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A B S T R A C T

Using fMRI and multivariate pattern analysis, we determined whether spectral and temporal acoustic features are
represented by independent or integrated multivoxel codes in human cortex. Listeners heard band-pass noise
varying in frequency (spectral) and amplitude-modulation (AM) rate (temporal) features. In the superior temporal
plane, changes in multivoxel activity due to frequency were largely invariant with respect to AM rate (and vice
versa), consistent with an independent representation. In contrast, in posterior parietal cortex, multivoxel rep-
resentation was exclusively integrated and tuned to specific conjunctions of frequency and AM features (albeit
weakly). Direct between-region comparisons show that whereas independent coding of frequency weakened with
increasing levels of the hierarchy, such a progression for AM and integrated coding was less fine-grained and only
evident in the higher hierarchical levels from non-core to parietal cortex (with AM coding weakening and inte-
grated coding strengthening). Our findings support the notion that primary auditory cortex can represent spectral
and temporal acoustic features in an independent fashion and suggest a role for parietal cortex in feature inte-
gration and the structuring of sensory input.
1. Introduction

In structuring the auditory scene, the brain must carry out two
fundamental computations. First, it must derive independent representa-
tions of component acoustic features so that task-relevant features can be
prioritized and task-irrelevant ones ignored. Second, to solve the well-
known “binding problem”, the brain must subsequently integrate these
separated representations into a coherent whole so that the features of a
relevant sound source can be tracked successfully in cluttered scenes.
Whether representations of stimulus features are independent or inte-
grated is a longstanding issue in psychology (Treisman and Gelade, 1980;
Ashby and Townsend, 1986) and neuroscience (Di Lollo, 2012; Soto
et al., 2018). Even when not explicitly framed using these terms, many
questions concerning sensory systems can be formalized in terms of
representational independence versus integration (Soto et al., 2018).

It is widely believed that auditory processing is hierarchically orga-
nized and that neural representations are progressively transformed from
independent to integrated codes as sensory information ascends the
auditory pathway (Rauschecker and Tian, 2000; Bizley and Cohen,
oglu).
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2013). Thus, while neurons in low-level regions might respond to single
stimulus features, higher-level neurons should show more complex tun-
ing properties and respond to conjunctions of features. Precisely where
along this continuum human primary auditory cortex (and regions
beyond) fit within this conception of the auditory system has been the
subject of debate.

Based on presumed similarities with the visual system, early models
proposed that representations in primary auditory cortex were primarily
independent, instantiated as topographically organized “feature maps”
(see Nelken et al., 2003). According to such accounts, the integration of
features is a computation that should most reliably be observed in
non-primary regions. However, animal physiology studies demonstrate
highly nonlinear neural responses already at the level of primary audi-
tory cortex, suggestive of an integrated coding scheme (deCharms et al.,
1998; Nelken et al., 2003; Chi et al., 2005; Wang et al., 2005; Chris-
tianson et al., 2008; Atencio et al., 2009; Bizley et al., 2009; Sadagopan
and Wang, 2009; Sloas et al., 2016). The extent to which this also applies
in humans remains unclear. While there are many sources of human
imaging evidence that are potentially relevant to this issue, particularly
15 February 2020
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Fig. 1. A) Spectrograms of the nine stimuli, with the spectrogram frequency axis
equally spaced on a scale of Equivalent Rectangular Bandwidth (ERB; Moore and
Glasberg, 1983) and smoothed to obtain a temporal resolution similar to the
Equivalent Rectangular Duration (Plack and Moore, 1990). This depiction more
accurately captures spectral representation in the ascending auditory system
than a spectrogram with a linear frequency axis. Note that the carrier fre-
quencies of the presented stimuli were equally spaced on a logarithmic (rather
than ERB) scale. The cyan- and magenta-colored text above each spectrogram
indicate the center carrier frequency and AM rate of the bandpass noise,
respectively. B) Statistical contrast matrices for testing the two main effects (of
Frequency and AM) and Frequency � AM interaction. These contrasts follow the
standard form for the two main effects and interaction under a 3 � 3 design
(Henson and Penny, 2005). From these three contrasts, we could test for inde-
pendent and integrated coding (see Methods section for details). C) Multivariate
pattern distinctness estimates for each effect of interest, when activity patterns
were simulated using an independent representation (left-side graph) or an in-
tegrated representation (right-side graph). Each data point represents the
pattern distinctness for a single iteration (“participant”) of the simulation. Freq,
Frequency. D, Pattern distinctness.
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investigations of how low-level acoustic features and higher-level cate-
gories are represented in cortical activity (Davis and Johnsrude, 2003;
Zatorre et al., 2004; Cusack, 2005; Kumar et al., 2007; Staeren et al.,
2009; Leaver and Rauschecker, 2010; Teki et al., 2011; Giordano et al.,
2013; Norman-Haignere et al., 2015; Overath et al., 2015; Allen et al.,
2017), fewer studies have directly tested and quantified the extent of
representational independence versus integration in human cortex.

In the current study, we used fMRI and multivariate pattern analysis
to determine the extent to which spectral and temporal acoustic features
are represented by independent or integrated multivoxel codes and how
those codes are expressed over the human cortical hierarchy. Participants
listened to band-pass noise varying across stimuli in frequency (a
spectrally-based feature) and amplitude modulation (AM) rate (tempo-
rally-based; see Fig. 1A). We chose to investigate these two acoustic
features as they are sufficient alone to characterize much of the infor-
mation present in biologically important sounds such as speech (Shannon
et al., 1995; Roberts et al., 2011). An approach based on MANOVA
(Allefeld and Haynes, 2014) allowed us to estimate the independent
contributions of frequency and AM features to the observed multivoxel
patterns, as opposed to nonlinear interactions between the features that
are a signature of integrated coding (Kornysheva and Diedrichsen, 2014;
Erez et al., 2015). Moreover, by acquiring whole-brain fMRI, we were
able to characterize multivoxel representations across the entire human
cortex, in contrast to more localized physiological recordings in animals.

2. Methods

2.1. Participants

Twenty participants (eleven female), aged between 18 and 27 years
(mean ¼ 23, SD ¼ 2.4), were tested after being informed of the study’s
procedure, which was approved by the research ethics committee of
University College London. All reported normal hearing, normal or
corrected-to-normal vision, and had no history of neurological disorders.
Our sample size is in line with (or exceeds that of) related studies with a
priori unknown effect sizes (e.g. Linke et al., 2011; Giordano et al., 2013;
Allen et al., 2017; Santoro et al., 2017). While recent methods work
recommends larger sample sizes for (univariate) fMRI studies (Geuter
et al., 2018; Turner et al., 2018), we note that this recommendation was
made in the context of more complex cognitive paradigms each lasting
around 10min. Thus, both cross- and within-participant variability might
be expected to be greater than for the simpler sensory paradigm
employed here conducted over a longer scanning time of 50 min (for a
discussion of the trade-off between sample size and scan duration, see
Nee, 2019).

