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A B S T R A C T   

Pulmonary diseases are currently one of the major threats of human health, especially considering the recent 
COVID-19 pandemic. However, the current treatments are facing the challenges like insufficient local drug 
concentrations, the fast lung clearance and risks to induce unexpected inflammation. Cell-derived membrane 
biomimetic nanocarriers are recently emerged delivery strategy, showing advantages of long circulation time, 
excellent biocompatibility and immune escape ability. In this review, applications of using cell-derived mem-
brane biomimetic nanocarriers from diverse cell sources for the targeted therapy of pulmonary disease were 
summarized. In addition, improvements of the cell-derived membrane biomimetic nanocarriers for augmented 
therapeutic ability against different kinds of pulmonary diseases were introduced. This review is expected to 
provide a general guideline for the potential applications of cell-derived membrane biomimetic nanocarriers to 
treat pulmonary diseases.   

1. Introduction 

Pulmonary diseases, including lung infection, acute lung injury, lung 
cancers, asthma, cystic fibrosis, etc., are currently one of the major 
threats of human health, especially considering the recent COVID-19 
pandemic (Britto et al., 2017; Mao et al., 2016; Zhu et al., 2020). The 
traditional medical treatments for pulmonary disease are hindered by 
insufficient drug concentrations in pathological lesions (Deng et al., 
2021; Xu et al., 2014). Therefore, lung-targeted drug delivery system 
(LTDDS) was then emerged to concentrate the therapeutic agents in 
pathological lung tissues, which has shown significant benefits in the 
treatments against diverse pulmonary diseases (Wei and Zhao, 2014). 
Thus far, dry powder preparation and atomized suspension inhaled 
through trachea (Abdelaziz et al., 2018; Muralidharan et al., 2015), and 
microparticles, liposomes and nanoparticles administered intravenously 
(Vidyadevi et al., 2021; Wei and Zhao, 2014) are the most applied 
strategies for lung-targeted delivery. However, no matter for inhalation 
strategy or injection approach, certain barriers exist. For instance, in the 
inhalation, nanoparticles would be easily blocked by mucus layer, 

bronchoalveolar fluid and phagocytes in conducting airways and alveoli 
(Liu et al., 2022; Ruge et al., 2013). Meanwhile, for intravenous injec-
tion, the first pass metabolism and clearance of kidney, intestine and 
liver would reduce the concentration of nanoparticles in local lungs 
(Alexescu et al., 2019; Zhao et al., 2020). Generally, nanoparticles with a 
particle size over 7 μm can rapidly aggregate in the lung through pul-
monary capillary filtration (Azarmi et al., 2008; Dhand et al., 2014). 
Nevertheless, these exogenous nanoparticle carriers would soon be 
phagocytized by the reticuloendothelial system. Moreover, the 
dispersed nanoparticles tend to adsorb various proteins and construct 
protein crowns on their superficial coat, which reduces the targeting 
ability of nanoparticles. Of note, high doses of nanoparticles would 
induce lung epithelial damage and active the immune system, resulting 
in lung inflammation. Even worse, the injury of lung epithelial cells 
would recruit neutrophils to flood into the alveolar area (Aarbiou et al., 
2002; Braakhuis et al., 2014). 

During the past years, pulmonary drug delivery system relying on 
living cells has attracted increasing attentions, showing the advantages 
of prominently reducing the risks of immunogenicity and other 

* Corresponding author at: Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China. 
E-mail address: gaojianqing@zju.edu.cn (J. Gao).   

1 These authors contributed equally: Xixi Zheng, Tianyuan Zhang. 

Contents lists available at ScienceDirect 

International Journal of Pharmaceutics 

journal homepage: www.elsevier.com/locate/ijpharm 

https://doi.org/10.1016/j.ijpharm.2022.121757 
Received 23 February 2022; Received in revised form 26 March 2022; Accepted 15 April 2022   

mailto:gaojianqing@zju.edu.cn
www.sciencedirect.com/science/journal/03785173
https://www.elsevier.com/locate/ijpharm
https://doi.org/10.1016/j.ijpharm.2022.121757
https://doi.org/10.1016/j.ijpharm.2022.121757
https://doi.org/10.1016/j.ijpharm.2022.121757
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijpharm.2022.121757&domain=pdf


International Journal of Pharmaceutics 620 (2022) 121757

2

undesirable side-effects. These cellular vehicles include red blood cells 
(RBCs), mesenchymal stem cells (MSCs), macrophages, etc. (Dai et al., 
2021; Klyachko et al., 2017; Masterson et al., 2020) RBCs can be applied 
as carriers by encapsulating drugs inside the cells (intracellular coating) 
or by carrying on drugs on the cell surfaces (extracellular adsorption) 
(Bush et al., 2021; Koleva et al., 2020). For example, RBCs were applied 
to deliver dexamethasone for the treatment of patients with chronic 
pulmonary obstruction, which could remain in the circulation for 7 days 
(Rossi et al., 2001). MSCs were also reported as targeted carriers for lung 
tumor treatment, due to their inherent tumor homing ability (Zhang 
et al., 2021a) and the ability to resist lung clearance (Su et al., 2021; 
Zhang et al., 2021a). Macrophages were investigated as another type of 
‘Trojan horse’ cells: protecting drugs from immune system clearance and 
targeting pulmonary inflammation (Novak et al., 2018). However, there 
are still some problems during the applications of living cells for lung 
targeted delivery. For example, although RBCs are endowed with long 
blood circulation, the preparation strategy of the carriers has not been 
standardized (Bush et al., 2021). MSCs can effectively target to lung 
tumors, but they are easy to cause pulmonary embolism (Wu et al., 
2019b). In addition, MSCs were reported to bear the risks of promoting 
tumor growth and metastasis in some cases (Lazennec, 2011). Macro-
phages are ideal vehicles for targeting inflammatory lungs, but the un-
controlled release of drugs may cause inevitable side effects and affect 
their targeting ability. These limitations of cellular vehicles are hin-
dering their further applications in the targeted therapy of pulmonary 
diseases. 

