disease risks [11]. Despite current advance-
ments, there is still no platform available that can
efficiently integrate clinical, multi-omics, and epidemio-
logical data acquisition, and enable effective manage-
ment of data analytics with a user-friendly physician-
oriented clinical interface [12, 13]. Platforms like The
Cancer Genome Atlas (TCGA) [14] provide a great re-
source for scientific data (i.e., genomics or epigenetics
sequence data) but offer limited capacity for clinical in-
formation, because they are not directly integrated to
clinical health systems like Epic, NextGen, and Cerner
etc. The inability of disparate platforms to effectively in-
tegrate is largely due to the high volume and
heterogenous nature of the different types of data they

contain, which is acquired from variable sources, each
with unique data structures. It is essential to address a
major gap in developing precision diagnostics and thera-
peutic agents in healthcare by establishing a digital solu-
tion for practicing precision medicine. Intelligent big
data platforms are necessary to improve the quality of
care-delivery process by increasing permeation of elec-
tronic health record (EHR) systems into clinical environ-
ments, focusing on predictive diagnosis, enabling real-
time telemedicine, and precise treatment resulting in
lower spending on life-threatening complex and chronic
diseases [15].

Practicing precision medicine and AI
Precision medicine has the potential to improve the
traditional symptom-driven practice of medicine, and
allow earlier interventions using predictive diagnostics
and tailoring better-personalized treatments [2–9, 16,
17]. However, practicing precision medicine is not
straightforward, as significant efforts are required from
the experts in multidisciplinary sciences. This necessi-
tates development of progressive healthcare environment
that will enable clinicians and researchers to gain a
complete picture of the patient to deepen their under-
standing, using additional details from healthcare and

Fig. 1 Design modeling of heterogenous patient-specific healthcare, genomics, metabolomics, phenotypic, and lifestyle data, and publicly
available annotation data including genes, variants, diseases, drugs, and biomarkers. Analysis using AI and ML approaches (Support Vector
Machine, Deep Learning, Logistic Regression, Discrimination Analysis, Decision tree, Random Forest, Linear Regression, Naïve Bayes, K-Nearest
Neighbor, Hidden Markov Model, and Genetic Algorithm), multifactor examination, knowledgebase and decision support system for data
classification, cluster, and regression analysis. Furthermore, resource allocation for data storage and computational analysis
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multi-omics data. We hypothesize that clinical informa-
tion will enrich genomics and metabolomics data such
that combined predictors will perform better than the
individual classifiers only based on either genomics,
metabolomics, or clinical data. Practically supporting the
hypothesis, we need to design research methodology,
which includes modeling of patient-specific (healthcare,
genomics, metabolomics, proteomics, and lifestyle) and
publicly available annotation (genes, variants, diseases,
drugs, biomarkers) data storage, management, integra-
tion, knowledgebase creation, and analysis using differ-
ent artificial intelligence (AI) and machine learning (ML)
approaches (Fig. 1) [18, 19].
Precision medicine is moving forward but with many

challenges that require addition of useful analytic tools,
technologies, databases, and approaches to efficiently
manage massive heterogeneous data, augment network-
ing and interoperability of clinical, laboratory, and public
health systems. A major barrier to implementation of
precision medicine is the data analysis requirement.
Most of the precision medicine efforts today are manual
or semi-automated, time-consuming, and unable to fa-
cilitate on-demand analysis of diverse human datasets to
impact critical treatment windows and predict potential
disease risks [19–27]. The traditional way of computa-
tional analysis is based on running a series of command-

line applications, which require good programming skills
and ability to work in the UNIX environment. It hinders
linking information generated at different stages of treat-
ments and experiments conducted at levels of sampling,
sequencing, and analysis. While precision medicine ana-
lyses require complex coordinated efforts between dis-
parate groups with non-aligned data formats and
massive amounts of computing time that is essential in
many cases to positively impact treatment outcomes.
Furthermore, it is difficult but mandatory to address eth-
ical and social issues related to healthcare data collec-
tion, privacy, and protection with effective balance [18,
28]. Further, current potential pitfalls are given in at-
tached Table 1.
The efficient use of information technology, data sci-

ence, and AI has the potential to enhance public health
surveillance and tracking, with systematic collection,
management, analysis, and interpretation of data within
accelerated timelines [6, 19, 29–31]. We need detailed
bioinformatics and AI platforms for supporting real-time
processes involved in multisource heterogeneous raw
data generation, mathematical modeling, computational
analysis, data fusion, integration, management, and
visualization (Fig. 1). Platforms need to be user-friendly,
multi-functional, and multi-roles-based to address com-
plex and big data-oriented problems in clinical settings.