2.2. Stimuli

The stimulus consisted of narrow (third of an octave) bandpass noise,
amplitude modulated sinusoidally with 80% depth (see Fig. 1A). Each
sound was presented for 1 s and varied across trials in center carrier
frequency (from hereon, “frequency”) and amplitude modulation rate
(“AM”). Frequency (500, 1300 and 3380 Hz) and AM (4, 10 and 25 Hz)
were equally spaced on a logarithmic scale. Importantly for the purpose
of assessing independent and integrated feature coding (see First-level
statistics section below), frequency and AM varied across stimuli in an
orthogonal fashion, such that every frequency was paired with every AM
(i.e. nine stimuli in total, arranged as a 3 � 3 factorial design). The
relatively slow AM rates precluded the perception of pitch associated
with the temporal modulation. In addition, the carrier center frequencies
and bandwidths were chosen to avoid detectable spectral cues from
resolved sidebands in the stimulus (Moore, 2003). Sidebands will be
most detectable for sounds with fast AM rates and low carrier frequencies
(Moore and Glasberg, 2001). In the current study, this corresponds to the
stimulus with the 500 Hz carrier frequency and 25 Hz AM rate. However,
the sidebands resulting from this stimulus (500 þ 25 ¼ 525 Hz and
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Fig. 2. Whole-cortex multivariate searchlight analysis. A) Group-level statistical
maps for each effect of interest, overlaid onto coronal and axial sections of the
group-averaged structural (in MNI space) and thresholded voxelwise at p < .005
and clusterwise at p < .05 (FWE corrected for multiple comparisons). B) ROI
analysis. Each data point shows the pattern distinctness D, averaged over the
searchlight map within each ROI and over participants. Error bars represent the
standard error of the mean. Asterisk symbols above each data point indicate
significantly above-zero pattern distinctness, FDR corrected for multiple com-
parisons across contrasts, ROIs and hemispheres. ***p < .001, **p < .01, *p
< .05.
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500–25 ¼ 475 Hz) fall inside the auditory filter centered at 500 Hz with
an equivalent rectangular bandwidth (ERB) of 79 Hz (Moore and Glas-
berg, 1983).

Stimuli were matched in terms of their RMS amplitude and shaped
with 20 ms raised-cosine onset and offset ramps. Bandpass noise was
synthesized independently on each presentation (with a sampling rate of
44,100 Hz) and delivered diotically through MRI-compatible insert
earphones (S14, Sensimetrics Corporation). To compensate for reso-
nances in the frequency response of the earphones, the stimuli were
digitally preprocessed using the filters and software provided with the
earphones.

2.3. Procedure

Stimulus delivery was controlled with Cogent toolbox (http://www.
vislab.ucl.ac.uk/cogent) in Matlab (MathWorks). Participants were
scanned for five runs, each lasting around 10 min consisting of sixteen
repetitions of the nine stimuli. For one participant, there was insufficient
time to scan for the fifth run because of technical difficulties. Stimuli
were grouped into blocks of eighteen sounds within which all nine
stimuli appeared twice and in random order. The inter-stimulus interval
ranged uniformly between 2000 and 4000 ms.

Participants were instructed to listen carefully to the sounds while
looking at a central fixation cross and press a button (with their right
hand) each time a brief (150 ms duration) white-noise interruption
occurred during sound presentation. These white-noise interruptions
were unmodulated in their amplitude profile and occurred on a small
percentage (~6%) of stimuli (once every block of eighteen sounds).
Group performance was near ceiling, confirming engagement with the
task. The average hit rate was .98 (ranging from 0.8 to 1 across partici-
pants; SEM ¼ 0.014) with no false alarms.

To estimate the perceived saliency of the sounds, two participants
from the main fMRI experiment and four new participants (two female;
mean age ¼ 29 years, SD ¼ 4) completed a short behavioral session
similar in procedure to Petsas et al. (2016). These participants listened to
all pairwise combinations of the nine sounds (eight pairs for each of the
nine sounds; separated by 200 ms of silence) and were asked to judge on
each trial which of the two sounds was more salient. Participants were
told that saliency refers to how much a sound would grab their attention.
Pairs were presented three times in random order, with the order of the
sounds within a pair counterbalanced across trials.

To estimate perceived loudness, we used the loudness model of Moore
et al. (2016), as implemented in Matlab (http://hearing.psychol.cam.ac.
uk/TVLBIN/tv2016Matlab.zip). As the model output differs slightly for
different noise samples of the same stimulus, we generated an entire
(single-participant) stimulus set in the same way as was done for the
main experiment which we submitted to the model. We computed the
time-varying long-term loudness, averaged over the duration of the
stimulus and across noise samples for each of the nine stimuli.

2.4. Image acquisition

Imaging data were collected on a Siemens 3 T Quattro MRI scanner
(http://www.siemens.com) at the Wellcome Trust Center for Human
NeuroImaging, University College London. A total of 175 echo planar
imaging (EPI) volumes were acquired per run, using a 32-channel head
coil and continuous sequence (TR ¼ 3.36 s; TE ¼ 30 ms; 48 slices
covering the whole brain; 3 mm isotropic resolution; matrix size ¼ 64 �
74; echo spacing ¼ 0.5 ms; orientation ¼ transverse). After the third run,
field maps were acquired (short TE¼ 10ms; long TE¼ 12.46 ms). During
the functional scans, we also obtained physiological measures of each
participant’s breathing and cardiac pulse. Because of technical issues,
physiological measures were not available for two participants. The
experimental session concluded with the acquisition of a high-resolution
(1 � 1 � 1 mm) T1-weighted structural MRI scan.

The randomized presentation order of the nine stimuli was employed
3

to sensitively detect between-stimulus differences in BOLD signal
(Josephs and Henson, 1999). However, our experimental design also
permitted detection of sound versus implicit baseline as we randomized
the ISIs uniformly between 2 and 4 s (equivalent to 3–5 s stimulus onset
asynchrony). Although this stimulus timing is fast relative to the duration
of the haemodynamic response function (which peaks around 5 s), the
randomization of ISIs sufficiently enabled the detection of BOLD signal
variations relating to sound versus baseline. This is confirmed by in-
spection of the predicted BOLD timeseries and by the parameter esti-
mates in superior temporal plane regions, which were reliably greater
than baseline (shown in Figure 3).

http://www.vislab.ucl.ac.uk/cogent
http://www.vislab.ucl.ac.uk/cogent
http://hearing.psychol.cam.ac.uk/TVLBIN/tv2016Matlab.zip
http://hearing.psychol.cam.ac.uk/TVLBIN/tv2016Matlab.zip
http://www.siemens.com
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2.5. Image processing

fMRI analysis was performed in SPM12 (http://www.fil.ion.ucl.ac.
uk/spm). After discarding the first three volumes to allow for magnetic
saturation effects, the remaining images were realigned and unwarped to
the first volume to correct for movement of participants during scanning.
Also at the unwarping stage, the acquired field maps were used to correct
for geometric distortions in the EPI due to magnetic field variations.
Realigned images were co-registered to the mean functional image and
then subjected to multivariate statistical analysis, generating searchlight
maps from unsmoothed data in each participant’s native space (see First-
level statistics section below). Searchlight maps were subsequently
normalized to the Montreal Neurological Institute (MNI) template image
using the parameters from the segmentation of the structural image
(resampled resolution: 2 � 2 � 2 mm) and smoothed with a Gaussian
kernel of 6 mm full-width at half-maximum. Where additional univariate
analyses are reported, realigned images were spatially normalized and
smoothed first before statistical analysis.
2.6. First-level statistics

Statistical analysis was based on the general linear model (GLM) of
each participant’s fMRI time series, using a 1/128 s highpass filter and
AR1 correction for auto-correlation. The design matrix comprised the
auditory stimulus events, each modeled as a stick (delta) function and
convolved with the canonical haemodynamic response function. Sepa-
rate columns were specified for each of the nine stimuli, in addition to a
column for target sounds (to remove variance associated with the white
noise interruptions and the button presses). Additional columns were
specified for the six movement parameters and the mean of each run.
Cardiac and respiratory phase (including their aliased harmonics) as well
as heart rate and respiratory volume were modeled using an in-house
Matlab toolbox (Hutton et al., 2011). This resulted in fourteen physio-
logical regressors in total: six each for cardiac and respiratory phase and
one each for heart rate and respiratory volume.