To overcome the above-mentioned limitations, cell membrane bio-
mimetic carrier was then proposed as a potential delivery strategy (Hu 
et al., 2011). The complete cell membranes are collected from natural 
cells (RBCs, platelets, cancer cells, stem cells, immune cells, bacteria, 
etc.) and then camouflage nanoparticles by coating their surfaces. In this 
delivery strategy, the inherent targeting ability of certain cells benefits 
the directional transport of core-nanoparticles without additional con-
siderations of their characteristics. The constructed cell membrane 
coated nanoparticles retain various properties of the core-nanoparticles 
and inherent targeting ability. Meanwhile, natural cell membranes 
prevent the loss of integrity and function of nanoparticles in the process 
of drug preparation and delivery. Moreover, in inhalation approach, 
traditional nanoparticles are easier to be adsorbed by lung surfactants, 
leading to the inhibition of normal function of the lung (Liu et al., 2022). 
By using membrane biomimetic carriers, such absorption may be avoi-
ded. To sum up, cell-derived membrane biomimetic system possesses the 
superiorities of long circulation time, good biocompatibility and im-
mune escape ability, which may provide a potential delivery strategy to 
overcome the current dilemma in the targeted treatment of pulmonary 
disease. 

2. Designs and preparations 

2.1. The basic principles of membrane biomimetic preparations 

The lung targeting performance of cell-derived membrane bio-
mimetic nanocarriers is closely related to design parameters. The par-
ticle size, shape and surface charge of membrane biomimetic carriers are 
crucial factors in determining the transmission and in vivo fate of 
nanoparticles. 

Size plays a significant role in proper encapsulation of drugs, pro-
longing blood circulation and improving lung targeting. Nanoparticles 
below 5 nm are usually cleared by the kidney after intravenous injec-
tion, while nanoparticles over 200 nm are filtered through the spleen 
(Liu et al., 2019a). Therefore, nanoparticles, as well as cell-derived 
membrane biomimetic nanocarriers, with a range of 20–200 nm are 
considered suitable. At present, the particle size of membrane bio-
mimetic agents used for lung targeting is commonly in the size from 100 
nm to 300 nm. 

The shapes of nanoparticles include spherical, disk, ellipsoid, rod, 

etc., have significant impacts on distribution, circulation and cellular 
uptake. For instance, disk-shaped nanoparticles tend to distribute in the 
lung and spleen (Rampersaud et al., 2016). Erythrocyte membrane 
coated nanoparticles with prolate ellipsoidal shape showed longer half- 
life than the ones with spherical shape. The half-life of prolate ellipsoidal 
shape is 171.6 min, while for spherical particles is 64.8 min (Ben-Akiva 
et al., 2020). Nanoparticles coated with cancer cell membrane with rod 
shapes showed higher cellular uptake efficiency compared to spherical- 
shaped biomimetic nanoparticles (Zhang et al., 2019b). 

The surface charge of membrane biomimetic carriers also affects the 
properties of nanoparticles. Positively charged nanoparticles are more 
likely to cause internal safety risks and are quickly eliminated from the 
blood circulation. Negatively charged nanoparticles, on the other side, 
usually have a longer circulation and a lower systemic toxicity. Never-
theless, the distribution of negatively charged nanoparticles in the lungs 
is relatively low (Arvizo et al., 2011). 

2.2. Preparation process 

Several methods had been developed to prepare membrane bio-
mimetic nanoparticles, such as membrane extraction, and fusion of cell 
membrane and core-nanoparticles (Liu et al., 2019b). Details of these 
methods are introduced below: 

2.2.1. Cell membrane extraction 
The extraction of anuclear cell membranes (RBCs and platelets) is 

usually through repeated freezing and thawing or dissolution with hy-
potonic solution. To obtain the cell membranes, RBCs or platelets are 
firstly isolated from plasma through centrifugation (e.g., 700 g, 10 min 
for RBCs), following with cell lysing by hypotonic treatment or repeated 
freeze-thaw processes, and cell membranes are purified from the 
mixture by centrifugation (e.g., 20,000 g, 10 min for RBCs). In order to 
maintain the biological activity of membrane proteins, protease in-
hibitors are usually added to the extracted cell membranes and stored at 
4 ◦C (Li et al., 2019b; Liu et al., 2018a). 

