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The parsley extract (PLE) was prepared using absolute ethyl alcohol. The PLE and
synergistic iodide were firstly utilized as efficacious corrosion inhibitors to slow down
the corrosion rate of carbon steel-Q235 in 0.5 mol/L H2SO4 solution. The anti-corrosion
performance was researched by weight loss method, electrochemical tests, surface
analysis and quantum chemistry calculation. Results of electrochemical and weight
loss tests show that the synergetic PLE and I− exhibit the optimal corrosion inhibition
efficiency 99%. The combined inhibitor displays the favorable long-term corrosion
inhibition effect, and the inhibition efficiency can maintain more than 90% after 144 h
immersion. The introduction of I− makes carbon steel surface with higher negative charge
amount, which could be beneficial to the interaction between corrosion inhibitor and Fe
atoms. The adsorption behavior obeys the Langmuir isotherm adsorption, and involves
chemical and physical adsorption. On the basis of electrochemical consequences and
theoretical calculation, the adsorption process and anti-corrosion mechanisms are further
explored.

Keywords: green corrosion inhibitor, electrochemical impedance spectra, potentiodynamic polarization, weight
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1 INTRODUCTION

Corrosion is an inevitable natural issue for most metals according to the laws of thermodynamics,
namely conversion from pure metal to their more stable thermodynamic form. However, as for metals
used in equipment and buildings, corrosion will bring huge damage to the material service
performance. Considering the threat caused by corrosion with economic, material conservation
and safety impacts in various engineering applications, the public have developed several proper
corrosion prevention methods, including coating, corrosion inhibitor, sacrificial anode, corrosion-
resistance alloys, etc. (Nazeer and Madkour, 2018; Wan et al., 2021a; Kang et al., 2021; Salleh et al.,
2021; Xu et al., 2021; Cao et al., 2022). Generally, metals are defenceless to corrosion in the presence of
acid, which can attack and dissolve metal into ions. Acid solutions have been widely used in industrial
occasions, such as acid cleaning, pickling, acidizing, etc. Besides, some acidic contaminants including
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acetic acid, naphthenic acid, hydrogen sulfide, etc., can easily
corrode the metal-based products (Goyal et al., 2018a). One of
the practical ways to tackle corrosion for metal under acidic
condition is by using corrosion inhibitor due to its low-cost,
easy-fabrication and convenient-operation (Wan et al., 2021b;
Zeng et al., 2021).

Corrosion inhibitor (Finšgar and Jackson, 2014; Liu et al.,
2017; Liu et al., 2019; Obot et al., 2019) can be defined as a
substance, which can obviously reduce the corrosion rate of
metals with addition of small amount. However, most
traditional corrosion inhibitors contain some toxic chemicals,
which are harmful to human (cancer, hypertension, etc.) or
ecological health (eutrophication, algal bloom, etc.). With the
growing awareness of environmental protection, the search for
greener alternatives has attracted wild attentions in recent
decades. The green corrosion inhibitor (Verma et al., 2018)
mainly concerns about nontoxic, eco-friendly processes,
renewable source of materials, readily available and low cost.
Recently, large numbers of studies have been increasing about
utilizing plant extract-based green corrosion inhibitors. Tan et al.
(2021a) prepared an aqueous Brassica oleracea L. extract and
applied it into corrosion prevention of Q235 steel, the best
corrosion inhibition efficiency reached 93.8% in HCl and
92.3% in H2SO4 solutions respectively. Feng et al. (2021)
investigated the anticorrosion performance of Veratrum root
extract for copper in H2SO4 solution and the optimum
corrosion inhibition efficiency can reach 97% at 200 mg/L.
Tan et al. (2021b) extracted papaya leaves using ultra-water
and the maximum corrosion inhibition efficiency can achieve
92.5% for copper in 0.5 mol/L H2SO4 solution.