For statistical inference, we used cross-validated multivariate analysis
of variance (Allefeld and Haynes, 2014), as implemented in the cvMA-
NOVA toolbox in Matlab (version 3; https://github.com/allefeld/
cvmanova). For each participant, this method measures the pattern
distinctness D, a cross-validated version of one of the standard multi-
variate statistics: Lawley-Hotelling’s trace.

Lawley-Hotelling’s trace (ΔLH) quantifies the amount of multivariate
variance explainable by an experimental contrast, in units of error
variance:

ΔLH ¼B’

ΔX
’XBΔP

where BΔ are the parameter contrasts, X is the design matrix and
P

is the
error covariance matrix. The pattern distinctness D is derived by addi-
tionally cross-validating the data using a leave-one-run-out procedure
(for further details, see Allefeld and Haynes, 2014). Cross-validation
ensures that the expected value of D is zero if two voxel patterns are
not statistically different from each other, making D a suitable summary
statistic for group-level inference (e.g. with the one-sample t-test). Note
that because of this cross-validation, D can sometimes be negative if its
true value is close to zero in the presence of noise.

In contrast to classification accuracy from pattern decoders, which is
dependent on the particular algorithm used as well as the amount of data
and partitioning into training and test sets, D is a clearly interpretable,
standardized effect size (for examples of previous applications, see
Guggenmos et al., 2016; Christophel et al., 2017, 2018; Dijkstra et al.,
2017). When applied to the simple case of only two stimuli, D is a
measure of between-stimulus pattern dissimilarity and is closely related
to the (cross-validated) Mahalanobis distance, which has been demon-
strated to be a more reliable and accurate metric for characterizing
4

multivoxel patterns than the correlation or Euclidean distance (Krie-
geskorte et al., 2006; Ejaz et al., 2015; Walther et al., 2016). Like the
Mahalanobis distance, D takes into account the spatial structure of the
noise (GLM residuals) by normalizing the multivoxel variation for an
experimental effect by the noise covariance between voxels. As D is ob-
tained from the GLM, cvMANOVA can also be used to test more complex
contrasts such as the main effects and interactions of a factorial design.
For the 3 � 3 design of the present study, the contrast matrices for the
two main effects and interaction take the standard form (Henson and
Penny, 2005) and are shown in Fig. 1B.

We tested the extent to which frequency and AM features are repre-
sented by independent or integrated multivoxel codes by examining
three effects of interest. If frequency and AM features are represented in
an integrated fashion, then changes in these two features should combine
nonlinearly (non-additively) to influence multivoxel activity patterns
(see Kornysheva and Diedrichsen, 2014; Erez et al., 2015). In other
words, the effect of frequency should differ depending on AM (and vice
versa). Thus, the first effect of interest was the interaction between fre-
quency and AM and quantified the extent of integrated coding. If on the
other hand, frequency and AM features are coded independently, then
changes in these two features should result in a linear (additive) effect on
activity patterns. An independent effect implies that changes in voxel
patterns attributable to the frequency feature remain invariant with
respect to AM (and vice versa): there is no interaction. Within the
cvMANOVA framework, the extent of independence can therefore be
quantified by subtracting the interaction from the main effects as follows
(see equation 19 in Allefeld and Haynes, 2014):

Independent coding of frequency¼DðFreqÞ � 1
LðFreqÞ � 1

DðInteractionÞ

Independent coding of AM¼DðAMÞ � 1
LðAMÞ � 1

DðInteractionÞ

where D(Freq), D(AM) and D(Interaction) are the pattern distinctness
estimates for the main effects of frequency, AM and the interaction,
respectively. L(Freq) and L(AM) are the number of levels for the fre-
quency and AM factors, respectively (for the current design, L(Freq) ¼
L(AM) ¼ 3). Allefeld and Haynes (2014) expressed such contrasts as
measures of “pattern stability” but are equivalently considered measures
of independent coding (Kornysheva and Diedrichsen, 2014).

Computational simulations confirm that the above effects of interest
capture the presence of independent and integrated representations, in
line with previous modeling work and applications in the visual and
motor domains (Allefeld and Haynes, 2014; Kornysheva and Die-
drichsen, 2014). For each of twenty “participants” and nine stimuli, we
generated synthetic activity patterns over 123 voxels consisting of the
true underlying pattern (normal random vector) and a noise component
that was generated independently for each of five “runs” and sixteen
repetitions of the nine stimuli. These synthetic data were then submitted
to cvMANOVA resulting in a pattern distinctness estimate for each
participant and effect of interest.

Two versions of the simulation were run, differing in the generative
model used to produce the voxel patterns. In the first version, frequency
and AM features were represented independently. That is, voxel patterns
were generated separately for the two features and summed together to
obtain voxel patterns (Y) for each of the nine stimuli with carrier center
frequency f and AM rate m:

Yf,m ¼ Ff þ Tm þ ef,m

where F and T denote, respectively, the voxel pattern representations for
the frequency and AM features and e the noise.

In the second version, frequency and AM were represented in an in-
tegrated fashion by generating a unique pattern for each of the nine
stimuli. Thus, in this version of the simulation, the representation of
frequency is inseparable from that of AM:

http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm
https://github.com/allefeld/cvmanova
https://github.com/allefeld/cvmanova
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Yf,m ¼ FTf,m þ ef,m
Here FT denotes the true pattern that was generated uniquely for each
stimulus. In both versions, the resulting patterns were scaled to have the
same mean and variance.

In the present version of the simulations, the variance of the noise was
set to 10 times that of the true underlying pattern. We could vary this
ratio to modulate the overall effect sizes in the simulations and to match
those observed in the experimental data. However, our goal here was not
to recreate the precise conditions of the experiment. This would require
modeling the spatiotemporal correlation of within-subject noise and
cross-subject variability, which is outside the scope of the current study.
Rather, through the use of a generative model, we wished to provide a
more formal definition of independent and integrated coding. In addi-
tion, we wished to confirm that in principle, our experimental contrasts
can indeed capture independent and integrated coding in the specific
context of our 3 � 3 factorial design. For more detailed simulations that
validate the current methods, see Allefeld and Haynes (2014) and Kor-
nysheva and Diedrichsen (2014).

