organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Methyl 9-(4-bromophenyl)-8a,9,9a,10,-11.12.13.14a-octahvdro-8H-benzo[f]chromeno[3,4-b]indolizine-8a-carboxylate

B. Gunasekaran,^a S. Kathiravan,^b R. Raghunathan,^b G. Chakkaravarthi^c and V. Manivannan^d*

^aDepartment of Physics, AMET University, Kanathur, Chennai 603 112, India, ^bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, ^cDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India, and ^dDepartment of Research and Development, PRIST University, Vallam, Thanjavur 613 403, Tamil Nadu, India Correspondence e-mail: manivan_1999@yahoo.com

Received 18 September 2009; accepted 19 September 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; R factor = 0.042; wR factor = 0.108; data-to-parameter ratio = 18.4.

In the title compound, $C_{27}H_{26}BrNO_3$, the mean plane of the naphthalene ring system makes a dihedral angle of $22.0 (1)^{\circ}$ with the bromo-substituted benzene ring. The pyrrolidine and piperidine rings exhibit envelope and chair conformations, respectively. An intermolecular C-H···Br interaction is observed.

Related literature

For the biological activity of indolizine derivatives, see: Gundersen et al. (2003); Teklu et al. (2005); Foster et al. (1995); Malonne et al. (1998); Medda et al. (2003). For related structures, see: Gunasekaran et al. (2009); Kamala et al. (2009).

Experimental

Crystal data C27H26BrNO3

 $M_r = 492.40$

Trigonal, P3 a = 18.4405 (8) Å c = 11.4828 (8) Å V = 3381.6 (3) Å³ Z = 6

Data collection

F

Bruker Kappa APEXII CCD	23085 measured reflections
diffractometer	5338 independent reflections
Absorption correction: multi-scan	2509 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.113$
$T_{\min} = 0.654, \ T_{\max} = 0.708$	
Deference out	
Kejinemeni	

Mo $K\alpha$ radiation

 $0.25 \times 0.20 \times 0.20$ mm

 $\mu = 1.85 \text{ mm}^{-1}$

T = 293 K

 $R[F^2 > 2\sigma(F^2)] = 0.042$ 2 restraints $wR(F^2) = 0.108$ H-atom parameters constrained $\Delta \rho_{\rm max} = 0.85 \text{ e} \text{ Å}^{-3}$ S = 0.85 $\Delta \rho_{\rm min} = -0.33 \text{ e} \text{ Å}^{-3}$ 5338 reflections 290 parameters

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C15-H15B\cdots Br1^{i}$	0.97	2.73	3.588 (3)	147
Symmetry code: (i) $-x$	+ v + 1, -x + 1	1. z - 1.		

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

BG thanks AMET University management, India, for their kind support. BG also acknowledge SAIF, IIT Madras, India, for the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2463)

References

- Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Foster, C., Ritchie, M., Selwood, D. I. & Snowden, W. (1995). Antivir. Chem. Chemother. 6, 289-297.
- Gunasekaran, B., Kathiravan, S., Raghunathan, R., Renuga, V. & Manivannan, V. (2009). Acta Cryst. E65, o1033.
- Gundersen, L. L., Negussie, A. H., Rise, F. & Ostby, O. B. (2003). Arch. Pharm. (Weinheim), 336, 191-195.
- Kamala, E. T. S., Nirmala, S., Sudha, L., Kathiravan, S. & Raghunathan, R. (2009). Acta Cryst. E65, 01923-01924.
- Malonne, H., Hanuise, J. & Fontaine, J. (1998). Pharm. Pharmacol. Commun. 4, 241-242.
- Medda, S., Jaisankar, P., Manna, R. K., Pal, B., Giri, V. S. & Basu, M. K. (2003). J. Drug Target, 11, 123-128.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Teklu, S., Gundersen, L. L., Larsen, T., Malterud, K. E. & Rise, F. (2005). Bioorg. Med. Chem. 13, 3127-3139.

supplementary materials

Acta Cryst. (2009). E65, o2550 [doi:10.1107/S1600536809037994]

Methyl 9-(4-bromophenyl)-8a,9,9a,10,11,12,13,14a-octahydro-8*H*-benzo[*f*]chromeno[3,4*b*]indolizine-8a-carboxylate

B. Gunasekaran, S. Kathiravan, R. Raghunathan, G. Chakkaravarthi and V. Manivannan

Comment

Indolizine derivatives exhibit antioxidative (Teklu *et al.*, 2005), antiherpes (Foster *et al.*, 1995), anti-inflammatory (Malonne *et al.*, 1998) and antiviral (Medda *et al.*, 2003) activities. In addition, indolizines are used as antimycobacterial agents against mycobacterial tuberculosis (Gundersen *et al.*, 2003).