Parsley belongs to the edible vegetables with ever-increasing
usage all year around in the world. It can also act as a medicinal
plant with laxative properties and anti-urolithiatic effect
(Kreydiyyeh et al., 2001; Al-Yousofy et al., 2017). The parsley
extracts contain large amounts of flavonoid compounds with
electron-rich aromatic rings and heterogeneous oxygen atoms in
their structure, which is in favor of bonding with the empty
orbital of metal. Limited studies have reported about corrosion
protection performance of the parsley extract (PLE). For example,
Benarioua et al. (2019) indicated that the parsley extract was a
mixed type inhibitor, and the maximum corrosion inhibition
efficiency could reach 92.4% with a 5 g/L concentration in HCl
solution at 25°C. Boutoumit et al. (2017) found 1 g/L PLE
possessed corrosion inhibition efficiency with 89.5% for
carbon steel in HCl solution. Although the PLE was used as a
corrosion inhibitor in the past, but the corrosion protection
performance was not acceptable, and the relevant corrosion
inhibition mechanism is still unclear. The excessive addition
amount, unsatisfactory inhibition efficiency and unknown
extremely long-term effectiveness restrict the application of
PLE as a practical corrosion inhibitor.

In this work, the synergistic influence of PLE and iodide on the
corrosion protection of carbon steel-Q235 in H2SO4 solution was
firstly investigated. The inhibition efficiency and long-term
effectiveness of PLE were significantly enhanced by the addition
of small dose of iodide, which could dramatically lower the dosage
of PLE.Weight loss method, electrochemical tests (electrochemical
impedance (EIS), potentiodynamic polarization (PDP), Potential
of Zero Charge (PZC)), surface characterizations (Fourier Transfer
Infrared Spectroscopy (FTIR), Ultraviolet Spectrum (UV), X-ray
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Photoelectron Spectroscopy (XPS)) and quantum chemical
calculations were applied to investigate the structure and
composition of PLE, and corrosion inhibition behavior of the
new combined inhibitor. The adsorption isotherm and corrosion
inhibition mechanism were put forward.

2 EXPERIMENTS

2.1 Materials and Reagents
The concentrated sulfuric acid, absolute ethyl alcohol, potassium
iodide, and ethyl acetate were purchased by Sinopharm Chemical
Reagent Corporation. The electrolytic solution of 0.5 mol/L
H2SO4 was prepared by diluting analytical grade 98% sulfuric
acid with deionized water.

The carbon steel-Q235 electrode was sealed in the epoxy resin,
leaving a working area of 1 cm× 1 cmBefore each test, the working
electrodes were abraded by # 400, # 800 and # 1200 SiC sandpapers
in sequence. Then the well-polished electrodes are cleaned with
absolute ethyl alcohol and acetone for 5 min in turns. Finally, they
were dried with cool air and stored in the desiccator.

2.2 Parsley Extraction
The fresh parsley was cracked by a knife on the cutting board, and
wrapped into a size of filter paper with a diameter of 8 cm. Soxhlet
extractor was applied to obtain the PLE taken alcohol as
extraction solvent. The acquired solution after 8 h reflux was
concentrated, and dissolved in 100 ml deionized water and
100 ml ethyl acetate. Then the mixed solution was transferred
into the separating funnel. The aqueous phase was collected and
dried to obtain the target product PLE.

2.3 Characterizations
The chemical bond of PLE structure was analyzed by FTIR
(Spectrum 100, United States) and UV (UV2550, United States)
technologies. The composition and micro-morphology of
corrosion products on the carbon steel surface in the absence
and presence of the PLE inhibitor were characterized by ATR-
FTIR, XPS (Escalab250xi, United States of America), SEM (JSM-
6701F, Japan) and 3D (VHX-1000E, Keyence, Japan) microscope.

2.4 Weight Loss Methods
The carbon steel-Q235 specimens with dimensions of 1 cm ×
1 cm × 4 mm were used for weight loss experiments. Firstly, the
abraded carbon steel specimens were weighed, and then
transferred to the inhibitor-free and inhibitor-containing
0.5 mol/L sulfuric solution under different temperatures after
24 h immersion. Next, the samples were removed from the
solution, and the surface corrosion products were cleaned by
1 mol/L HCl solution containing 1 wt% naphthamine. Finally,
they were dried by cool nitrogen and re-weighted. To ensure the
accuracy of experiment, three parallel samples were used for every
test condition. The w0 and w are the weight loss of carbon steel
before and after 24 h immersion in the sulfuric solution with and
without the inhibitor. The corrosion rate (v) and inhibition
efficiency (ηw) are deduced by the following equation:

v � w0 − w

St
× 100% (1)

ηw � v0 − v

v0
× 100% (2)

where v0 and v represent the corresponding average corrosion
rate, and S is the whole area of carbon steel.