As Fig. 1C shows, when frequency and AM were simulated as inde-
pendent representations, the pattern distinctness D was significantly
greater than zero when testing the independent (but not integrated) cod-
ing effects of interest (frequency: t(19)¼ 29.2, p< .001; AM: t(19)¼ 35.1,
p < .001; Integrated: t(19) ¼ �0.104, p ¼ .541). In contrast, when fre-
quency and AMwere represented in an integrated fashion, the reverse was
true with a significant effect of integrated (but not independent) coding
(frequency: t(19) ¼ �1.39, p ¼ .910; AM: t(19) ¼ �0.429, p ¼ .664; In-
tegrated: t(19)¼ 33.0, p< .001). This pattern of results was supported by a
repeated measures ANOVA in which we observed a significant two-way
interaction between simulation type (independent versus integrated) and
effect of interest (frequency/AM/integrated; F(2,30) ¼ 737.2, p < .001).

cvMANOVA was performed as a searchlight analysis (Kriegeskorte
et al., 2006) using spheres with a radius of three voxels (~9 mm; ~123
voxels of 3� 3� 3mm) and constrained to voxels within the whole-brain
mask generated by SPM during model estimation. This whole-brain mask
does not explicitly exclude white matter voxels but inspection of the
overlap with a probabilistic white matter mask revealed no overlap with
high probability (>80%) white matter voxels. Moreover, the noise
normalization performed by cvMANOVA should in principle automati-
cally downweight noise from white matter voxels, circumventing the
need to explicitly distinguish between gray and white matter. Thus, for
each participant and effect of interest, a whole-brain searchlight image
was generated in which each voxel expressed the pattern distinctness D
over that voxel and the surrounding neighborhood. As recommended by
Allefeld and Haynes (2014), to correct for searchlight spheres near the
brain mask boundaries containing fewer voxels, the estimate of D at each
voxel was adjusted by dividing by the square root of the number of voxels
within the searchlight.
2.7. Group-level statistics

For whole-cortex statistical analysis of the multivariate data, search-
light images were submitted to a group-level one-sample t-test under
minimal assumptions using the nonparametric permutation test (Nichols
and Holmes, 2002). In this procedure, the sign of the pattern distinctness
at each voxel for each subject was randomly flipped. The one-sample
t-statistic was subsequently computed at each voxel, the image thresh-
olded and the largest cluster size noted. By repeating these steps over a
number of iterations (here 5000), we could build a null distribution of
cluster sizes against which to compare the observed cluster size at each
voxel. Note that because the true pattern distinctness can never be
negative, a one-sample t-test in this context effectively provides
fixed-effect inference (Allefeld et al., 2016). This is similar to t-tests on
classification accuracies, the true values of which can never be below
chance. Whole-cortex statistics for the univariate analysis were also
5

based on the permutation test. Here we used a one-sample t-test for
comparing sound-evoked activation with the implicit baseline and
repeated measures ANOVA with the factors frequency and AM to test
between-stimulus differences. When using ANOVA, the null distribution
was created by randomly shuffling the nine stimulus labels. We con-
strained all analyses to voxels within the cortex (as defined by the
probabilistic Harvard-Oxford cortical mask thresholded at 25%, distrib-
uted with FslView https://fsl.fmrib.ox.ac.uk). Statistical maps were
thresholded voxelwise at p < .005 and clusterwise at p < .05 (familywise
error [FWE] corrected for multiple comparisons).

Additional region of interest (ROI) analyses were conducted by aver-
aging over the searchlight and univariate contrast images in locations
anatomically defined by the Jülich and Harvard-Oxford probabilistic
atlases (distributed with FslView) and thresholded at 30%. This ROI
analysis was conducted parametrically (i.e. without using the permutation
test). The ROIs included primary auditory cortex (area Te1.0 in middle
Heschl’s gyrus [HG]) and the non-primary auditory areas Te1.1 (poster-
omedial HG), Te1.2 (anterolateral HG), planum polare (PP) and planum
temporale (PT). We also tested the posterior parietal region revealed in the
whole-cortex searchlight analysis, to enable a comparison of effect size
with the auditory cortical ROIs and to statistically test for between-region
differences. To avoid statistical “double-dipping” (Kriegeskorte et al.,
2009), we used a leave-one-subject-out procedure (Esterman et al., 2010)
in which the whole-cortex second level t-test was repeatedly re-estimated,
each time leaving out one participant, and using the resulting left parietal
cluster as the ROI for the left out subject (cluster defining threshold p <

.005 uncorrected). To obtain the homologous cluster in the right hemi-
sphere, each left parietal cluster was left-right flipped using MarsBaR
toolbox for SPM (http://marsbar.sourceforge.net). This enabled us to
statistically compare effects in parietal cortex with those in the superior
temporal plane ROIs (which were distributed in both hemispheres). To
reduce computation time, these leave-one-subject-out t-tests were also
conducted parametrically in SPM. To facilitate interpretation, ROI effect
sizes for the multivariate analysis are reported after transforming the
adjusted pattern distinctness back into the original estimate (by multi-
plying by a constant factor of√123 i.e. the typical number of voxels within
each searchlight).

Classical multidimensional scaling (MDS) was performed on single-
participant dissimilarity matrices in selected ROIs. The resulting MDS
solutions were averaged over participants after Procrustes alignment to
account for the arbitrary rotation induced by the MDS procedure.
Because Procrustes alignment potentially removes some of the true inter-
individual differences, the standard error ellipses in Fig. 4B should be
considered a lower-bound estimate of cross-participant variability (Ejaz
et al., 2015). To further visualize the dissimilarity relationships, we
subjected the dissimilarity matrices to an agglomerative hierarchical
clustering procedure (based on complete-linkage) and visualized the
results with dendrograms (see Nili et al., 2014). Dissimilarity matrices
were formed by computing the pattern distinctness of all pairwise com-
parison contrasts between the nine stimuli and subjected to a group-level
one-sample t-test. Given that the goal of this analysis was to better
visualize effects of interest already identified as significant (i.e. the in-
dependent and integrated contrasts in the whole-cortex and ROI ana-
lyses), we thresholded these dissimilarity matrices at p < .05
uncorrected.

3. Results

3.1. Cortical distribution of independent and integrated codes

We used cross-validated MANOVA (Allefeld and Haynes, 2014) to
determine the extent to which cortical activity patterns show evidence
for 1) independent coding of frequency, in which the influence of fre-
quency was invariant with respect to AM, 2) independent coding of AM,
in which the influence of AM was invariant with frequency or 3) inte-
grated coding, in which the influences of frequency and AM were

https://fsl.fmrib.ox.ac.uk
http://marsbar.sourceforge.net


E. Sohoglu et al. NeuroImage 217 (2020) 116661
interdependent. This was achieved by testing whether the pattern
distinctness D over a searchlight sphere or ROI was significantly above
zero for the independent and integrated effects of interest (see First-level
statistics in the Methods section).

Using a whole-cortex searchlight analysis (Kriegeskorte et al., 2006),
we detected large clusters in the superior temporal plane bilaterally
(extending into the superior temporal gyrus) that showed significant
independent coding of frequency and AM (Fig. 2A and Table 1). Within
these regions of auditory cortex, there was no evidence for integrated
coding after correcting for multiple comparisons over the whole cortex.
Instead, significant integrated coding was observed in a cluster outside of
classically defined auditory cortex in the left posterior parietal lobe,
extending over the inferior and superior portions of the parietal lobule
and the intraparietal sulcus.

We next conducted an ROI analysis in which independent and inte-
grated coding was tested in anatomically defined regions in the superior
temporal plane as well as the posterior parietal region identified in the
whole-cortex searchlight analysis. We first tested each ROI separately,
using false discovery rate (FDR) correction for multiple comparisons
across 6 ROIs x 2 hemispheres x 3 effects of interest (Genovese et al.,
2002). As expected from the earlier whole-cortex analysis, significant
independent coding of both frequency and AM was observed in all
auditory ROIs but not in posterior parietal cortex (shown in Fig. 2B). The
effect size for independent coding of AM (mean D ¼ 0.02–0.04 over
auditory regions) was smaller than for frequency, amounting to no more
than 8% of the frequency effect size (mean D ¼ 0.5–1.0). Also expected
was significant integrated coding in the left posterior parietal ROI.
However, additional effects of integrated coding were observed in right
primary auditory cortex (area Te1.0), right anterolateral auditory area
Te1.2 and right PT. The effect size for integrated coding (mean D ¼
0.01–0.02 over right Te1.0, Te1.2, PT and left parietal) was considerably
smaller than that for independent coding (50% of the AM effect size and
no more than 4% of the frequency effect size).