It is more complex to harvest the cell membranes from eukaryotic 
cells, such as cancer cells, stem cells and immune cells, partly due to the 
prerequisite of removing cell nuclei and some biomacromolecules. First 
of all, a sufficient number of cells must be collected for concentrating 
and purifying cell membranes, which are disrupted by incubation in 
hypotonic lysate or repeated freeze-thaw treatments. Nuclei and intra-
cellular biomacromolecules are removed by discontinuous sucrose 
gradient centrifugation or differential centrifugation. The membrane- 
rich fraction was then washed with plasma buffer, and sonicated or 
extruded through a porous membrane to obtain cell membrane vesicles 
(Meng et al., 2018; Wu et al., 2020). 

2.2.2. Fusion of cell membranes and core-nanoparticles 
Major methods to fuse cell membranes and core-nanoparticles 

include membrane extrusion, ultrasonic treatment and microfluidic 
electroporation. 

Membrane extrusion is a method to encapsulate nanoparticles in cell 
membranes by applying mechanical pressure to facilitate the penetra-
tion of nanoparticles to across the phospholipid bilayer of the cell 
membrane. The mixture is repeatedly extruded through porous mem-
branes in different sizes according to the nanoparticle size, which allows 
the membranes to reconstitute on the nanoparticles (Saha et al., 2021). 

Ultrasonic method is another major way to prepare the membrane 
biomimetic nanoparticles, in which cell membranes and nanoparticles 
self-assemble to form core-shell nanostructures under the destructive 
force provided by ultrasonic energy. This method possesses advantages 
of less material loss comparing to the physical extrusion (Yang et al., 
2021). 

Microfluidic electroporation is a recently developed technology to 
fabricate the membrane biomimetic nanoparticles, showing potentials 
as a platform technology for controllable, tunable, and scalable 
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preparations. In this method, nanoparticles and cell membrane vesicles 
are mixed in a microfluidic chip and then flow through the electropo-
ration zone. Electric pulses between the two electrodes can effectively 
promote the entry of nanoparticles into cell membrane vesicles (Rao 
et al., 2017). 

3. Cell sources for preparing biomimetic membrane carriers 

The properties of membrane biomimetic preparation are largely 
determined by the functional proteins on the cell membrane, such as 
their quantity and type. Different kinds of cells had been studied to 
prepare biomimetic membrane carriers, such as RBCs, platelets, cancer 
cells, stem cells, immune cells, and bacteria. 

3.1. RBCs 

RBCs are the most abundant blood cells in the human body (i.e., 5 
million cell/mm3 blood in a man) and are responsible for providing 
oxygen for cells and tissues and transport carbon dioxide to the lungs 
(Hamidi and Tajerzadeh, 2003). Because of the convenience to separate 
RBCs from blood and the anuclear characteristic, RBCs are the first type 
of cells being used to prepare membrane biomimetic carriers in 2011 
(Hu et al., 2011). The self-recognition protein CD47 expressed on the 
membrane of RBC (RBCm), which is recognized by reticuloendothelial 
system, allows RBCm to possess advantages of a long circulation time: 
about 40 days in mice and 3 months in humans (Hu et al., 2012, Sun 
et al., 2019). 

Thus far, RBCm has been extensively applied in the treatment of 
pulmonary diseases, because of its splendid biocompatibility and long- 
term blood circulation (Castro et al., 2021). For example, RBCm bio-
mimetic carrier is frequently used for the treatment of lung cancer. Chen 
et al. fabricated RBCm-coated obatoclax mesylate (OM)-loaded poly 
(lactide-co-glycolide) (PLGA) nanoparticles, showing improved lung 
tumor inhibition with good biocompatibility. Compared with the naked 
nanoparticles, RBCm-coated nanoparticles showed more powerful 
cytotoxicity to non-small cell lung cancer (NSCLC) cells but exerted no 
significant toxicity to normal cells (Chen et al., 2020). In addition, 
polymer nanoparticles coated with RBCm were also reported to be 
applied as nanosponge for absorbing and neutralizing bacterial toxins in 
the treatment of bacterial infections. Chen et al. had designed a bacterial 
toxin nanosponge composed of PLGA core and wrapped RBCm. The 
RBCm shell provides a substrate simulation that can absorb various 
bacterial toxins, and the internal polymer core is used to stabilize the 
RBCm shell to achieve long-term systemic circulation. This nanosponge 
has been proved to effectively protect the pulmonary vascular barrier 
(Chen et al., 2019). 

However, as a drug carrier, the major weakness of RBCm is their poor 
targeting ability. The modifications of RBCm with improved lung tar-
geting ability is a potential solution, but facing the challenges of altering 
the lipid bilayer and membrane protein, which may adversely affect 
their biocompatibility. 

3.2. Platelets 

Platelets, which derive from mature megakaryocytes in bone 
marrow, are disc-shaped and changeable with the functions of coagu-
lation and hemostasis (Italiano and Shivdasani, 2003). Platelets can 
escape immunity through CD47 mediated macrophage uptake and 
activation, thereby prolonging the circulation time in blood stream 
(Wang et al., 2020). Additionally, P-selectin expressed on platelets can 
specifically bind to up-regulated CD44 in cancer cells, which enables 
their tumor targeting ability (Merten and Thiagarajan, 2004; Naor et al., 
2002). 