2.5 Electrochemical Measurements
The electrochemical tests were conducted with a three-electrode
system. The carbon steel-Q235 electrode was applied as a working
electrode, the counter electrode and reference electrode were Pt
conductance electrode and saturated calomel electrode respectively.
The EIS test was carried out as a sine wave disturbance of 10 mV
versus open circuit potential (OCP) with a wide frequency range
from 10,000 to 0.01 Hz. The PDP test was conducted with a
polarization scope of ±150 mV vs. OCP at a scanning rate of
0.5 mV/s. All the electrochemical tests were repeated at least
three times under the same conditions to ensure the reproducibility.

2.6 Quantum Chemical Calculations
The Gaussian 09 software was used to obtain the optimized
geometry structure of PLE based on B3LYP/6−311++g (d, p)
level of theory, and correlate the PLE structure with corrosion
inhibition efficiency and mechanism. Moreover, the molecular
characteristic parameters, including the frontier molecule orbitals
(FMD), the highest occupied molecular orbital energy (HOMO),
the lowest unoccupied molecular orbital energy (LUMO), energy
gap (ΔE), dipole moment (μ), electronegativity (Χ), hardness (δ),
and charge transfer number (ΔN), were acquired for the analysis
of corrosion inhibition performance.

3 RESULTS

3.1 Fourier Transfer Infrared Spectroscopy
and Ultraviolet Spectrum Analysis
The compositions of PLE were analyzed by the FTIR and UV-vis
spectra, as shown in Figures 1A,B. The obvious adsorption peak at
3,351 cm−1 is related to the stretching vibration of O-H bond. The
appearance of adsorption peaks at 2,942, 1,613, and 1,070 cm−1 can
be attributed to the stretching vibration of C-H, C�C and C-O
bonds, respectively. The peaks located at 1,387 and 628 cm−1 could
be assigned to the C-H vibration of methyl and on the aliphatic or
aromatic groups (Tan et al., 2021b). An obvious peak appears at
299 nm in the UV spectrum in Figure 1B, which corresponds to
n-π* transitions (Corrales Luna et al., 2019) of the flavonoid unit in
the PLE structure.

According to the previous reports (Brankovic et al., 2010;
Rezazad and Farokhi, 2014) in combination with the results of
FTIR and UV results, the main component for PLE can be
identified as the 5,7-dihydroxy-2-(4-hydroxyphenyl)-4-
benzopyranone (DHBP). Quantum chemical calculation was
carried out to research the relation between the structure of
DHBP and its corrosion inhibition performance. Figures 2A–D
shows the optimized geometry structure, electrostatic potential
distribution (ESP) shapes, the highest occupied molecular orbital
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energy (HOMO), and the lowest unoccupied molecular orbital
energy (LUMO) of DHBP. In the ESP shape, the red and green
parts represent nucleophilic and electrophilic activities of the
DHBPmolecule, respectively. The red region is mainly centred on
the electronegative oxygen atom, which is in favor of the
adsorption on the empty orbital of Fe atom. From Figures

2C,D, the HOMO is primarily distributed on the aromatic
ring and carbonyl group and hydroxyl group or oxygen atom
in the aromatic ring, while the LUMO is mainly located at surface
of O-heterocyclic ring and benzene ring. The corresponding
calculated molecular parameters are present in the Table 1.
The EHOMO and ELUMO values represent the ability of
electron-donating and electron-accepting. Generally, the lower
value of energy gap signifies easier adsorption on the metal
surface and higher protection effectiveness (Luo et al., 2021).
Owing to that dense electron-rich regions appear aroundO atoms
from the HOMO orbital of DHBP, it could be concluded that
DHBP can adsorb on the surface of carbon steel through

FIGURE 1 | FTIR (A) and UV spectrum (B) of PLE.

FIGURE 2 | The optimized geometry structure (A), ESP (B), HOMO (C), and LUMO (D) of DHBP.

TABLE 1 | Molecular properties of PLE extract calculated using DFT.

PLE EHOMO (eV) ELUMO (eV) ΔE (eV) μ (debye)

DHBP −6.228 −2.039 4.189 7.69
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FIGURE 3 | EIS plots of carbon steel-Q235 in 0.5 mol/l H2SO4 solution containing PLE (A1–A3), PLE + KI (B1–B3), corresponding equivalent electrical circuit (C),
polarization curves (D), and differential capacitance curves (E).