Table 1 Current potential pitfalls

Number Potential pitfalls

1 Uneven distribution of informatics resources.

2 Integration of biomedical data located among heterogeneous sources.

3 Hazards in dehumanization of healthcare data.

4 Handling of extensively available irrelevant, error prone, and missing data.

5 Intelligent and user-friendly interface development.

6 Applying regulations and policies for data collection, usage and sharing.

7 Harmonizing big data with the definitions of clinical phenotypes and diagnosis.

8 Inflexible EHR database schemas not geared for precision medicine.

9 Lack of data availability on social determinants of health.

10 Unstandardized genomics tools and modifications in their versions and outcome format.

11 Overloaded Data generated during unnecessary follow-up diagnoses and treatments.

12 Augmented computational complexity with increasing number of attributes.

13 Slow SQL based high volume data processing speed.

14 Determining optimal parameters and understanding structures of AI and ML algorithms.

15 Handling continuous explanatory variables with more than two levels and understanding odds and probabilities in AI and ML algorithms.

16 Possibility of too many overfitting attributes in AI and ML algorithms.

17 Handling redundant attributes, distribution of statistically independent attributes, and management of class frequencies affecting accuracy.

18 Reduced evidence and reproducibility.

19 Correct predictor variables selection, and evidence-based observational data analysis and screening.

20 Gaining confidence of clinicians at AI produced results.

21 Ethical and social issues related to healthcare data collection, privacy and protection.
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It will support categorizing interaction patterns among
variables, learning from experiences, and strategizing
and predicting better orientations. Multiple AI and ML
algorithms (e.g., Support Vector Machine, Deep Learn-
ing, Logistic Regression, Discrimination Analysis, Deci-
sion tree, Random Forest, Linear Regression, Naïve
Bayes, K-Nearest Neighbor, Hidden Markov Model, and
Genetic Algorithm, etc.) are available for multifactor
examination, scientific knowledge extraction, and deci-
sion support system (Fig. 1) [32–36]. However, deter-
mining which AI and ML approaches to use for which
task is a challenge in itself [37]. We suggest classifying
tasks based on the available predictor variables, as a key
to correctly address this problem. Best fitting use of ML
and AI algorithms have the potential to predict the ex-
istence of life-threatening diseases risk susceptibility,
starting from the most common to rare among the
population data [19].
AI has the ability to improve identification of relevant

variables for patient data stratification with timely detec-
tion of statistical patterns across millions of features to
identify conditions that are likely to manifest later and
discover modifiable risk factors that support the best
utilization of known therapies [38]. Impactful and auto-
mated implementation of AI and ML can elevate investi-
gating correlation and overlapping of reported diagnoses
of a patient in clinical data, and assess genotype and
phenotype associations among various diseases to find
potential indistinct results for patient care from highly
expressed genes and disease-causing variants [9, 39]. Un-
derstanding how genetic variations contribute to health
is one important aspect of precision medicine, where
additional approaches involve measuring levels of pro-
teins and metabolic products. By harnessing the power
of metabolomics, we need to profile a patient’s metabo-
lome and correlate it with their body mass index (BMI).
Further, AI can assist in finding metabolite penetrance
using listed features and abnormalities, and analyzing
biochemical pathways in metabolites [40–42] with pat-
terns of multimodal distributions for candidate genes
[10, 43].

Conclusions
The scientific approach would be to perform analysis of
individual genomes giving rise to a new form of prevent-
ive and personalized medicine in healthcare. Availability
of gene-based designer drugs, precise targeting of mo-
lecular fingerprints for tumor, appropriate drug therapy,
predicting individual susceptibility to disease, diagnosis,
and treatment of mental illness are all a few of the many
transformations expected in the decade to come. Preci-
sion medicine will timely enable clinicians to integrate
healthcare data with targeted assays and tests to identify
and assess disease biomarkers and risks, determine

actionable genetic variants in patients, obtain the entire
picture of the metabolome, and map metabolites to dis-
ease pathways.
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