The geometric parameters of the title compound (Fig. 1) agree well with reported similar structures (Gunasekaran *et al.*, 2009; Kamala *et al.*, 2009). The mean plane of naphthalene ring makes the dihedral angle of 22.0 (1)° with the benzene ring. The pyrrolidine ring exhibits an envelope conformation and the piperidine (N1/C14–C18) ring exhibits a chair conformation [C16–C15–C14–N1 = 56.3 (3)° and C16–C17–C18–N1 = -53.9 (3)°]. The sum of bond angles around N1 [338.3 (2)°] indicates sp^3 hybridization.

Experimental

A mixture of (*Z*)-methyl 2-((1-formylnaphthalen-2-yloxy)methyl) -3-(4-bromophenyl)acrylate (20 mmol) and piperidine-2-carboxylic acid (30 mmol) were refluxed in benzene for 20 h and the solvent was removed under reduced pressure. The crude product was subjected to column chromatography to get the pure product. Chloroform and methanol (1:1) solvent mixture was used for the crystallization under slow evaporation method.

Refinement

H atoms were positioned geometrically and refined using riding model with C—H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for aromatic C—H, C—H = 0.98 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for CH, C—H = 0.97 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for CH₂, and C—H = 0.96 Å and $U_{iso}(H) = 1.5U_{eq}(C)$ for CH₃. The components of the anisotropic displacement parameters in direction of the bond of C1, C2, C26 and O2 were restrained to be equal within an effective standard deviation of 0.001 using the DELU command in *SHELXL* (Sheldrick, 2008).

Figures

Fig. 1. The molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids for non-H atoms.

Methyl 9-(4-bromophenyl)-8a,9,9a,10,11,12,13,14a-octahydro-8H- benzo[f]chromeno[3,4-b]indolizine-8acarboxylate

Crystal data

C ₂₇ H ₂₆ BrNO ₃	<i>Z</i> = 6
$M_r = 492.40$	$F_{000} = 1524$
Trigonal, P3	$D_{\rm x} = 1.451 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 3	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 18.4405 (8) Å	Cell parameters from 4759 reflections
b = 18.4405 (8) Å	$\theta = 2.2 - 25.7^{\circ}$
c = 11.4828 (8) Å	$\mu = 1.85 \text{ mm}^{-1}$
$\alpha = 90^{\circ}$	<i>T</i> = 293 K
$\beta = 90^{\circ}$	Block, colourless
$\gamma = 120^{\circ}$	$0.25 \times 0.20 \times 0.20 \text{ mm}$
$V = 3381.6 (3) \text{ Å}^3$	

Data collection

Bruker Kappa APEXII CCD diffractometer	5338 independent reflections
Radiation source: fine-focus sealed tube	2509 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.113$
Detector resolution: 0 pixels mm ⁻¹	$\theta_{\text{max}} = 27.8^{\circ}$
T = 293 K	$\theta_{\min} = 2.2^{\circ}$
ω and ϕ scans	$h = -22 \rightarrow 24$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$k = -24 \rightarrow 24$
$T_{\min} = 0.654, \ T_{\max} = 0.708$	$l = -8 \rightarrow 15$
23085 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.042$	H-atom parameters constrained
$wR(F^2) = 0.108$	$w = 1/[\sigma^2(F_0^2) + (0.0452P)^2]$ where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 0.85	$(\Delta/\sigma)_{\rm max} < 0.001$
5338 reflections	$\Delta \rho_{max} = 0.85 \text{ e } \text{\AA}^{-3}$
290 parameters	$\Delta \rho_{min} = -0.33 \text{ e } \text{\AA}^{-3}$
2 restraints	Extinction correction: none
Primary atom site location: structure-invariant direct	