Thus, the ROI analysis above suggests that in the superior temporal
plane, cortical activation patterns show a mixture of components: a
strong independent code and a weak integrated code. In contrast in pa-
rietal cortex, only an integrated code is present. In support of this pattern
of results, we conducted repeated measures ANOVA with representation
type (frequency/AM/integrated), region (primary/nonprimary/parietal)
and hemisphere as factors. We observed a significant interaction between
representation type and region (F(4,76) ¼ 154, p < .001). No factors
involving hemisphere were significant and so in subsequent
Table 1
MNI coordinates and anatomical labels for significant multivariate searchlight effects

Effect of Interest Hemisphere Region Label

Frequency Left Te1.0
Superior Temporal Gyrus
Superior Temporal Gyrus

Right Rolandic Operculum
Superior Temporal Gyrus
Te1.2

AM Left Superior Temporal Gyrus
Superior Temporal Gyrus
Superior Temporal Gyrus

Right Superior Temporal Gyrus
Superior Temporal Gyrus
Inferior Frontal Gyrus

Integrated Left Intraparietal Sulcus / Inferior Parietal Lo
Superior Parietal Lobule

Saliency Left Superior Temporal Gyrus
Superior Temporal Gyrus
Superior Temporal Gyrus

Right Superior Temporal Gyrus
Te1.0
Insula
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comparisons, we averaged the data over hemispheres. To further char-
acterize the representation type by region interaction, we separately
assessed how the magnitude of independent and integrated coding
changed along successive stages of the cortical hierarchy. For indepen-
dent coding of frequency, there was a significant decrease in pattern
distinctness in non-primary versus primary auditory cortex (t(19) ¼
�12.2, p < .001). This was also the case for parietal versus non-primary
auditory cortex (t(19) ¼ �11.8, p < .001). The pattern was less clear-cut
for independent coding of AM and integrated coding. Like the results for
the frequency feature, there was a significant decrease in independent
coding of AM in parietal versus non-primary auditory cortex (t(19) ¼
�7.67, p < .001). However, the equivalent comparison for non-primary
versus primary auditory cortex was not significant (t(19) ¼ �1.21, p ¼
.120). For integrated coding, there was an increase in parietal versus non-
primary auditory cortex (t(19) ¼ 1.82, p < .05). However, there was no
significant difference between non-primary and primary auditory regions
(t(19) ¼ �0.797, p ¼ .218). In summary, although there was a clear and
fine-grained change across hierarchical levels in the strength of fre-
quency coding (primary vs. non-primary auditory cortex, non-primary
auditory vs. parietal cortex), such a change for AM and integrated cod-
ing was less fine-grained and only evident in the higher hierarchical
levels (non-primary vs. parietal cortex).

Additional univariate analyses were conducted which were focused
on the strength of activation. As expected, at the whole-cortex level,
sound presentation was associated with increased BOLD responses in the
superior temporal plane bilaterally (Fig. 3A and Table 2). No significant
sound-evoked activations were observed in parietal cortex. Using
repeated measures ANOVA (with frequency and AM as factors), we also
evaluated between-stimulus differences in activation. Note that the main
effects of frequency and AM for this analysis are conceptually different to
the independent coding effects of the multivariate analysis. Here the
main effect of frequency, for example, simply captures activation dif-
ferences attributable to this factor rather than quantifying the extent of
frequency invariance when AM rate changes. We observed significant
effects of frequency and AM in the superior temporal plane bilaterally
that survived whole-cortex testing but no significant frequency � AM
interaction (Fig. 3A and Table 2). When conducting this analysis in the
ROIs (shown in Fig. 3B), main effects of frequency and AM were present
in auditory cortical regions but not in parietal cortex (FDR corrected as
before, across 6 ROIs x 2 hemispheres x 3 effects of interest). Consistent
with previous work (see Baumann et al., 2013; Moerel et al., 2014),
follow-up t-tests in ROIs showing main effects showed a low carrier
.

Extent t-value x y z

6056 14.2923 -44 -22 6
13.1983 -48 -26 -2
6.2306 -54 -44 12

5987 14.0351 50 -20 14
12.1458 50 -22 0
8.3851 58 -6 -4

2721 7.9246 -50 -30 14
5.8524 -42 -14 0
5.1419 -52 -36 6

2384 7.0587 62 -14 -2
5.7386 62 -28 8
3.3739 56 12 10

bule 445 4.5942 -32 -68 32
4.3273 -28 -72 50

5446 17.963 -52 -30 8
8.139 -50 -16 -6
7.021 -58 -10 0

5409 14.961 56 -24 8
14.005 52 -16 4
13.794 42 -14 0



(caption on next column)

Fig. 3. Univariate analysis. A) Whole-cortex analysis for contrasts of sound
versus implicit baseline and main effects of frequency and AM. Images have
been thresholded voxelwise at p < .005 and clusterwise at p < .05 (FWE cor-
rected for multiple comparisons). B) ROI analysis. Data represent the BOLD
signal change averaged over the spatial extent of each ROI and across partici-
pants. Error bars represent the standard error of the mean. Asterisk symbols
indicate a significant main effect of frequency (in cyan) or AM rate (in magenta),
FDR corrected for multiple comparisons across contrast, ROI and hemisphere.
***p < .001, **p < .01, *p < .05.
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frequency preference in areas Te1.0 and Te1.2 bilaterally (all p’s <

0.001) and a high carrier frequency preference in right Te1.1 (t(19) ¼
3.46, p < .01). For the main effect of AM, the preference was for slow
modulation rates throughout (all p’s < 0.01; consistent with data from
Overath et al., 2012). No significant interaction between frequency and
AM was observed in any of the ROIs tested (even with an uncorrected
threshold).

3.2. Multidimensional scaling and cluster analysis

Having established the cortical distribution of independent and in-
tegrated codes, we next used classical MDS to further characterize those
codes (Kriegeskorte and Kievit, 2013). In three selected ROIs (right
Te1.0, right PT and left parietal), we computed the pattern distinctness
for all pairs of stimuli and assembled the results into dissimilarity
matrices. These ROIs were chosen as together they fully sample the
transition from auditory core to non-core to parietal cortex and show a
mixture of independent and integrated coding profiles. As shown in
Fig. 4A, we first averaged the matrices over participants and thresholded
them based on a group-level one-sample t-test (see Walther et al., 2016).
Given that we were interested in further characterizing independent and
integrated effects previously shown as significant, we used an uncor-
rected p < .05 threshold. MDS was performed to project the multivoxel
dissimilarity structure onto a simple two-dimensional space (Fig. 4B). In
this visualization, stimuli that are close together are associated with
similar multivoxel activation patterns while stimuli that are far from each
other are associated with dissimilar patterns.

In right primary auditory cortex (area Te1.0) and right PT, frequency
and AM features were automatically projected by the MDS solution onto
separate dimensions, despite the method having no information as to the
stimulus features. Frequency was carried by the first MDS dimension
(shown as the x-axis in Fig. 4B) while AM was carried by the second
dimension (y-axis). This is consistent with our previous observation of
these regions representing frequency and AM in a largely independent
manner.