TABLE 2 | The corresponding EIS fitting results in Figure 3.

System Rs (Ω cm2) CPEct-T
(Sn Ω−1 cm−2)

CPEct−n Rct (Ω cm2) η (%)

0.5 M H2SO4 2.16 0.00034 0.88 11 —

50 mg/L PLE 2.31 0.00095 0.87 7 —

100 mg/L PLE 2.62 0.00063 0.86 11 —

150 mg/L PLE 2.55 0.00046 0.90 13 15
200 mg/L PLE 2.68 0.00040 0.86 19 42
50 mg/L PLE + KI 4.05 9.32 × 10–5 0.85 194 94
100 mg/L PLE + KI 2.37 7.68 × 10–5 0.85 262 96
150 mg/L PLE + KI 2.21 6.45 × 10–5 0.86 271 96
200 mg/L PLE + KI 1.86 5.72 × 10–5 0.87 320 97
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formation of covalent bonds between lone pairs from oxygen
atoms and unoccupied orbitals from Fe atoms. Moreover, the
dipole moment (μ) value is an indicator to evaluate the
intermolecular interactions and the forces of dipole-dipole.
Some reports have pointed out that a lower μ value means
stronger reaction activity and is beneficial to adsorption on the
surface of carbon steel (Musa et al., 2012; Majd et al., 2019).

3.2 Electrochemical Analysis
The corrosion behaviour of carbon steel-Q235 in 0.5 mol/L H2SO4

solution was investigated by EIS, PDP and differential capacitance
curves methods under different concentrations of PLE and PLE +
KI. The EIS plots, corresponding equivalent electrical circuit,
polarization curves and differential capacitance curves are
shown in Figure 3. From Figures 3A1–A3, the diameter of
capacitive reactance in the EIS plots only increases slightly with
an increasing concentration of PLE. After the introduction of KI,
the impedance value at 0.01 Hz significantly augments by one or
two orders of magnitude. All EIS diagrams only have a capacitive
reactance arc, which can correspond to charge transfer resistance
(Rct) and double electrical layer capacitance (CPEdl). The
corresponding fitted parameters are present in Table 2. The
inhibition efficiency (η) of PLE and PLE + KI could be defined as:

η � Rct − R0
ct

Rct
× 100% (3)

where Rct and R0
ct represents the charge transfer resistance with

and without corrosion inhibitor. In individual presence of PLE,
inhibition efficiency only reaches 42% at 200 mg/L concentration,
while under the synergistic effect of PLE and KI, the inhibition
efficiency markedly increases to 97%, suggesting that iodide can
accelerate the formation of protective film of PLE on the carbon
steel surface.

The results of PDP tests were shown in Figure 3D. Obviously,
the corrosion potential shifts slightly after addition of PLE + KI,
exhibiting the property of mixed-type inhibitor. Anodic and
cathodic processes are both inhibited in the presence of PLE +
KI, according to the significant decrease of both anodic and cathodic
corrosion current density. Based on the Tafel extrapolation method,
electrochemical parameters of PDP curves are summarized in
Table 3. The corresponding inhibition efficiency (ηp) of the
inhibitors could be interpreted into:

ηp � i0corr − icorr
i0corr

× 100% (4)

where i0corr and icorr represent the corrosion current density in the
absence and presence of the inhibitor. From Table 3, icorr

decreases from 1.6 × 10−3 A/cm2 to 5.59 × 10−5 A/cm2 after
adding 200 mg/L PLE + KI in sulfuric solution. The
corresponding ηp value reaches 99.7%, suggesting the
outstanding inhibition performance of PLE + KI.

The electrochemical impedance tests at various bias voltages
(−300–300 mV) in the presence and absence of PLE and PLE + KI
were carried out to obtain differential capacitance curves and
PZC. It is seen from Figure 3E that in the absence and presence of
PLE and PLE + KI, the PZC values are −0.4831, −0.4036, and
−0.4457 V, while the OCP values show −0.5019, −0.4682, and
−0.4537 V, respectively. The Antropov’s rational corrosion
potential (Ψ) is deduced by the difference value between the
OCP and PZC (Chidiebere et al., 2014). After the introduction of
PLE or PLE + KI, the carbon steel surface carries the positive
charge in comparison with the negative charge in blank solution.
And the addition of I− results in a lower Ψ value and the higher
negative charge amount, suggesting the more favorable
adsorption for the protonated PLE inhibitor on the carbon
steel surface.