Prima methods

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
C1	0.32587 (18)	0.03952 (17)	-0.2836 (3)	0.0450 (7)
C2	0.2679 (2)	0.0537 (2)	-0.3441 (3)	0.0616 (9)
H2	0.2401	0.0769	-0.3050	0.074*
C3	0.2515 (3)	0.0339 (2)	-0.4604 (3)	0.0850 (13)
H3	0.2123	0.0432	-0.4982	0.102*
C4	0.2927 (3)	0.0004 (2)	-0.5221 (3)	0.0859 (13)
H4	0.2821	-0.0115	-0.6011	0.103*
C5	0.3479 (3)	-0.0149 (2)	-0.4667 (3)	0.0786 (12)
Н5	0.3752	-0.0375	-0.5082	0.094*
C6	0.3654 (2)	0.00269 (18)	-0.3465 (3)	0.0564 (9)
C7	0.4228 (2)	-0.01415 (18)	-0.2873 (3)	0.0627 (10)
H7	0.4519	-0.0349	-0.3286	0.075*
C8	0.43567 (19)	-0.00053 (17)	-0.1725 (3)	0.0513 (8)
H8	0.4704	-0.0156	-0.1336	0.062*
С9	0.39688 (17)	0.03636 (16)	-0.1111 (2)	0.0384 (7)
C10	0.34630 (16)	0.06057 (15)	-0.1639 (2)	0.0356 (7)
C11	0.32309 (16)	0.11839 (16)	-0.1002 (2)	0.0341 (6)
H11	0.2669	0.1056	-0.1242	0.041*
C12	0.32533 (15)	0.11112 (16)	0.0348 (2)	0.0333 (6)
C13	0.34153 (18)	0.04079 (17)	0.0692 (2)	0.0431 (7)
H13A	0.3526	0.0438	0.1522	0.052*
H13B	0.2920	-0.0127	0.0531	0.052*
C14	0.41242 (18)	0.23382 (17)	-0.2399 (2)	0.0434 (7)
H14A	0.3650	0.2180	-0.2912	0.052*
H14B	0.4416	0.2053	-0.2663	0.052*
C15	0.47016 (18)	0.32660 (18)	-0.2460 (2)	0.0477 (8)
H15A	0.4395	0.3550	-0.2268	0.057*
H15B	0.4914	0.3422	-0.3247	0.057*
C16	0.54293 (18)	0.35396 (18)	-0.1621 (3)	0.0492 (8)
H16A	0.5765	0.3293	-0.1850	0.059*
H16B	0.5782	0.4144	-0.1644	0.059*
C17	0.50984 (18)	0.32634 (16)	-0.0398 (2)	0.0425 (7)
H17A	0.5562	0.3404	0.0128	0.051*
H17B	0.4815	0.3558	-0.0140	0.051*
C18	0.44950 (16)	0.23290 (15)	-0.0361 (2)	0.0329 (6)
H18	0.4799	0.2029	-0.0508	0.039*
C19	0.39796 (15)	0.19968 (16)	0.0742 (2)	0.0323 (6)
H19	0.3722	0.2342	0.0882	0.039*
C20	0.44263 (16)	0.20142 (16)	0.1853 (2)	0.0326 (6)
C21	0.40965 (17)	0.20588 (17)	0.2912 (2)	0.0395 (7)
H21	0.3612	0.2096	0.2925	0.047*
C22	0.44673 (19)	0.20491 (18)	0.3956 (2)	0.0454 (8)
H22	0.4232	0.2072	0.4662	0.054*
C23	0.51857 (18)	0.20047 (17)	0.3933 (2)	0.0414 (7)
C24	0.55532 (18)	0.19869 (17)	0.2895 (3)	0.0461 (8)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supplementary materials