In contrast to auditory cortex, MDS for the left parietal ROI did not
clearly separate frequency and AM features. The MDS solutions instead
suggest that activation patterns in this region were modulated by
particular conjunctions of carrier frequency and AM rate (e.g. F500AM10
and F3380AM25). This is again consistent with our previous observation
that parietal cortex is characterized solely by an integrated code.

Visual inspection of the MDS plots in superior temporal regions sug-
gests that carrier frequency was the main driver of multivoxel pattern
dissimilarity. That is, multivoxel patterns were most dissimilar when
evoked by different carrier frequencies. Indeed, hierarchical clustering
analysis showed that multivoxel dissimilarities clearly clustered accord-
ing to carrier frequency in right Te1.0 and PT (Fig. 4C). In contrast in the
left parietal ROI, this analysis failed to reveal a clear clustering. These
results are consistent with the effect sizes for independent and integrated
coding shown previously in Fig. 2B.

3.3. Saliency analysis

In the visual domain, parietal cortex has repeatedly been implicated
in the processing of bottom-up saliency (Arcizet et al., 2011; Bogler et al.,
2011). We therefore asked to what extent the integrated coding effect
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observed in posterior parietal cortex could be explained by
between-stimulus differences in perceived saliency. In a separate
behavioral session, listeners listened to all pairwise combinations of the
nine sounds and judged which sound in each pair was more salient. We
then estimated the perceived saliency of each sound as the percentage of
trials the sound was chosen as more salient (shown in Fig. 5A as thick
black line). Because saliency is related (although not identical) to loud-
ness (Liao et al., 2015), we also show for comparison the loudness of the
stimuli as predicted by the model of Moore et al., (2016) (shown in
Fig. 5A as thick blue line).

Repeated measures ANOVA of the saliency judgments, with fre-
quency and AM rate as factors, revealed a significant main effect of fre-
quency (reflecting higher saliency for increasing frequency; F(2,10) ¼
31.5, p< .001) and a significant main effect of AM rate (reflecting higher
saliency for the middle AM rate; F(2,10) ¼ 6.34, p < .025). However, the
interaction between frequency and AM rate was not significant (F(4,20)
¼ 0.808, p ¼ .512). To directly test whether there was positive evidence
for the null effect of no interaction, we also conducted repeated measures
ANOVA as a Bayesian analysis (Rouder et al., 2016, 2017; Marsman and
Wagenmakers, 2017). We contrasted a model which contained bothmain
effects of frequency and AM and their interaction, with a null model that
had the same structure but lacked the interaction (both models were
Fig. 4. Visualizations of multivariate pattern distinctness A) Matrices expressing the m
within each ROI and over participants. Warm colors indicate multivoxel patterns tha
matrices are shown thresholded based on a group-level one-sample t-test (see Walth
Procrustes alignment across participants (first two dimensions plotted only). Each dot
The cyan number beside each data point indicates the carrier center frequency of the b
showing the results of hierarchical clustering.
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assigned a prior probability of 0.5). This analysis indicated that the null
model was 5 times more likely than the alternative model (Bayes Factor
¼ 5.31). As the integrated coding effect in parietal cortex is defined by
the interaction between frequency and AM, the absence of an interaction
in the saliency judgments is therefore inconsistent with a saliency-based
account of the integrated coding effect in parietal cortex, or indeed, in
any other of the regions in which integrated coding was observed.

As a further test of a saliency-based account, we used representational
similarity analysis (RSA) to relate listeners’ saliency judgments to the
observed multivoxel patterns (Kriegeskorte and Kievit, 2013). For each
pair of sounds presented in the saliency judgment task, we pooled sa-
liency judgments over trials and participants and computed the absolute
difference in the percentage of observations each sound in the pair was
chosen as more salient. From this we assembled a distance matrix
quantifying the difference in saliency between the two sounds of all
presented pairs (Fig. 5B). This “saliency distance”matrix provides a more
detailed characterization of between-stimulus differences in saliency
than the summary measure presented in Fig. 5A, which we could then
correlate with the multivoxel dissimilarity matrix observed in each
searchlight across the cortex of individual participants. As shown in
Fig. 5C, the (Fisher-transformed) Spearman correlation between the sa-
liency and multivoxel dissimilarity structure was significantly above zero
ultivoxel dissimilarity for all pairs of stimuli, averaged over the searchlight map
t are highly dissimilar while cool colors indicate less dissimilarity. Dissimilarity
er et al., 2016) at p < .05 uncorrected. B) Group-averaged MDS solutions after
and surrounding ellipse represent the mean and its standard error, respectively.
andpass noise while the magenta number indicates the AM rate. C) Dendrograms



Table 2
MNI coordinates and anatomical labels for significant univariate effects.

Effect of Interest Hemisphere Region Label Extent t-value x y z

Sound Left Te1.0 4264 12.615 �50 �24 8
Te1.0 11.616 �44 �18 6
Te1.1 11.607 �42 �30 10
Te1.0 10.689 50 �14 8
Te1.0 9.493 48 �10 0
Te1.1 9.389 44 �26 12

Left Medial Frontal 1841 5.251 �4 8 50
Medial Frontal 4.904 0 14 46
Anterior Cingulate 4.856 10 28 28

Right Middle Frontal Gyrus 703 4.317 26 52 6
Middle Frontal Gyrus 4.065 34 46 14
Middle Frontal Gyrus 3.988 38 34 34

Left Middle Frontal Gyrus 403 4.145 �32 40 22
Middle Frontal Gyrus 4.118 �26 52 6
Inferior Frontal Gyrus 3.436 �40 46 10

Frequency Right Te1.1 606 60.833 48 �28 10
Te1.1 33.149 40 �20 2
Superior Temporal Gyrus 31.023 46 �12 �6

Left Te1.0 666 50.659 �48 �20 8
Te1.0 36.724 �52 �12 6
Te1.2 20.665 �58 �6 2

Right Te1.0 443 40.95 52 �14 6
Te1.2 39.995 54 �6 2

AM Left Superior Temporal Gyrus 1125 32.915 �62 �22 4
Superior Temporal Gyrus 22.847 �66 �30 12
Superior Temporal Gyrus 22.281 �52 �34 10

Right Superior Temporal Gyrus 877 25.747 62 �16 4
Superior Temporal Gyrus 17.972 66 �28 8
Te1.2 15.659 50 �6 �4
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in the superior temporal plane bilaterally but not in parietal cortex (for
MNI coordinates, see Table 1). This pattern was further supported by an
ROI analysis (Fig. 5D) in which the Spearman correlation significantly
decreased from superior temporal to parietal cortex (F(1,19) ¼ 57.8, p <
.001; effects involving hemisphere were not significant). We further note
with interest how this saliency-to-multivoxel correlation peaked in
posteromedial auditory area Te1.1, which clearly differs to how the in-
dependent and integrated coding effects were expressed over cortical
regions (compare Fig. 5D with Fig. 2B). Nearly identical results were
obtained when using loudness in this ROI analysis (here a loudness dis-
tance matrix was formed by computing the absolute differences in
loudness between the stimuli). This suggests that saliency/loudness can
be reliably dissociated from the independent and integrated coding ef-
fects of the earlier analyses. In summary then, this RSA analysis together
with the absence of interactive influences of frequency and AM on
behavioral saliency judgments suggests that the integrated coding effect
we observe cannot be attributed to saliency/loudness. We will return to
this point in the Discussion.