Compared with RBCm, platelet membrane coated nanoparticles 
possess the targeting ability towards tumor and damaged blood vessels 
adhesion. For example, the platelet membrane coated nanoparticles 

(PM/PLGA/DTX) was used for lung cancer therapy. Compared with 
membrane-free nanoparticles, the platelet membrane coating signifi-
cantly reduced the toxicity of antitumor chemotherapy drugs and 
inhibited the growth of lung tumors (Chi et al., 2019). Furthermore, 
platelet membrane coated nanoparticles were also applied in immuno-
therapy of lung cancer. Baharak et al. designed a small molecule 
immunomodulator R848 coated by platelet membranes for intra-
tumorally local immune activation, which could inhibit lung metastasis 
(Bahmani et al., 2021). 

Because of the specific adhesion of platelets to damaged blood ves-
sels, thrombolytic drugs coated on platelet membranes can be delivered 
to target pulmonary artery thrombosis, thereby realizing a sustained 
drug release for improved treatment of pulmonary embolism (Yang 
et al., 2018b). 

Moreover, the platelet membrane coating benefits the treatment of 
pulmonary inflammation, due to the inflammatory targeting ability. Jin 
et al. developed platelet membrane (PM) coated nanoparticles system 
(PM/Ber) for delivering berberine (Ber) to the inflammatory lung. PM/ 
Ber successfully targeted to the inflammatory lung at two hours after 
intravenous injection, and released Ber slowly from 2 h to 48 h, thus 
reducing allergic asthma (Jin et al., 2021). 

Although platelet membranes have showed the advantages of im-
mune escape and inflammatory tropism in the treatment of lung tumor 
and pulmonary inflammation. There are still some problems to be 
overcome. Platelets are very sensitive, so the construction of platelet 
membranes as drug carriers may lead to unnecessary thrombosis or 
bleeding. In addition, platelets are easy to aggregate in vitro, making the 
stability of platelet membrane coated nanoparticles as a major challenge 
(Lu et al., 2019). 

3.3. Cancer cells 

The indefinite proliferation and fast in vitro expansion of cancer cells 
make the possibility of isolating cell membranes in a large number (Li 
et al., 2021a). Cancer cell membranes are rich in various functional 
proteins, including membrane proteins mediating homologous binding 
(selectins, integrins, etc.), biomarkers of self-recognition and immune 
escape (CD47, etc.), and immune activation-related tumor antigens 
(tumor-associated Thomsen-Friedenreich glycoantigen, etc.) (Khal-
doyanidi et al., 2003). Therefore, cancer cell-derived biomimetic stra-
tegies are considered as a promising option due to their ability to escape 
immune surveillance and homologous tumor targeting (Jin and Bhuj-
walla, 2019; Pereira-Silva et al., 2020). 

Wu et al. developed a biomimetic nanocarrier loaded with doxoru-
bicin and icotinib, which was coated by cell membranes isolated from 
lung cancer cell line H975. This biomimetic nanocarrier was successfully 
applied to treat chemotherapeutic drug-resistant non-small cell lung 
cancer (NSCLC). Comparing with membrane-free nanoparticles, the 
biomimetic nanoparticles showed advantages of high stability and effi-
cient tumor inhibition, killing 87.56% tumor cells (Wu et al., 2019c). In 
addition, nanoparticles coated with 4T-1 cell membranes significantly 
enhanced the distribution of nanoparticles in lung tumors, showing 
significant suppression on lung metastasis of breast cancer (Sun et al., 
2016). 

Nevertheless, the safety concerns regarding to the potential risks of 
inducing tumorigenesis using cancer cells-derived membrane restrict 
the clinical applications of this delivery strategy (Lei et al., 2022). 

3.4. Stem cells 

Some stem cells, like MSCs, embryonic stem cells and neural stem 
cells, are multi-potential differentiated cells that have an ability to self- 
replicate (Fu et al., 2021). In addition, stem cells have homing ability, 
which navigates stem cells to target to injured organs through 
combining chemokines, adhesion molecules and growth factors released 
by target organs with corresponding receptors expressed on the surface 
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of stem cells (Cui and Madeddu, 2011; Tao et al., 2018). In particular, 
MSCs have showed inherent capability of potent tumor homing and 
inflammation induced migration, which is closely related to their 
expression of homing receptors, such as CXC motif chemokine receptor 
(CXCR) 4, CXCR2, cluster of differentiation 74 (CD74), in response to the 
corresponding cytokines expressed in tumor sites or injured tissues, such 
as stromal cell-derived factor 1 (Zhang et al., 2021). Most of the intra-
venous administrated MSCs are initially intercepted in the lung due to 
the filtration function of pulmonary vascular system and then migrate to 
the injured area in the lung (Nystedt et al., 2013). This property endows 
MSCs with advantages of excellent lung targeting ability and is 
extremely suitable for the targeted pulmonary diseases therapy. How-
ever, the administration of MSCs was reported to have potential risks of 
inducing pulmonary micro embolism (Wu et al., 2019a). 