H24	0.6053	0.1979	0.2888	0.055*
C25	0.51612 (17)	0.19814 (17)	0.1866 (2)	0.0426 (7)
H25	0.5397	0.1955	0.1162	0.051*
C26	0.24417 (18)	0.09807 (19)	0.0883 (3)	0.0456 (7)
C27	0.1435 (2)	0.0356 (3)	0.2332 (4)	0.0985 (14)
H27A	0.1533	0.0860	0.2714	0.148*
H27B	0.1240	-0.0091	0.2891	0.148*
H27C	0.1021	0.0211	0.1735	0.148*
N1	0.38286 (13)	0.20806 (12)	-0.12185 (17)	0.0301 (5)
O1	0.41141 (11)	0.04609 (11)	0.00670 (17)	0.0446 (5)
O2	0.20524 (13)	0.12926 (15)	0.0531 (2)	0.0685 (7)
O3	0.22148 (12)	0.04877 (13)	0.18093 (17)	0.0569 (6)
Br1	0.56763 (2)	0.19502 (2)	0.53512 (3)	0.06620 (16)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0421 (18)	0.0299 (16)	0.0472 (19)	0.0063 (14)	0.0072 (13)	-0.0069 (14)
C2	0.056 (2)	0.060 (2)	0.052 (2)	0.0171 (17)	-0.0091 (16)	-0.0117 (17)
C3	0.091 (3)	0.073 (3)	0.059 (3)	0.016 (2)	-0.019 (2)	-0.012 (2)
C4	0.116 (4)	0.060 (3)	0.052 (3)	0.021 (3)	0.002 (3)	-0.016 (2)
C5	0.110 (3)	0.042 (2)	0.061 (3)	0.022 (2)	0.020 (2)	-0.0113 (19)
C6	0.070 (2)	0.0282 (18)	0.053 (2)	0.0107 (17)	0.0124 (18)	-0.0059 (15)
C7	0.074 (3)	0.0336 (19)	0.077 (3)	0.0245 (19)	0.036 (2)	0.0021 (18)
C8	0.056 (2)	0.0335 (18)	0.068 (2)	0.0251 (16)	0.0165 (18)	0.0085 (16)
C9	0.0382 (17)	0.0246 (15)	0.0459 (19)	0.0109 (14)	0.0076 (14)	0.0020 (13)
C10	0.0324 (16)	0.0240 (15)	0.0413 (17)	0.0071 (13)	0.0047 (13)	-0.0016 (12)
C11	0.0281 (15)	0.0342 (16)	0.0382 (16)	0.0142 (13)	-0.0002 (12)	-0.0010 (13)
C12	0.0313 (16)	0.0295 (15)	0.0368 (16)	0.0134 (13)	0.0027 (12)	0.0023 (12)
C13	0.0474 (19)	0.0340 (17)	0.0440 (17)	0.0175 (15)	0.0040 (14)	0.0025 (13)
C14	0.0450 (18)	0.0462 (19)	0.0402 (17)	0.0236 (16)	0.0022 (14)	0.0055 (14)
C15	0.051 (2)	0.046 (2)	0.0464 (18)	0.0243 (16)	0.0104 (15)	0.0115 (15)
C16	0.0425 (18)	0.0320 (17)	0.069 (2)	0.0157 (15)	0.0108 (16)	0.0068 (15)
C17	0.0395 (18)	0.0322 (16)	0.0538 (19)	0.0165 (14)	-0.0031 (14)	-0.0018 (14)
C18	0.0354 (16)	0.0291 (15)	0.0369 (15)	0.0182 (13)	-0.0024 (13)	-0.0020 (12)
C19	0.0321 (16)	0.0315 (15)	0.0383 (16)	0.0197 (13)	-0.0019 (12)	-0.0035 (12)
C20	0.0346 (16)	0.0288 (15)	0.0370 (16)	0.0178 (13)	-0.0026 (12)	-0.0039 (12)
C21	0.0344 (16)	0.0452 (18)	0.0452 (18)	0.0246 (15)	-0.0037 (14)	-0.0045 (14)
C22	0.050 (2)	0.055 (2)	0.0356 (17)	0.0298 (17)	-0.0023 (14)	-0.0059 (14)
C23	0.0450 (19)	0.0389 (18)	0.0412 (18)	0.0217 (15)	-0.0112 (14)	0.0008 (13)
C24	0.0398 (18)	0.0508 (19)	0.056 (2)	0.0286 (16)	-0.0092 (15)	-0.0005 (15)
C25	0.0427 (18)	0.0492 (19)	0.0432 (18)	0.0285 (15)	-0.0001 (14)	-0.0020 (14)
C26	0.0377 (18)	0.0465 (19)	0.0462 (19)	0.0162 (14)	0.0011 (14)	-0.0031 (15)
C27	0.079 (3)	0.108 (3)	0.103 (3)	0.043 (3)	0.044 (2)	0.021 (3)
N1	0.0292 (12)	0.0280 (12)	0.0332 (12)	0.0143 (10)	0.0022 (10)	0.0007 (10)
01	0.0462 (13)	0.0353 (12)	0.0571 (14)	0.0238 (10)	-0.0026 (10)	-0.0004 (10)
02	0.0512 (15)	0.0940 (19)	0.0727 (16)	0.0455 (13)	0.0179 (12)	0.0238 (13)
03	0.0493 (14)	0.0684 (15)	0.0484 (13)	0.0260 (12)	0.0151 (10)	0.0127 (11)