The PDP and weight loss methods are adopted to research
corrosion behaviors of carbon steel in the absence and presence of
200 mg/L PLE +60 mg/L KI under different temperature, as
shown in Figure 4. From Figures 4A–D, after the
introduction of PLE and KI, the corrosion current density
significantly decreases. With temperature rising, corrosion
potential subsequently shifts to the negative direction, and
corrosion current density slightly augments. Moreover, the
amplitude of the potential movement is less than 85 mV
(Lima et al., 2020), implying that it belongs to the mixed-type
inhibitor (Hsissou et al., 2020). Figure 4E presents the weight loss
results after 24 h immersion. The weight loss decreases generally
with the rising temperature. Specially, when temperature
increases from 35 to 40°C, the weight loss dramatically
augments in blank sulfuric solution, mainly attributing to
magnification of anodic and cathodic reaction rate constant.
Figure 4F summarizes the consequences of inhibition
efficiency by PDP and weight loss methods. The detailed
weight loss results are presented in Table 4. The obtained
inhibition efficiency values fluctuate around 90%, suggesting
excellent corrosion protection performance. The inhibition
efficiency results by PDP method are a little more than those
by weight loss method. Their differences are ascribed to that the
former is instantaneous, while the latter is average.

The compositions and micro-morphologies of corrosion
products on the carbon steel surface are analyzed by the ATR-
FTIR spectra, UV spectra and SEM microscope after 24 h
immersion in the presence of PLE and KI. From Figure 5A, it

TABLE 3 | The corresponding PDP fitting results in Figure 3.

System Ba (mV/dec) Bc (mV/dec) Io (A/cm2) Eo (Volts) ηp (%)

0.5 M H2SO4 94 168 0.0016 −0.48 —

50 mg/L PLE + KI 82 212 0.00055 −0.43 96.5
100 mg/L PLE + KI 53 121 7.17 × 10–5 −0.45 99.6
150 mg/L PLE + KI 60 115 8.85 × 10–5 −0.47 99.4
200 mg/L PLE + KI 64 132 5.59 × 10–5 −0.47 99.7
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is obvious that the adsorption peak at 1,090 cm−1 appears, which
is related to the stretching vibration of C-O in the PLE structure.
Figures 5B–D shows corresponding XPS spectra of Fe 2p, C 1s
and O 1s of surface corrosion products. From Fe 2p3/2 spectrum,
it shows three deconvoluted peaks at 709.9, 710.9 and 712.0 eV
(Zhang et al., 2021a), which could be ascribed to FeCO3, Fe2O3

and FeOOH, respectively. The C 1s spectrum can be
deconvoluted into two peaks at 288.2 and 284.5 eV, which
could be assigned to FeCO3 and C-C/C-H (Zhang et al.,
2021b), confirming the adsorption of PLE on the carbon steel
surface. Similarly, there are also two peaks appearing in the O 1s
spectrum, corresponding to FeO/Fe2O3 at 529.1 eV and C�O at
531.1 eV, respectively (Chidiebere et al., 2014). SEM analysis was
performed to further research the differences in micro-
morphologies with and without of PLE and I−, as shown in

Figures 5E,F. In the absence of inhibitors, corrosion products are
loose with lots of cracks, which presents laminar microstructure
with a roughness of 99.49 μm. After adding the inhibitor,
corrosion products become dense with tiny bumps. The
corrosion product film exhibits a more smooth topography
compared with that in the uninhibited solution, and
corresponding surface roughness decreases to 56.07 μm. The
SEM surface micromorphology further verifies that PLE and I−

retard the corrosion of carbon steel effectively.