4. Discussion

In the current study, wemanipulated two important acoustic features,
frequency and AM rate, and determined the extent to which they are
represented by independent versus integrated codes in fMRI multivoxel
patterns. We demonstrate that these spectral and temporal dimensions
are represented largely independently in the superior temporal plane,
with only a weakly integrated component present in right Te1.0, Te1.2
and PT (amounting to no more than 4% of the frequency effect size and
50% of the AM rate effect size). In contrast, in a posterior parietal region
not classically considered part of auditory cortex, multivoxel represen-
tation is exclusively integrated albeit weakly.

4.1. Independent representations in the superior temporal plane

Our demonstration of largely independent representations of
9

frequency and AM rate in the superior temporal plane might seem to
contrast with evidence from animal physiology that suggest highly
nonlinear representations already at the level of primary auditory cortex
(e.g. deCharms et al., 1998; Nelken et al., 2003; Wang et al., 2005). One
explanation for why we see independent processing of frequency and AM
is the spatial and temporal averaging inherent with fMRI (Heeger and
Ress, 2002). This spatiotemporal averaging means that transient neural
responses at a fine spatial scale will be underrepresented in BOLD signals
and sustained responses at a large spatial scale will be overrepresented
(Kriegeskorte and Diedrichsen, 2016; Guest and Love, 2017). Thus, while
multivoxel patterns might show independent coding of frequency and
AM, this does not exclude the possibility that other components of the
neural representational code are nonlinear.

Our findings may also reflect the specific features that were manipu-
lated. Specifically, it has been suggested that frequency and AM rate are
fundamental dimensions of sound analysis (Dau et al., 1997; Chi et al.,
2005) and in the auditory cortex are represented as orthogonally-organized
topographic maps (“tonotopy” and “periodotopy”; e.g. Baumann et al.,
2015). The presence of dissociable topographic maps might indicate that
frequency and AM are two independent features to which the cortex is
tuned.While previous electrophysiological (Langner et al., 2009) and fMRI
(Baumann et al., 2015) findings from animals also support the notion of
orthogonal topographic maps, in humans the evidence for an AM map is
mixed with some studies showing clear topographic organization (Langner
et al., 1997; Barton et al., 2012; Herdener et al., 2013) but others not
(Giraud et al., 2000; Sch€onwiesner and Zatorre, 2009; Overath et al., 2012;
Leaver and Rauschecker, 2016). Indeed, our univariate analysis showed
regional preferences for slowmodulation rates throughout (consistent with
Overath et al., 2012) rather thanamixtureof slow- and fast-tunedregionsas
would be expected for a topographic map (we acknowledge however that
our analysis and imaging parameterswere not optimized for characterizing
modulation tuning using univariate methods; see below for further dis-
cussion). Previous conflictingfindingsmay be attributed to the small size of
auditory cortex and high inter-subject variability in anatomy. In the current
study we circumvented these challenges by using a multivariate analysis



Fig. 5. Saliency analysis. A) Subjective saliency of the stimuli. The thick black
line indicates the group-averaged percentage of trials each stimulus was judged
as more salient (than the other stimuli). Light gray lines indicate saliency
judgements for individual participants. The thick blue line represents the pre-
dicted loudness of the stimuli according to the model of Moore et al. (2016) and
normalized to have the same scale as the saliency data (for display purposes
only). B) “Saliency distance” matrix expressing the absolute difference in the
percentage of observations each sound in a pair was chosen as more salient. C)
Whole-cortex multivariate searchlight analysis, showing where the Fisher
transformed Spearman correlation between the saliency distance matrix in panel
B and the multivoxel dissimilarity structure in each searchlight was significantly
above zero across participants (thresholded voxelwise at p < .005 and cluster-
wise at p < .05 FWE corrected for multiple comparisons). D) ROI analysis. Each
data point shows the Fisher transformed Spearman correlation, averaged over
the searchlight map within each ROI and over participants. Error bars represent
the standard error of the mean. Brace and asterisk indicates significant p < .001
F-test comparing the strength of Spearman correlation between auditory and
parietal regions.
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method that abstracts away from the precise configuration of voxels.
Importantly, this approach allowed us to directly test and quantify the de-
gree of representational independence without the need to map features
onto individual voxels.

Despite being able to robustly detect independent coding of frequency
and AM rate in superior temporal regions, we nonetheless found a strong
bias for the frequency feature, with the effect size for AM rate amounting
to no more than 8% of the frequency effect size. While this result might
indicate that superior temporal cortex is more strongly tuned to fre-
quency, it could also reflect that AM rates in our study varied over a
restricted range (4–25 Hz) in order to limit spectral confounds (Moore
and Glasberg, 2001).

Independent representation of frequency and AM features is also
suggested by component analysis of human fMRI responses to natural
sounds (Norman-Haignere et al., 2015). This work suggests that fre-
quency and AM features are represented as independent components in
partly overlapping regions of the superior temporal plane. However, this
study did not test for feature interactions between those features, leaving
unclear the relative contributions of independent and integrated repre-
sentations to neural responses. Another study that did test for feature
interactions used forward encoding models to predict superior temporal
fMRI responses to natural sounds from frequency and spectrotemporal
modulations (Santoro et al., 2014). This work suggests that a model
based on conjunctions of these features better predicted fMRI responses
than if the features in the model were represented separately. While this
result might be taken to be inconsistent with the highly independent code
demonstrated here, we note that in our ROI analysis we too observed
significant integrated coding in the superior temporal plane. But a
consideration of the standardized effect sizes, which the MANOVA
approach readily provides (Allefeld and Haynes, 2014), suggests a more
nuanced interpretation. That is, while an integrated component may be
necessary to fully explain fMRI responses (hence the superiority of an
encoding model based on conjunctions of features), the majority of
variance can be explained by an independent representation.

Thus, our study provides new evidence that frequency and AM are
orthogonal dimensions of sound analysis. Such independent representa-
tion may support listeners’ ability to selectively process information in
frequency versus time. In addition, as noted by Schnupp et al. (2001), an
independent coding scheme will tend to convey more information than a
highly-selective integrated code. This property would be desirable if the
role of primary auditory cortex was to relay information to more
specialized feature conjunction detectors in higher-level regions.

4.2. Integrated representation in posterior parietal cortex

Our imaging of the entire cortex allowed us to probe beyond classi-
cally defined auditory cortex. In this respect, a striking demonstration
here is of an exclusively integrated representation of frequency and AM
rate in a left posterior parietal region, at the border between the intra-
parietal sulcus (IPS), inferior parietal lobule and occipital cortex. This
finding is notable for two reasons. First, it parallels findings from the
visual domain in which parietal cortex (in particular the IPS) shows
increased fMRI responses in feature conjunction versus single feature
tasks (Donner et al., 2002; Shafritz et al., 2002; see also Baumgartner
et al., 2013 for a similar finding using multivariate methods), with
damage to this region leading to feature binding deficits (Humphreys
et al., 2000). Second, BOLD activation in the IPS has been shown to
systematically vary in auditory bi-stability (Cusack, 2005) and
figure-ground paradigms (Teki et al., 2011, 2016). Indeed, the peak lo-
cations of the posterior parietal effects reported by these latter auditory
studies fall inside the cluster reported here. In all these paradigms,
perceptual outcomes are critically dependent on the way in which in-
formation across multiple features is combined and structured into
object-based representations. Thus, the integrated representation for
frequency and AM we observe here in parietal cortex is consistent with
previous work suggesting a role for the IPS in feature integration and the
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structuring of sensory input. Further consistent with this, the location of
our parietal cluster resides in the posterior portion of parietal cortex,
where feature integration can be dissociated from effects of attention
switching and task difficulty in anterior parietal regions (Cusack et al.,
2010). However, our study goes beyond previous work in that neural
responses evoked by stimulus features were contrasted directly, inde-
pendently of listeners’ task (cf. feature search and bi-stability paradigms)
and in the absence of salient stimulus features that would likely attract
attention (cf. figure-ground paradigms).