sup-5

supplementary materials

Br1	0.0694 (3)	0.0800 (3)	0.0538 (2)	0.0408 (2)	-0.01750 (18)	0.00658 (18)
Geometric para	meters (Å, °)					
C1—C2		1.406 (4)	C15-		1.518	3 (4)
C1—C6		1.417 (4)	C15-	-H15A	0.970)0
C1—C10		1.427 (4)	C15-	-H15B	0.970)0
C2—C3		1.377 (4)	C16-	C17	1.515	5 (4)
С2—Н2		0.9300	C16-	-H16A	0.970	00
C3—C4		1.390 (6)	C16-	-H16B	0.970	00
С3—Н3		0.9300	C17-	C18	1.514	ł (4)
C4—C5		1.344 (5)	C17-	-H17A	0.970	00
C4—H4		0.9300	C17-	-H17B	0.970	00
С5—С6		1.418 (5)	C18-	N1	1.459	9(3)
С5—Н5		0.9300	C18-	C19	1.516	5 (3)
C6—C7		1.416 (5)	C18-	-H18	0.980	00
С7—С8		1.341 (4)	C19-	C20	1.511	(3)
С7—Н7		0.9300	C19-	-H19	0.980	00
С8—С9		1.399 (4)	C20-	C21	1.380) (3)
С8—Н8		0.9300	C20-	C25	1.387	7 (4)
C9—C10		1.361 (4)	C21-	C22	1.385	5 (4)
С9—01		1.374 (3)	C21-	-H21	0.930	00
C10-C11		1.521 (4)	C22–	C23	1.368	3 (4)
C11—N1		1.479 (3)	C22-	-H22	0.930	00
C11—C12		1.558 (3)	C23–	C24	1.379	9 (4)
C11—H11		0.9800	C23–	–Br1	1.890) (3)
C12—C26		1.521 (4)	C24–	C25	1.383	3 (4)
C12—C13		1.521 (4)	C24–	-H24	0.930	00
C12—C19		1.574 (3)	C25-	-H25	0.930	00
C13—O1		1.435 (3)	C26–	02	1.193	3 (3)
C13—H13A		0.9700	C26-	03	1.324	l (3)
C13—H13B		0.9700	C27-	03	1.461	(4)
C14—N1		1.450 (3)	C27–	-H27A	0.960	00
C14—C15		1.498 (4)	C27–	–H27B	0.960	00
C14—H14A		0.9700	C27–	-H27C	0.960	00
C14—H14B		0.9700				
C2—C1—C6		117.4 (3)	C16-	C15H15B	109.5	5
C2-C1-C10		123.2 (3)	H15A	А—С15—Н15В	108.1	l
C6—C1—C10		119.4 (3)	C17-	C16C15	109.6	5 (2)
C3—C2—C1		121.0 (3)	C17-	C16H16A	109.7	7
С3—С2—Н2		119.5	C15-	C16H16A	109.7	7
C1—C2—H2		119.5	C17-	C16H16B	109.7	7
C2—C3—C4		121.1 (4)	C15-	C16H16B	109.7	7
С2—С3—Н3		119.4	H16A	А—С16—Н16В	108.2	2
С4—С3—Н3		119.4	C18-	C17C16	110.6	6 (2)
C5—C4—C3		119.4 (4)	C18-	C17H17A	109.5	5
С5—С4—Н4		120.3	C16-	C17H17A	109.5	5
С3—С4—Н4		120.3	C18-	C17H17B	109.5	5
C4—C5—C6		121.5 (4)	C16-	—С17—Н17В	109.5	5