3.3 Long-Term Corrosion Resistance
Generally, the persistence of inhibition efficiency for green
corrosion inhibitors is not desirable, mainly attributing to the
instability of corrosion inhibitors and their adsorption film
(Chaubey et al., 2021; Salleh et al., 2021). To evaluate the
long-term corrosion resistance of PLE and KI, EIS was carried
out to in situ monitor their inhibition efficiency on carbon steel
under different immersion time shown in Figure 6. In
uninhibited solution, all EIS plots show one capacitive
reactance, corresponding to charge transfer resistance and
double electrical layer capacitance. It can be fitted by the
equivalent circuit in Figure 7A. After adding the inhibitor, it
is obvious that two time constants appear in all the EIS diagrams.
The capacitive arcs at high and low frequency could be attributed
to the adsorption film and double electrical layer respectively,

FIGURE 4 | Potentiodynamic polarization curves for carbon steel-Q235 after 24 h immersion in 0.5 mol/L H2SO4 solution in the absence and presence of 200 mg/
L PLE +60 mg/L KI under different temperature: 25°C (A), 30°C (B), 35°C (C), 45°C (D); corresponding weight loss curves (E) and comparative curves of inhibition
efficiency (F) by weight loss method and PDP method.

TABLE 4 | The weight loss of carbon steel-Q235 in the uninhibited and inhibited
solutions under different temperature.

Temperature/(°C) Weight loss/(g)

Uninhibited solution Inhibited solution

25 0.1551 0.02630
30 0.1635 0.02925
35 0.1905 0.03570
40 0.3031 0.03955
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fitted by equivalent circuit in Figure 7B. To further analyze the
results of EIS diagrams under different immersion time, the Rct, Rf
(film resistance) and η are extracted in Figures 7C–E. With the

extend of immersion time, all impedance values decrease under
different concentrations of PLE and KI. When adding 50 mg/L
PLE + I−, the film resistance Rf is 18Ω cm2 after 24 h immersion

FIGURE 5 | ATR-FTIR spectra (A), XPS spectra of Fe 2p (B), C 1s (C) and O 1s (D) element of surface corrosion products for carbon steel after 24 h immersion in
0.5 mol/L H2SO4 solution containing 200 mg/L PLE +60 mg/L KI; corresponding SEM and 3Dmorphologies in the absence (E1–E3) and presence (F1–F3) of the inhibitor.
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and decreases with immersion time prolonging, while Rct value
basically keeps invariable. With an increase of the inhibitor
concentration, variation tendencies of Rct and Rf are consistent,

namely all obvious decrease with immersion time prolonging. The
corresponding η results under different immersion time
and concentrations are exhibited in Figure 7E. At 50 mg/L

FIGURE 6 | The variations of Nyquist and Bode plots versus time for carbon steel without and with PLE and KI inhibitors under different immersion time in 0.5 mol/L
H2SO4 solution: 24 h (A1–A3), 48 h (B1–B3), 96 h (C1–C3), 120 h (D1–D3), 144 h (E1–E3).

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org December 2021 | Volume 9 | Article 8159539

Wan et al. Parsley Extract and Synergistic Iodide

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


PLE + I−, η firstly decreases in preliminary stage and then slightly
increases in the later immersion stage. While the inhibitor
concentration significantly increases to 100 mg/L PLE + I−, η
maintains more than 90% during the whole 140 h immersion,
suggesting the persistence of corrosion protection performance.

In comparison with inhibition efficiency results from EIS and
PDP tests from some previous studies, the inhibition efficiency of
PLE + I− inhibitors was relatively higher under similar conditions
(Table 5).

3.4 Adsorption Isotherm and Corrosion
Kinetics
Generally, the adsorption of corrosion inhibitor contains physical
and chemical adsorption (Tan et al., 2021b). The electrostatic

interaction between charged corrosion inhibitor and metal surface
belongs to physisorption, while the formation of coordination bonds
between lone pair electrons from heteroatoms in the organic
inhibitor and unoccupied orbitals on the metal surface is ascribed
to chemical adsorption (Goyal et al., 2018b; Wan et al., 2021c). The
premise of adsorption process for corrosion inhibitor is that the
inhibitor can replace water molecules and adsorb on the metal
surface. To further research the adsorption mechanism of corrosion
inhibitor, various models of adsorption isotherm are adopted to fit
the surface coverage frompolarization curve data with concentration
of the inhibitor, which could be illustrated as follows (Tan et al.,
2019):

Langmuir model:
C

θ
� 1
Kads

+ C (5)

FIGURE 7 | The equivalent circuits of EIS plots in the absence (A) and presence (B) of the inhibitors after long-term immersion in the sulfuric solution; corresponding
variations of Rf (C), Rct (D) and inhibition efficiency (E) versus immersion time.