Because of previous findings from the visual domain implicating pa-
rietal cortex in bottom-up saliency (Arcizet et al., 2011; Bogler et al.,
2011), we also asked a separate group of listeners to rate the subjective
saliency of the stimuli. While the sounds clearly differed in their sub-
jective saliency, we found that influences of frequency and AM on the
saliency ratings combined independently without evidence for an inter-
action, an observation inconsistent with a saliency-based account. It
should be noted however that a limitation of this analysis is the small
sample of participants (N ¼ 6) who provided the saliency judgments. In
this respect, it is reassuring that when using RSA to relate saliency
judgments to the dissimilarity structure of the multivoxel patterns, we
found that the effect of saliency was confined to superior temporal plane
regions with a peak in posteromedial auditory area Te1.1, which is
reminiscent of findings by Behler and Uppenkamp (2016) who reported
correlates of loudness in this region (see Liao et al., 2015 for the close
relationship between loudness and saliency). Thus, the results from this
saliency analysis suggest that the observed integrated coding effect does
not appear to relate to bottom-up saliency.

Related to the issue of saliency, we also consider the possibility that
the integrated coding profile we observe in parietal cortex was in part a
consequence of listeners’ task. In our study, listeners performed an
attentionally undemanding task that did not require explicit integration
of frequency and AM features: detecting the target white-noise in-
terruptions could in principle be based on changes in either the ampli-
tude or spectral profiles alone. Despite this, one might argue that
participants nevertheless detected the noise interruptions by attending to
changes in both temporal and spectral content, in turn contributing to the
integrated coding effect we observe. Indeed, as discussed below, atten-
tion has long been proposed to mediate feature integration (Treisman
and Gelade, 1980). However, we think that this is unlikely as an expla-
nation for the current findings. The interaction between frequency and
AM rate in parietal cortex resulted from differences in the multivoxel
patterns evoked by our stimuli (while the task was fixed throughout).
Thus, even if listeners monitored both spectral and temporal content to
detect the target interruptions, it is unclear how this would have pref-
erentially biased listeners’ attention towards certain feature conjunc-
tions. This is because the targets were temporally unmodulated and
spectrally wide-band and therefore “neutral” with respect to the nine
feature conjunctions of the stimuli.

A key assumption in our approach to distinguishing independent and
integrated representations is a linear relationship between underlying
neural activity and the measured fMRI signal (Kornysheva and Die-
drichsen, 2014; Erez et al., 2015). Our univariate analysis shows that the
mean signal amplitude in the posterior parietal region did not differ from
the implicit baseline (or interstimulus period). It also did not differ be-
tween stimuli, neither in terms of mains effects nor in the interaction
between frequency and AM rate. This suggests that our experimental
manipulations in this region did not evoke sufficiently large changes in
mean signal to saturate the fMRI response and produce nonlinear signal
changes that could be misinterpreted as an integrated representation.
Nonetheless, it should be noted that our rapid event-related designmeans
that any parietal responses would not have had time to fully return to
baseline between sound events. Thus, we cannot completely rule out the
possibility that parietal regions were constantly active and operating near
saturation. However, further evidence against saturation-driven non-
linearities comes from a recent study formally demonstrating that
between-stimulus (and between-action) differences in multivoxel
11
patterns are robust to large changes in mean activity levels (Arbuckle
et al., 2019).

The integration of multiple feature representations is critical for
building a cohesive perception of the auditory scene. However, even in
parietal cortex, the effect size for integrated coding was small in com-
parison with that observed for independent coding in the superior tem-
poral plane. Why then do we observe only weak integration of frequency
and AM rate? As discussed above, frequency and AM may be privileged
dimensions of sound analysis that are separable in a way that other di-
mensions are not. Our results may also be attributed to listeners per-
forming an attentionally undemanding task that did not require explicit
integration of frequency and AM features. It has been suggested that
while individual features are detected automatically, feature integration
is a computationally demanding process requiring focused attention
(Treisman and Gelade, 1980; Shamma et al., 2011). Thus, the absence of
focused attention to feature conjunctions could explain the weak inte-
gration we observe. Future work, using manipulations of attention, will
be required to test this proposal.

4.3. Spatial resolution of current fMRI data and relationship with previous
mapping studies

Because we wished to measure whole-brain responses, including in
regions outside classically defined auditory cortex, we measured BOLD
responses with a resolution of 3 mm isotropic voxels (the data were
additionally smoothed with a 6 mm kernel but only after the critical
multivariate statistics were computed). While finer-resolution data are
commonly obtained in studies investigating how frequency and other
acoustic features are mapped to individual voxels (e.g. Formisano et al.,
2003; Barton et al., 2012; Herdener et al., 2013; Leaver and Rauschecker,
2016), our focus here is how frequency and AM features are represented
in activity patterns over multiple voxels. It is well-established that mul-
tivoxel methods can sensitively measure changes in brain responses to
acoustic features (even with 3 mm resolution data) by pooling weak but
consistent signals over voxels and exploiting between-voxel correlations
(e.g. Linke et al., 2011).

Note also that while significant independent coding of frequency and
AM might be consistent with separate underlying neural populations
responding to those features, this need not be the case. That is, the same
neurons could simply be responding in a linear (additive) fashion to
changes in frequency and AM rate. Moreover, the extent of representa-
tional independence versus integration does not bear on the issue of
whether the underlying neural populations are “distributed” or “sparse”
in nature (Bizley and Cohen, 2013; Diedrichsen and Kriegeskorte, 2017).
Thus, the extent of representational independence and integration in
multivoxel patterns is a more abstract characterization of cortical pro-
cessing than the precise spatial configuration of feature-tuned voxels.

4.4. Generality of findings

One question that arises from the current work is the extent to which
our findings generalize to other acoustic features. Our factorial design,
combined with synthetic stimuli, allowed us to orthogonalize changes in
frequency and AM features in a controlled fashion. This is a statistically
powerful method for dissociating contributions of experimental manip-
ulations (here of acoustic features) to observed neural responses (Friston
et al., 1994). At the same time however, this necessarily constrained the
number of features we could investigate. Therefore, our findings should
not be taken to mean that all acoustic features are encoded in the same
way as the frequency and AM features studied here.

Our factorial design contrasts with studies that have investigated the
neural representation of acoustic features using natural sounds and sta-
tistical methods that enable many stimulus features to be studied
simultaneously (Giordano et al., 2013; Santoro et al., 2014; Di Liberto
et al., 2015; Norman-Haignere et al., 2015; de Heer et al., 2017; Holdgraf
et al., 2017; Brodbeck et al., 2018; Daube et al., 2019; Sohoglu, 2019).
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However, the benefits of this more naturalistic approach come with
substantial methodological challenges since acoustic features in natural
sounds show substantial correlations, making it difficult to dissociate
their neural contributions (Holdgraf et al., 2017; Norman-Haignere and
McDermott, 2018). Thus, we suggest that the approach taken here is
complementary to studies using natural sounds. An extension for future
work could increase the number of features manipulated factorially,
combined with stimulus synthesis techniques to create more naturalistic
(yet still controlled) sounds (Kawahara et al., 1999; McDermott and
Simoncelli, 2011).
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