In this regard, the biomimetic nanoparticles using MSC membranes 
coating are developed as an alternative option to take the advantages of 
inflammatory homing while avoiding the potential risks of directly using 
MSCs. For example, Yang et al. showed the advantages of coating PLGA 
nanoparticles with MSCs membranes for targeted lung tumor treatment. 
The MSCs membrane coating effectively improved the cellular uptake by 
tumor cells, as well as the tumor targeting of PLGA nanoparticles, 
resulting in an efficient tumor cell killing (Yang et al., 2018a). In addi-
tion, Yin et al. utilized MSCs membranes to coat polymethacrylic acid 
(PMAA), which was loaded with iron and cypate, to structure Cyp- 
PMAA-Fe@MSCs. This carrier not only had high stability and good 
tumor accumulation, but also had excellent photothermal conversion 
efficiency, which was used in photothermal therapy of lung cancer (Yin 
et al., 2021). 

Although MSC membrane coating has the advantages of tumor and 
inflammation targeting, its circulation time in the blood is shorter than 
that of RBCm. In addition, the acquisition of MSCs in a large number is 
relative inconvenient compared to RBCs (Liang et al., 2018). 

3.5. Immune cells 

Immune cell membrane biomimetic carriers also possess the ability 
of active targeting and immune escape, thus showing the potential as a 
vector for the targeting treatment against lung inflammation and lung 
tumor (Li et al., 2018). Currently, membranes harvested from macro-
phages and neutrophils are the most applied immune cell membranes for 
lung-targeted delivery. 

3.5.1. Macrophages 
Macrophages are the most population among immune cells, playing 

a crucial role during the immune response (Liang et al., 2021; Zhang 
et al., 2020). There are several superiorities of using macrophages to 
treat inflammatory diseases. Firstly, the inherent phagocytosis ability 
enables them to phagocytize diverse bacteria, viruses, injured cells and 
aging cells in nonspecific immunity. Additionally, macrophages are 
important antigen-presenting cells, which express antigen peptide major 
histocompatibility complex (MHC) and trigger subsequent immune 
response. Moreover, macrophages can mediate inflammatory response 
through the interaction between corresponding receptors on the surface 
of macrophage membrane and chemokines (Monocyte chemoattractant 
protein-1, etc.) at inflammatory sites (Zhang et al., 2020). 

It has been revealed that macrophages have close interaction with 
lung tumor cells through the binding of α4 integrins on macrophages to 
vascular cell adhesion molecule-1 (VCAM-1), which is overexpressed in 
tumor cells (Chen et al., 2011). Such interaction between macrophages 
and tumor cells provides a potential application of using macrophage 
membranes for lung tumor-targeting delivery. For example, Cao et al. 
prepared macrophages membranes coated liposomes for targeting de-
livery of emtansine to lung metastases, achieving significant inhibition 
of tumor progression (Cao et al., 2016). Moreover, secretion of C-C 
chemokine ligand 2 (CCL2) from tumors was shown to promote the 
recruitment of CCR2-expressing macrophages, particularly notable for 
the preferential recruitment of macrophages in lung metastases (Bona-
pace et al., 2014). Exploiting the characteristics of the CCL2/CCR2 
chemokine axis to actively recruit macrophages, Zhao et al. developed 
macrophage membrane coated nanoparticles for effective photothermal 
therapy of lung metastasis, which exhibited obvious aggregation in 
breast cancer lung metastasis (Zhao et al., 2018). 

In addition to the tumor targeting ability, macrophage biomimetic 
nanocarriers further showed the potential of anti-inflammatory and 
anti-virus. Nanoparticles coated by alveolar macrophage membranes 
demonstrated the ability as decoys to prevent coronavirus from entering 
host cells, absorbing a variety of pro-inflammatory cytokines, thereby 
reducing lung injury and inflammation (Li et al., 2021b). 

Table 1 
Applications of diverse sources cell membrane in pulmonary diseases.  

Sources Core- 
nanoparticles 

Effects/Diseases Ref. 

RBCs PGSC-PTX NSCLC (Gao et al., 
2017) 

PLGA Neutralize bacterial toxins 
and protect the pulmonary 
vascular barrier 

(Chen et al., 
2019) 

OM/PLGA NSCLC (Chen et al., 
2020) 

PXTK, dPPA Breast cancer with lung 
metastasis 

(Yu et al., 
2019) 

Platelets uPA Pulmonary embolism (Yang et al., 
2018b) 

rt-PA Pulmonary embolism (Xu et al., 
2020) 

DTX/PLGA Lung cancer (Chi et al., 
2019) 

R848 Metastatic carcinoma of lung (Bahmani 
et al., 2021) 

Berberine Allergic asthma (Jin et al., 
2021) 

Cancer cells Doxorubicin and 
icotinib 

NSCLC (Wu et al., 
2019c) 

PTX Metastatic carcinoma of lung (Sun et al., 
2016) 

MSCs DOX/PLGA Lung cancer (Yang et al., 
2018a) 

Ng/Ce6 Lung cancer (Feng et al., 
2020) 

Cyp-PMAA-Fe NSCLC (Yin et al., 
2021) 

Macrophages Emtansine 
Liposome 

Metastatic carcinoma of lung (Cao et al., 
2016) 

Quercetin, 
Bi2Se3 

Lung metastasis of breast 
cancer 

(Zhao et al., 
2018) 