TABLE 5 | Summary of the inhibition efficiency compared with some green corrosion inhibitors.

Inhibitor Concentration
(mg/L)

Metal/Medium ηEIS(%) ηTafel
(%)

Immersion
time (h)

References

Licorice plant extract 1,000 Steel/chloride-polluted concrete pore
solution

81 74 24 Naderi et al. (2021)

Rhoeo discolor plant leaves 2,000 Mild steel/0.5 M HCl 87 88 24 Gayakwad et al. (2021)
Chamomile flower 600 Mild steel/HCl 98 98 8 Shahini et al. (2021)
Syzygium cumini leaf 300 Carbon steel/acidic medium 72 84 24 Silva et al. (2021)
Jackfruit pectin 1,000 Mild steel/0.5 M HCl 90 90 24 Shamsheera et al. (2022)
Hymenaea stigonocarpa Fruit
shell

1,233 Steel/sulfuric solution 79 87 12 Policarpi and Spinelli
(2020)

PLE + KI 200 carbon steel/sulfuric acid 97 99.7 24 —
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Temkin model:

e−2αθ � KC (6)

Frumkin model:

ln[ θ

(1 − θ)C] � lnK + 2αθ (7)

Flory-Huggins model:

In
θ

C
� xIn(1 − θ) + In(xKads) (8)

where θ and Kads represent surface coverage and equilibrium
constant of adsorption, and C is concentration of corrosion
inhibitor. The corresponding fitting results from Langmuir,
Frumkin, Temkin and Flory-Huggins adsorption isotherm
models are present in Figure 8. Obviously, Langmuir
adsorption isotherm is the most suitable and its linear
regression coefficient R2 is close to 1. According to Eq. 5, Kads

value can be deduced as 49.80 L/g. To be aware of adsorption type

on the metal/solution, the standard Gibbs free energy of
adsorption (ΔGads) could be evaluated by the following
equation (Zhang et al., 2018):

ΔGads � −RT ln(55.5Kads) (9)

whereR andT represent universal gas constant and thermodynamic
temperature respectively. The calculated ΔGads value is −26.81 KJ/
mol, and the negative value suggests that the inhibitor could adsorb
on the metal surface spontaneously. Moreover, in view of that
the ΔGads value is between −20 and −40 KJ/mol (Li et al., 2018),
it involves chemical and physical adsorption on the metal/solution
interface.

According to PDP results under different temperatures,
the adsorption and inhibition performance of corrosion
inhibitor was significantly influenced. To make clear the
corrosion kinetic process, the adsorption activation energy
Ea, the enthalpy of activation ΔHa, and the entropy of
activation ΔSa were put forward according to Arrhenius
equation and the Erying transition state equation (Guerraf
et al., 2018):

FIGURE 8 | Fitted results based on Tafel polarization curves with different adsorption models: Langmuir (A), Frumkin (B), Temkin (C), Flory-Huggins (D) for carbon
steel in 0.5 mol/L H2SO4 solution containing 200 mg/L PLE + I−.
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InCR � InA − Ea

RT
(10)

CR � RT

Nh
exp

ΔSa
R

exp
−ΔHa

RT
(11)

where CR stands for the corrosion rate of carbon steel, and A
represents the pre-exponential factor. The N, h, T and R are
Avogadro number, Planck’s constant, thermodynamic
temperature and universal gas constant, respectively. Figure 9
shows the linear fitting plots of Arrhenius equation and
transition state equation for carbon steel in 0.5 mol/L H2SO4

solution containing 200 mg/L PLE + I−. The corresponding
linear fitting results are present in Table 6. Generally, Ea could
be used to evaluate the difficulty of corrosion reaction. The Ea value
(150.52 KJ/mol) in the inhibited solution is higher than that
(53.52 KJ/mol) in blank solution, suggesting that the
introduction of the inhibitors obviously impedes the corrosion
process. The both positive ΔHa values with and without
inhibitors indicate that the dissolution of carbon steel possesses
an endothermic property. Thus, it could be speculated that elevated
temperature is beneficial to the metal dissolution and corrosion
process, which is in accordance with the weight loss and PDP
results. The negativeΔSa value in uninhibited solution indicates that
the corrosion of carbon steel is a process with the reduction of
disorder degree. While, ΔSa value in inhibited solution becomes
positive, implying that it is an entropy increase process. It could
mainly be attributed to the competitive adsorption and desorption
of the inhibitor on the carbon steel surface.