supplementary materials

C4 C5 115	110.0		100.1
С4—С5—Н5	119.2	HI/A - CI/-HI/B	108.1
С6—С5—Н5	119.2	NI-CI8-CI7	111.3 (2)
C/C6C1	118.7 (3)	NI-C18-C19	100.2 (2)
C/C6C5	121.8 (3)	C17C18C19	116.0 (2)
C1—C6—C5	119.5 (4)	N1—C18—H18	109.6
C8—C7—C6	120.8 (3)	C17—C18—H18	109.6
С8—С7—Н7	119.6	C19—C18—H18	109.6
С6—С7—Н7	119.6	C20—C19—C18	118.2 (2)
C7—C8—C9	120.0 (3)	C20-C19-C12	115.9 (2)
С7—С8—Н8	120.0	C18—C19—C12	102.47 (19)
С9—С8—Н8	120.0	С20—С19—Н19	106.5
C10—C9—O1	121.1 (2)	C18—C19—H19	106.5
С10—С9—С8	122.4 (3)	C12-C19-H19	106.5
O1—C9—C8	116.5 (3)	C21—C20—C25	117.6 (2)
C9—C10—C1	118.1 (3)	C21—C20—C19	119.6 (2)
C9—C10—C11	119.7 (2)	C25—C20—C19	122.8 (2)
C1—C10—C11	121.7 (3)	C20—C21—C22	121.8 (3)
N1—C11—C10	112.9 (2)	C20-C21-H21	119.1
N1—C11—C12	103.10 (19)	C22—C21—H21	119.1
C10-C11-C12	112.9 (2)	C23—C22—C21	118.9 (3)
N1—C11—H11	109.2	С23—С22—Н22	120.6
C10—C11—H11	109.2	C21—C22—H22	120.6
C12—C11—H11	109.2	C22—C23—C24	121.4 (2)
C26—C12—C13	111.0 (2)	C22—C23—Br1	119.3 (2)
C26—C12—C11	110.4 (2)	C24—C23—Br1	119.3 (2)
C13—C12—C11	110.9 (2)	C23—C24—C25	118.5 (3)
C26—C12—C19	107.9 (2)	C23—C24—H24	120.7
C13 - C12 - C19	112.5 (2)	$C_{25} = C_{24} = H_{24}$	120.7
$C_{11} - C_{12} - C_{19}$	103 98 (19)	$C_{24} - C_{25} - C_{20}$	121.8(3)
01-C13-C12	111 4 (2)	$C_{24} = C_{25} = H_{25}$	119.1
01 - C13 - H13A	109.3	$C_{20} = C_{25} = H_{25}$	119.1
C_{12} C_{13} H_{13}	109.5	02-025 1125	122.9 (3)
01H13B	109.5	02 - 020 - 03	122.9(3) 124.7(3)
C12_C13_H13B	109.5	02 - 020 - 012	124.7(3) 1124(3)
H13A_C13_H13B	109.5	03-020-012 03-027-H27A	109.5
N1 C14 C15	100.0	$O_2 = C_2 T = H_2 T R$	109.5
N1 C14 H14A	110.7 (2)	$H_{27A} = C_{27} = H_{27B}$	109.5
NI = C14 = H14A	109.5	$H_2/A = C_2/=H_2/B$	109.5
N1 C14 U14D	109.5	$U_{27} = U_{27} = U_{27}$	109.5
NI-C14	109.5	$H_2/A = C_2/=H_2/C$	109.5
	109.5	$\frac{1}{12} \frac{1}{12} \frac$	109.5
H14A-C14-H14B	108.1	C14—N1—C18	114.1 (2)
C14—C15—C16	110.8 (2)	C14—N1—C11	118.1 (2)
CI4—CI5—HI5A	109.5	CI8—NI—CII	106.10 (18)
CI6—CI5—HI5A	109.5	C9—01—C13	112.0 (2)
С14—С15—Н15В	109.5	C26—O3—C27	113.0 (3)
C6—C1—C2—C3	-1.2 (5)	N1—C18—C19—C12	42.9 (2)
C10—C1—C2—C3	178.6 (3)	C17—C18—C19—C12	162.8 (2)
C1—C2—C3—C4	-0.9 (6)	C26—C12—C19—C20	90.7 (3)
C2—C3—C4—C5	1.6 (6)	C13—C12—C19—C20	-32.0 (3)