LPV/PLGA Pneumonia (Tan et al., 
2021) 

Neutrophils SPX/PCL-PEG Pneumonia (Wang et al., 
2020a) 

GOx/CPO Metastatic carcinoma of lung (Zhang et al., 
2019a) 

Bacteria / Klebsiella pneumoniae (Li et al., 
2021c) 

/ SARS-CoV-2 (Yang et al., 
2021b) 

Abbreviations: Red blood cell (RBC); Poly(l-γ-glutamylcarbocistein) (PGSC); 
Paclitaxel (PTX); Non-small cell lung cancer (NSCLC); Poly(lactic-co-glycolic 
acid) (PLGA); Cinnamaldehyde and thioacetal based paclitaxel dimer (PTXK); 
Anti-programmed cell death-ligand 1 peptide (dPPA); Urokinase plasminogen 
activator (uPA); Recombinant tissue plasminogen activator (rt-PA); Resiquimod 
(R848); Doxorubicin (DOX); Mesenchymal stem cells (MSCs); Chlorin e6 loaded 
gelatin nanogels (Ng/Ce6); Polymethacrylic acid nanoparticles loaded with Fe 
(III) and cypate (Cyp-PMAA-Fe); Lopinavir (LPV); sparfloxacin (SPX); 
Polycaprolactone-poly(ethylene glycol) (PCL-PEG); Glucose oxidase (GOx); 
Chloroperoxidase (CPO); Severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2). 
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3.5.2. Neutrophils 
Neutrophils, as the most common white blood cells, participate in 

various inflammatory responses in vivo. The outbreak of inflammation 
leads to an increase of neutrophils, which serve as the first line to defend 
against pathogens in tissue infection or damage. 

Inspired by the targeting property of neutrophil to inflammatory 
tissue, Wang et al. wrapped sparfloxacin (SPX) nanoparticles on the 
neutrophil membranes to treat lung inflammation. Compared with 
nanodrugs, neutrophil membrane coated nanoparticles showed superi-
ority in accurate lung inflammation targeting (Wang et al., 2020a). An 
artificial super neutrophil, which has good inflammatory targeting and 
the ability to generate hypochlorous acid (HClO), has been developed to 
target and eliminate malignant tumor cells and pathogens. The experi-
mental results showed that the artificial super neutrophil had good 
targeting and antitumor activity in the early lung premetastatic niche, as 
well as the already formed lung metastasis (Zhang et al., 2019a). 

Presently, the major limitation of using immune cell-derived mem-
branes is their immunogenicity. Because the major histocompatibility 
complex expressed in immune cells is high probabilistically inherited by 
their membranes (Oroojalian et al., 2021a). 

3.6. Bacteria 

Since the mutual recognition between biomolecules on bacterial 
membranes and host cells is the first step for bacteria adhesion and entry 
into target cells, bacterial membranes have become a novel drug- 
targeted delivery vehicle (Pizarro-Cerdá and Cossart, 2006; Yang 
et al., 2019). In particular, bacterial outer membrane vesicles (OMVs) 
extracted from the Gram-negative bacteria, which contains high levels 
of immunogenic proteins and adjuvants, is an alternative option to 
activate pathogen-associated innate and adaptive immune responses 
(Anwar et al., 2021). For example, bacterial OMVs are admitted as ideal 
components of bacterial vaccines, due to their rich in intact antigens, 
non-infectious characters, and the nanostructure (Anand and Chaud-
huri, 2016; Kaparakis-Liaskos and Ferrero, 2015). These properties 
make OMVs with good ability to modulate the immune response. Li et al. 
used high mechanical pressure to drive Klebsiella bacteria through small 
gaps for inducing artificial budding and producing self-assembled bac-
terial biomimetic vesicles, which showed dual functions of stimulating 
humoral and cellular immune responses against antibiotic-resistant 
bacteria. These bacterial biomimetic vesicles using OMVs then 
induced potent defenses against drug resistant-Klebsiella pneumoniae 
infection in mice models (Li et al., 2021). 

OMVs take significant advantages in large-scale production, partly 
due to their easy expansion in vitro. In addition, the relative ease to 
genetic engineer bacterial facilities the specifical designing and pro-
duction of OMVs with desired functions. However, OMVs may cause 
excessive immune activation and lead to biosafety issues, because OMVs 
contain lipopolysaccharide and virulence factors on their surface (Nas-
kar et al., 2021). 

In conclusion, diverse cell-derived membrane biomimetic nano-
carriers have been applied for the targeting treatments of pulmonary 
diseases, including pneumonia, asthma, primary, metastatic lung can-
cer, etc., showing the potentials for targeting delivery with good ther-
apeutic outcomes. More examples of using membrane biomimetic 
nanocarriers for the targeted therapy of pulmonary disease were sum-
marized in Table 1. 

4. Engineering of biomimetic membrane for improved drug 
delivery 

In order to overcome some limitations of natural cell membrane and 
to enhance the properties of membrane biomimetic carriers, cell mem-
brane modifications were recently developed as a promising strategy 
(Yan et al., 2019), partly because the function of nanoparticles endowed 
by cell membrane mainly depends on its surface functional proteins 
(Guo et al., 2021). The cell membrane modification is carried out before 
destroying the natural cells (pre-modification), or introducing exoge-
nous components into cell membranes after separation (post-modifica-
tion). Presently, pre-modification includes genetic modification and 
metabolic engineering, while cell membrane post-modification includes 
lipid insertion and membrane hybridization (Fig. 1). 