4 DISCUSSION

Based on all the electrochemical tests and theoretical calculation
results, a possible anticorrosionmechanism is put forward to explain
the synergistic effect of PLE and I−, as shown in Figure 10. In the
blank sulfuric solution, carbon steel surface is susceptible to severe
corrosion because corrosion media (H+, SO4

2−, H2O) can get access
to the surface of carbon steel easily (Aadad et al., 2021; Abd El-Lateef
and Khalaf, 2021). After adding PLE inhibitor, corrosion process is
slightly impeded, while the inhibition effects dramatically enhanced
under the coexistence of PLE and I− inhibitors, according to the
results of EIS, PDP and weight loss consequences.

On the basis of DFT calculation in Figure 2, there are high
electron cloud density distributions around carbonyl group and
hydroxyl group or oxygen atom in the aromatic ring of DHBP
molecules, which could offer lone pair electrons to bond with the
unoccupied orbits of Fe atoms. The formation of PLE adsorption
film hinders the intrusion of corrosive ions on the carbon steel
surface. Besides, in the inhibited solution, DHBP molecules can
replace water molecules and adsorb on the surface of carbon steel
as follows (Haldhar et al., 2018):

Inhsol + [Fe −H2O]ads#[Fe − Inh]ads +H2O (12)

From EIS results in Figure 3, individual addition of PLE only
improves corrosion protection performance slightly. Because
electrostatic repulsion brings about that protonated DHBP
molecules in acidic medium are difficult to bond on the carbon
steel surface with positive charge (Figure 3E). With further
introduction of I−, it could replace water molecules and
preferentially adsorb on the carbon steel surface due to its
larger ionic radius, high hydrophobicity, and low
electronegativity compared to SO4

2− (Solomon et al., 2018).
According to differential capacitance curves, absorbed I− ions
make carbon steel surface with higher negative charge amount
in comparison with that in individual PLE solution. It will

FIGURE 9 | The linear fitting of Arrhenius equation (A) and transition state equation (B) for carbon steel in 0.5 mol/L H2SO4 solution containing 200 mg/L PLE + I−.

TABLE 6 | Corrosion kinetic parameters of carbon steel with and without the
200 mg/L PLE + I− inhibitors in Figure 9.

System Ea/(KJ/mol) ΔHa/(KJ/mol) ΔSa/(KJ
−1/mol−1)

0.5 M H2SO4 53.25 41.92 −155.64
200 m/L PLE + I 150.52 147.98 247.42
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contribute to PLE adsorption on the carbon steel surface firmly.
According to the fitting results of adsorption isotherm (Figure 8),
their adsorption process involves chemisorption and physisorption
(Chai et al., 2019). XPS results confirmed the bonding between
lone pairs from protonated PLE molecules and empty orbits from
Fe atoms, which could be enhanced by absorbed I−. Therefore, PLE
and synergistic I− dramatically improve corrosion inhibition
performance on the surface of carbon steel.

5 CONCLUSION

In this work, PLE was prepared through an alcohol extraction
method, and used as an effective corrosion inhibitor with I− for
enhancing anti-corrosion performance of carbon steel-Q235 in
0.5 mol/L H2SO4 solution. The electrochemical tests show that
individual PLE only improve corrosion protection performance
slightly, while it with I− significantly enhances the inhibition
efficiency for carbon steel, and the optimal inhibition efficiency
reaches about 99%. Moreover, PLE and I− still maintain high
inhibition efficiency 90% after 144 h long-term immersion. The
adsorption process obeys the Langmuir isotherm adsorption, and
involves chemical and physical adsorption. From the differential
capacitance curves, the introduction of I− makes carbon steel
surface with higher negative charge amount, which is conducive
to the interaction between protonated PLE and Fe atom, namely

the π-π conjugation in the benzene ring and σ-π hyper-conjugation
between the benzene ring and carbonyl, epoxy or phenolic
hydroxyl groups. In addition, the absorbed I− ions on the
carbon steel surface make for the adsorption of protonated PLE
through electrostatic attraction. The two synergistic effects of PLE
and I− endow carbon steel excellent protection performance.
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