C3—C4—C5—C6	-0.1 (6)	C11—C12—C19—C20	-152.0 (2)
C2—C1—C6—C7	-178.6 (3)	C26—C12—C19—C18	-139.1 (2)
C10-C1-C6-C7	1.6 (4)	C13—C12—C19—C18	98.1 (2)
C2-C1-C6-C5	2.5 (4)	C11—C12—C19—C18	-21.9 (2)
C10—C1—C6—C5	-177.3 (3)	C18—C19—C20—C21	153.2 (2)
C4—C5—C6—C7	179.2 (3)	C12—C19—C20—C21	-84.7 (3)
C4—C5—C6—C1	-1.9 (5)	C18—C19—C20—C25	-27.3 (4)
C1—C6—C7—C8	4.1 (5)	C12-C19-C20-C25	94.9 (3)
C5—C6—C7—C8	-177.0 (3)	C25—C20—C21—C22	-1.7 (4)
C6—C7—C8—C9	-4.6 (5)	C19—C20—C21—C22	177.9 (3)
C7—C8—C9—C10	-0.8 (4)	C20-C21-C22-C23	0.8 (4)
C7—C8—C9—O1	178.3 (3)	C21—C22—C23—C24	1.3 (4)
O1—C9—C10—C1	-172.6 (2)	C21—C22—C23—Br1	-177.7 (2)
C8—C9—C10—C1	6.5 (4)	C22—C23—C24—C25	-2.5 (4)
O1—C9—C10—C11	15.6 (4)	Br1-C23-C24-C25	176.5 (2)
C8—C9—C10—C11	-165.3 (2)	C23—C24—C25—C20	1.6 (4)
C2-C1-C10-C9	173.5 (3)	C21—C20—C25—C24	0.4 (4)
C6—C1—C10—C9	-6.7 (4)	C19—C20—C25—C24	-179.1 (2)
C2-C1-C10-C11	-14.9 (4)	C13—C12—C26—O2	-159.1 (3)
C6-C1-C10-C11	164.9 (3)	C11—C12—C26—O2	-35.8 (4)
C9—C10—C11—N1	89.9 (3)	C19—C12—C26—O2	77.2 (3)
C1-C10-C11-N1	-81.6 (3)	C13—C12—C26—O3	22.0 (3)
C9—C10—C11—C12	-26.5 (3)	C11—C12—C26—O3	145.3 (2)
C1-C10-C11-C12	162.0 (2)	C19—C12—C26—O3	-101.6 (3)
N1-C11-C12-C26	108.5 (2)	C15-C14-N1-C18	-55.9 (3)
C10-C11-C12-C26	-129.3 (2)	C15-C14-N1-C11	178.3 (2)
N1-C11-C12-C13	-128.1 (2)	C17-C18-N1-C14	54.8 (3)
C10-C11-C12-C13	-6.0 (3)	C19—C18—N1—C14	178.1 (2)
N1-C11-C12-C19	-7.0 (2)	C17—C18—N1—C11	-173.3 (2)
C10—C11—C12—C19	115.1 (2)	C19-C18-N1-C11	-50.0 (2)
C26—C12—C13—O1	172.0 (2)	C10-C11-N1-C14	42.9 (3)
C11—C12—C13—O1	48.9 (3)	C12-C11-N1-C14	165.0 (2)
C19—C12—C13—O1	-67.0 (3)	C10-C11-N1-C18	-86.7 (2)
N1-C14-C15-C16	56.3 (3)	C12-C11-N1-C18	35.5 (2)
C14—C15—C16—C17	-56.7 (3)	C10-C9-O1-C13	30.1 (3)
C15—C16—C17—C18	55.2 (3)	C8—C9—O1—C13	-149.1 (2)
C16—C17—C18—N1	-53.9 (3)	C12-C13-O1-C9	-63.2 (3)
C16—C17—C18—C19	-167.6 (2)	O2—C26—O3—C27	1.2 (4)
N1-C18-C19-C20	171.6 (2)	C12—C26—O3—C27	-180.0 (3)
C17—C18—C19—C20	-68.5 (3)		
Hydrogen-bona geometry (A, \circ)	D 11		D

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
C15—H15B···Br1 ⁱ	0.97	2.73	3.588 (3)	147
Symmetry codes: (i) $-x+y+1, -x+1, z-1$.				