4.1. Lipid insertion 

Lipid insertion is a method of binding targeting ligands to membrane 
coated nanoparticles through lipid anchors. In this strategy, the target-
ing part is first connected to the lipid molecule and then inserted into the 
cell membranes. The fluidity of the membrane bilayer allows the lipid 
chain to be inserted into the membrane coating by ultrasonic or physical 
extrusion (Luk and Zhang, 2015). 

This strategy has been applied to anchor different ligands to the cell 
membrane to achieve specific targeting. For example, to enhance the 
specifical targeting ability to non-small cell lung cancer cells (A549) 
with high expression of CD44, hyaluronic acid (HA), the receptor of 
CD44, was applied to insert into RBCm. (Zhang et al., 2021c). 

Fig. 1. Engineering strategies of biomimetic membrane: metabolic engineering, lipid insertion, membrane hybridization, and genetic modification.  
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In addition to polysaccharide ligands, lipid insertion has been uti-
lized to anchor polypeptides. For example, in order to obtain higher 
tumor targeting ability, Arginyl-glycyl-aspartate (RGD) peptide was 
used to insert the RBCm, which can specifically recognize the overex-
pressed integrin receptor-like ανβ3 in tumor cells (Chai et al., 2019; Fan 
et al., 2020; Huang et al., 2021; Zhang et al., 2018; Zhong et al., 2021). 
Wu et al. developed RBC camouflaged nanoparticles (RBC@BPtI), which 
coloaded photosensitizer indocyanine green (ICG) and 1,2-diaminocy-
clohexane-platinum (II) (DACHPt) to treat melanoma lung metastasis. 
The targeting ability of RGD enhanced tumor-specific cellular uptake 
and tumor penetration (Fig. 2B). In the melanoma lung metastasis 
model, the modified membrane biomimetic carrier showed better lung 
targeting (Fig. 2C) and antitumor effects (Fig. 2D) (Liu et al., 2018b). 

In addition, some lipophilic molecules themselves also have the 
function of altering the properties of cell membrane after insertion. For 
example, Su et al. inserted the 1,1′- octadecyl-3,3,3′,3′- tetramethy-
lindole tricarbocyanine iodide (DiR) into the RBC membrane. The DiR 
on the membrane can be converted into heat by near infrared light ra-
diation for photothermal treatment of lung metastasis (Su et al., 2016). 

Lipid insertion is a simple and efficient method, which provides a 

promising possibility for the functionalization of cell membrane bio-
mimetic carriers. Lipids can not only act as anchors, but also carry 
specific functions, including photothermal conversion, pH response and 
the like. 

4.2. Membrane hybridization 

Membrane coating endows nanoparticles with specific biological 
functions. However, a single type of membrane packaging may not 
satisfy the complex practical applications. For example, RBCm has long 
blood circulation, but lacks targeting ability. Cancer cell membrane has 
the advantage of homologous targeting, but its immune escape ability is 
limited. Therefore, the combination of different cell membranes may 
provide multiple functions. For example, Peng et al. camouflaged the 
nanoparticles with a mixed membranes of RBCs and metastatic NCI- 
H1299 lung cancer cells (HRPD), which not only prolonged the circu-
lation time, but also enhanced targeting ability (Peng et al., 2021). 
Another example is the fusion of membranes from RAW264.7 and 4T1 
cells. The hybrid membrane coated with doxorubicin (DOX) loaded 
PLGA nanoparticles were prepared for the treatment of lung metastases 

Fig. 2. Tumor penetration, biodistribution 
and therapeutic effect of membrane bio-
mimetic nanocarriers constructed by lipid 
insertion. A) Schematic diagram of arginyl- 
glycyl-aspartate (RGD) peptide modified red 
blood cell membrane (RBCm) biomimetic 
carrier. B) Penetration ability in B16F10 
tumor cell spheres. C) Biodistribution of 
different carriers after 24 h. D) Lung and 
hematoxylin-eosin (H & E) staining images 
after different treatments. (Scale bar = 100 
μm) (Liu et al., 2018b). Copyright 2018, 
WILEY-VCH Verlag GmbH & Co. KGaA, 
Weinheim. (For interpretation of the refer-
ences to colour in this figure legend, the 
reader is referred to the web version of this 
article.)   
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from breast cancer. This membrane biomimetic preparation hybridized 
by macrophages and cancer cells has advantages of higher uptake ca-
pacity by tumor cells (Fig. 3B), increased distribution in the lung 
(Fig. 3C) and effective treatment against lung tumor metastasis (Fig. 3D 
and E) (Gong et al., 2020). 

4.3. Metabolic engineering 

Metabolic engineering is a method to change cell characteristics by 
regulating the natural biosynthetic pathway of cells. Metabolic sub-
strates are first combined with functional parts and then cultured with 
cells for uptake and metabolism. These unnatural conjugates participate 
in related cellular metabolic processes by hijacking natural biosynthetic 
pathways, and then anchor on the cell surface (Han et al., 2019). 
Metabolic engineering includes sugar engineering and lipid engineering. 
Sugar engineering relies on the production of oligosaccharides and sugar 
conjugates (Biz et al., 2019; Lee et al., 2012). And lipid engineering 
utilizes natural lipid synthesis, such as cell membrane modified cytidine 
5′- Diphosphate Choline pathway, some of which are usually metabo-
lized in combination with choline analogues. Various functions have 
been obtained on the surface of the membrane, especially through the 
orthogonal connection of the membrane (Paper et al., 2018; Ricks et al., 
2019; Tamura et al., 2020). 

4.4. Genetic modification 

Genetic modification refers to regulate the functional protein 
expression levels on the cell membrane by gene transfection for 

enhancing or obtaining specific functions. It has been reported that in-
flammatory endothelial cells recruit immune cells by up regulating the 
expression of VCAM-1, such as leukocytes expressing homologous ligand 
very advanced antigen-4 (VLA-4) (Nourshargh and Alon, 2014). To take 
advantage of this interaction, Zhang et al. gene transfected wild-type 
C1498 cell to overexpress VLA-4 and extracted the genetic modified 
membrane coated polymer nanoparticle core loaded with dexametha-
sone (DEX) for the treatment of pulmonary inflammation. The produced 
cell membrane biomimetic preparation showed higher affinity for target 
cells overexpressing VCAM-1 in in vitro experiment. Notably, compared 
with WT-NP, the accumulation of VLA-NP in the lung was significantly 
increased and it can effectively eliminate lung inflammation (Fig. 4) 
(Park et al., 2021). 

Cell membrane modification methods of lipid insertion, membrane 
hybridization, metabolic engineering, genetic modification enrich the 
function of cell membrane gifted by their initial cells, making it great 
promising for a more efficient lung targeting drug delivery, especially in 
the complex internal environment. Applications of these membrane 
modification methods for lung targeting were summarized in Table 2. It 
is believed that these methods will provide more inspiration for pro-
moting the application of cell membrane coating technology in the 
treatment of pulmonary diseases. 

5. Challenges and prospects 

Generally, the cell-derived membrane biomimetic nanocarriers 
possess several advantages including excellent biocompatibility, long- 
term internal circulation, immune escape, and inflammation/tumor 

Fig. 3. The cellular uptake efficiency, biodistribution and therapeutic effects of membrane biomimetic nanocarriers constructed by membrane hybridization. A) 
Schematic illustration of hybrid membrane coated nanoparticles. B) Confocal laser scanning microscope (CLSM) fluorescence images of cell uptake. (Scale bar = 50 
μm). C) Organ uptake of different carriers. D) Images of lung tumor nodules. E) Mean survival period after different treatments (Gong et al., 2020). Copyright 2022, 
BioMed Central Ltd. 
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targeting, which endow bright potential as an efficient and biocompat-
ible delivery strategy for the targeted therapy of diverse pulmonary 
diseases, such as lung cancer, pneumonia, asthma, pulmonary embolism 
and so on. Some advantages and limitations of cell membranes from 
diverse cell sources were summarized in Table 3. 

However, limitations of this novel delivery strategy require further 
optimizations. Firstly, functional surface proteins are often inactivated 
under various in vitro conditions, making the applications of cell mem-
brane camouflage nanocarriers being hindered by large-scale produc-
tion. Moreover, despite of the good biocompatibility of these cell 
membranes coated nanoparticles, the biological behavior in long-term 
circulation is so far not fully understood. Therefore, the biosafety of 
membrane biomimetic preparations is worth of further study. 

Another challenge is translating this delivery strategy to clinical 
application. Good manufacturing practice (GMP) is required to generate 
pure cell membrane with high yield, scalability, and reproducibility, 
which is a major challenge in the production of cell agents. In addition, 

most of the current studies are carried out on mice. However, the het-
erogeneous of the cell membrane proteins between mice and human 
beings may adversely impact the effectiveness and safety of this strategy 
when applied to human beings. 

6. Conclusion 

In conclusion, cell-derived membrane biomimetic nanocarriers have 
provided a promising way for the targeted treatment of pulmonary 
disease with high effectiveness and good biocompatibility. Although 
several limitations or weaknesses of this delivery strategy remain to be 
resolved, the outstanding advantages of cell-derived membrane coating 
have opened up a whole new way for the targeted treatment of pul-
monary disease. Further studies focused on the cell membrane modifi-
cations for improved delivery ability and the large-scale production of 
cell membrane coated nanovehicles will further promote their 
applications. 

Fig. 4. The biodistribution and pulmonary 
inflammation elimination effects of mem-
brane biomimetic nanocarriers constructed 
by genetic modification. A) Diagram of 
genetically engineered cell membrane coated 
nanoparticles with overexpression of very 
late antigen-4 (VLA-4) for inflammatory lung 
targeting. B) Biodistribution of membrane 
biomimetic carriers with or without genetic 
modification after intravenous injection. C) 
Interleukin 6 (IL-6) concentration in pulmo-
nary sites after different treatments. D) H & E 
staining images in lung tissue after different 
treatments (Park et al., 2021). Copyright 
2021, AAAS.   
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